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Traveling-wave solutions of a modified

Hodgkin-Huxley type neural model via Novel

analytical results for nonlinear transmission lines

with arbitrary I(V ) characteristics ∗

Valentino Anthony Simpao

Abstract

Herein an enhanced Hodgkin-Huxley (H-H) type model of neuron dy-
namics is solved analytically via formal methods. Our model is a variant
of an earlier one by M.A. Mahrous and H.Y. Alkahby [1]. Their modified
model is realized by a hyperbolic quasi-linear diffusion operator with time-
delay parameters; this compared to the original H-H model with standard
parabolic quasi-linear diffusion operator and no time-delay parameters.
Besides these features, the present model also incorporates terms describ-
ing signal dissipation into the background substrate (e.g., conductance to
ground), making it more experimentally amenable. The solutions which
results via the present scheme are of traveling-wave profile, which agree
qualitatively with those observed in actual electro-physiological measure-
ments made on the neural systems originally studied by H-H These results
confirm the physiological soundness of the enhanced model and of the pre-
liminary assumptions which motivated the present solution strategy; the
comparison of the present results with actual electro-physiological data
displays shall appear in later publications.

1 Introduction

Consider the nonlinear transmission-line model equation (viz. (3.8) in Mahrous
and Alkahby in [3])

(∂2x −
1

θ2
∂2t )V =

2RC

a
∂tV +

2R

a
Ii +

2L

a
∂tIi . (1)

Where all the parameters are as defined in [3], except for the J-terms in their
section 5. In the present analysis, only the time-asymptotically stable expres-
sions are being considered as t → ∞ for the various J-terms, particularly
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134 Traveling-wave solutions

J = αJ (V )
αJ (V )+βJ(V )

. As a consequence of [3] and the present J-term consider-

ations, the ionic current Ii is here clearly a function of V and the constant
parameters of the system; the variation of Ii with respect to (x, t) is implicit,
being here determined exclusively by Ii(V (x, t)). Since traveling waves are phys-
iologically useful constructs [ubiquitous in natural phenomena], the present work
is dedicated to obtaining traveling-wave solutions to (1). Specifically sought are
solutions of form V (x, t) = V (µ±) with µ± = (x ± θt). Concerning the em-
pirically determined forms of the J-terms in [2], along with the aforementioned
stipulation about the asymptotically stable terms, the particular form of the
ionic current Ii(V (x, t)) is

Ii(v) (2)

= Gk

(
(0.1 + 0.01V )4(V − Vk)

(e1+0.1V − 1)4
(
0.125ev/80 + (0.1 + 0.01V )(e1+0.1V − 1)−1

)4
)

+GNa

(
0.07eV/20(2.5 + 0.1V )3(V − VNa)

(e2.5+0.1V − 1)3
(
0.07eV/20 + 1

e3+0.1V +1

)(
4eV/18 + 2.5+0.1v

e2.5+0.1V −1

)3
)

+GL(V − VL) .

To solve (1), we consider an analytical result for a general class of Non Linear
Transmission Line equations.

2 Main result

Consider the class of Non Linear Transmission Line (NLTL) equations, which
arise in the context of transmission line models for systems with 1-configuration
space variable x degree of freedom (the longitudinal axis of the cable), a single
time variable t, and a specified but otherwise arbitrary dependence of the line
current I(x, t) upon the line voltage V (x, t), i.e., I(V (x, t)). Then

∂xV (x, t) = −RI(x, t)− L∂tI(x, t) (3)

∂xI(x, t) = −GV (x, t) − C∂tV (x, t)

where R, G, L, C are the constant resistance per unit of length, constant con-
ductance (leakage loss to ground) per unit of length, constant inductance per
unit of length and constant capacitance per unit of length. Re-arranging (3),
we obtain

[
(∂xV (x, t))

2 − LC(∂tV (x, t))
2
]
D2V (x,t)I(V (x, t)) (4)

