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Quantum copying: A review ∗

Mark Hillery

Abstract

Quantum information is stored in two-level quantum systems known
as qubits. The no-cloning theorem states that the state of an unknown
qubit cannot be copied. This is in contrast to classical information which
can be copied. If one drops the requirement that the copies be perfect it
is possible to design quantum copiers. This paper presents a short review
of the theory of quantum copying.

1 Introduction

The relatively recent confluence of quantum mechanics and computer science
has led to rapid and unexpected progress in both fields. In computer science
it was shown that by increasing the class of allowable algorithms to include
ones which operate according to quantum principles, it is possible to perform
certain tasks, such as factorization and data base searching, much faster than
had been previously believed possible [1, 2]. In quantum mechanics, it has led
to the study of entirely new questions, as well as some extremely interesting
new applications. For example, quantum error correcting codes provide novel
ways of protecting quantum systems from the effects of decoherence [3].
This work grew out of the consideration of the limits which physics places on

computers. Early work by Landauer and Bennett focused on the limits due to
thermodynamics, and had the rather surprising outcome that thermodynamics
places no restrictions on what a computer can do [4]. The next task was to
see if quantum mechanics might place any restrictions on what could be done,
but Benioff and Feynman independently showed that it did not [5, 6]. Deutsch,
considering the matter further, showed that not only does quantum mechanics
not hurt, it can, in fact, help [7]. This conclusion was dramatically confirmed
by Shor, when he constructed a quantum algorithm which can find the prime
factors of an N -digit number in a time which is polynomial in N [1].
In addition to the work directly on quantum computation, a second, but re-

lated, line of work emerged, that of quantum information. Classical information
is carried by bits which can have one of two values, 0 or 1. The kind of informa-
tion on which a quantum computer relies, quantum information, is carried by
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two-level quantum systems, known as qubits, where one level corresponds to 0
and the other to 1. Qubits, unlike bits, can exist in a superposition of 0 and 1,
and it is this fact that leads to their unusual properties. For example, a register
consisting of qubits can be put into a superposition of all possible input values,
e.g. |00〉, |01〉, |10〉, and |11〉 for a two-qubit register, and any operation which
acts on the register acts on all of these values simultaneously. This means that
using quantum information instead of classical leads automatically to a kind of
parallel processing. The study of the properties of the information carried by
qubits comprises the field of quantum information.
Here we shall consider one of the more unusual properties of quantum in-

formation - it cannot be copied, or, to be more precise, it cannot be copied
perfectly. This is not true of classical information, which can, in principle, be
copied without any difficulty (though, as anyone who has struggled with a re-
calcitrant copy machine can attest, the phrase “in principle” here covers up a
lot). The inability to copy quantum information makes it useful in cryptog-
raphy, and prototype quantum cryptographic system have been constructed in
several laboratories. If one considers approximate copies, however, or perfect
copies which can be produced with a probability less than one, of only a limited
set of quantum states, then quantum copying becomes possible. Here we shall
review both kinds of copiers (more frequently known as quantum cloners).
This paper is dedicated to Professor Eyvind Wichmann on his 70th birthday.

While I had taken previous courses in quantum mechanics, I really learned
the subject from a one-year graduate course which Eyvind taught, and this
knowledge was deepened during my Ph.D. studies with him. It was one of
the most challenging and one of the best courses which I have ever taken (the
only other candidate was the quantum field theory course I took from him
the following year), and I still refer rather often to the set of notes which he
distributed during this course. I hope what is in this paper will demonstrate
that what he taught has been put to good use.

2 No-cloning theorem

The original realization that quantum information cannot be cloned is due to
Wooters and Zurek [8]. The argument is very short and depends only on the
linearity of quantum mechanics. We assume that the cloner has degrees of
freedom of its own and operates by means of a unitary transformation acting on a
Hilbert space which is a tensor product of the space of the cloner itself, Hx, that
of the input qubit, Ha, and the space of a “blank” qubit, Hb which is to become
the copy. The input qubit is in an arbitrary input state, |ψ〉a = α|0〉a + β|1〉a,
while we assume that the “blank” qubit is always initially in the state |0〉b. The
cloner is assumed to be initially in the state |Q〉x, no matter what the state of
the input qubit. An ideal cloner would have the following action:

|ψ〉a|0〉b|Q〉x → |ψ〉a|ψ〉b|Q
′〉x. (1)

If the cloner is to duplicate any initial state, then clearly it must duplicate



Mark Hillery 115

the basis states properly. This means that

|0〉a|0〉b|Q〉x → |0〉a|0〉b|Q0〉x

|1〉a|0〉b|Q〉x → |1〉a|1〉b|Q1〉x. (2)

These equations, however, determine the transformation on any input state,
because it is realized by a linear transformation. In particular

|ψ〉a|0〉b|Q〉x → α|0〉a|0〉b|Q0〉x + β|1〉a|1〉b|Q1〉x. (3)

A comparison of Eqs. (1) and (3) shows that the right-hand sides cannot be
equal for all values of α and β; the dependence of one is quadratic while that of
the other is linear. Therefore, a perfect cloner cannot exist.

3 Universal quantum copiers

Now let us assume we want to copy the state |ψ〉 given above, but we shall drop
the requirement that the copies be perfect. It will be useful in what follows to
parameterize α and β as

α = sinϑeiϕ, β = cosϑ. (4)

We now need to ask ourselves what requirement we would like our imperfect copy
machine to satisfy. One possibility is the Universal Quantum Copy Machine
(UQCM) [9], which is specified by the following conditions.
(i)The state of the original system and its quantum copy at the output of the

quantum copier, described by the reduced density operators ρ̂
(out)
a and ρ̂

(out)
b ,

respectively, are identical, i.e.,

ρ̂(out)a = ρ̂
(out)
b (5)

(ii) If no a priori information about the input state of the original system is
available, then it is reasonable to require that all pure states should be copied
equally well. One way to implement this condition is to design a quantum
copier so that the distances between density operators of each system at the

output (ρ̂
(out)
a and ρ̂

(out)
b ) and the ideal density operator ρ̂(id) which describes

the input state of the original qubit, are input state independent. Quantitatively
this means that if we employ the Hilbert-Schmidt norm to define our distance
between two density matrices,

d(ρ̂1; ρ̂2) :=
(
Tr
[
(ρ̂1 − ρ̂2)

2
])1/2

, (6)

then the quantum copier should be such that

d(ρ̂(out)a ; ρ̂(id)) = const. (7)



116 Quantum copying: A review

(iii) Finally, we would also like to require that the copies are as close as
possible to the ideal output state, which is, of course, just the input