+
[
∂2xV (x, t) − LC∂

2
t V (x, t) − (GL+RC)∂tV (x, t)

]
DV (x,t)I(V (x, t))

= GRI(V (x, t)) ,

where x and t are real variables and G,L,R,C are constants.
Now define the characteristic variable as µ± = x ± t/

√
LC. Substituting

the characteristic variable as the particular V (x, t) = V (µ±), the functional
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dependence in (2) yields

[
(Dµ±V (µ±))

2 −
LC

LC
(Dµ±V (µ±))

2
]
D2V (µ±)I(V (µ±)) (5)

+
[
D2µ±V (µ±)−

LC

LC
D2µ±V (µ±)−

GL+RC

±
√
LC

Dµ±V (µ±)
]
DV (µ±)I(V (µ±))

= GRI(V (µ±)) .

Simplifying this equation, we obtain

−
GL+RC

±
√
LC

DV (µ±)I(V (µ±))DV (µ±)V (µ±) = GRI(V (µ±)) . (6)

Since I(V (x, t)) is specified but otherwise arbitrary, (6) has an analytical
implicit solution given by∫

DV (µ±)I(V (µ±))

I(V (µ±))
dV (µ±) =

∫
−
±GR

√
LC

GL+RC
DV (µ±)µ±(V (µ±)) dV (µ±)

Therefore, ln(I(V )) = −±GR
√
LC(µ± + µconst.)/(GL +RC) and

I(V ) = exp
(
−
±GR

√
LC

GL+RC
(µ± + µconst.)

)
. (7)

By the inversion theorem on power series [1], the explicit analytical form of
V ascends

V (µ±) =

∞∑
n=1

1

n!
Dn−1V

( V
I(V )

)n∣∣∣∣
V=0

exp
(
−
±GR

√
LC

GL+RC
(µ± + µconst.)

)
. (8)

Regarding the arbitrary constant µconst., it may be used to designate advances
or delays in the time and/or space domains of the solution.
With these results in place, consider the fundamental system of coupled

partial differential equations (3) defining the transmission line equation (1),

∂xv(x, t) = −ria(x, t)− l∂tia(x, t)

∂xia(x, t) = −ii(x, t)− ca∂tv(x, t) .

Identifying v = V , ia = I, l = L, ca = C, r = R, and ii(x, t) = 2πa(Cm∂tV (x, t)+
Ii(V (x, t)) = −GV (x, t) , terms in (3) with terms in [3] (with the (x, t) depen-
dence suppressed for notational simplicity) yields

2πa(Cm∂tV (x, t) + Ii(V (x, t)) = −GV (x, t)

Ii(v)

= Gk

(
(0.1 + 0.01V )4(V − Vk)

(e1+0.1V − 1)4
(
0.125ev/80 + (0.1 + 0.01V )(e1+0.1V − 1)−1

)4
)

+GNa

(
0.07eV/20(2.5 + 0.1V )3(V − VNa)

(e2.5+0.1V − 1)3
(
0.07eV/20 + 1

e3+0.1V +1

)(
4eV/18 + 2.5+0.1v

e2.5+0.1V −1

)3
)

+GL(V − VL) .
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So the line current, defined in terms of the ionic current Ii(V ), and V (x, t) are
given by

I(V ) = exp
(
−
±GR

√
LC

GL +RC
(x±

t
√
LC
+ µconst.)

)

V (µ±) =

∞∑
n=1

1

n!
Dn−1V

( V
I(V )

)n∣∣∣∣
V=0

exp
(
−
±GR

√
LC

GL +RC
(x±

t
√
LC
+ µconst.)

)
.

Explicit calculation of the above formula with numerical values for the sys-
tem parameters indicates that the functional form, V (x±t/

√
LC), theoretically-

predicted traveling-wave potential solution matches the experimentally observed
action potential of the neuron; these results shall appear in later reports.
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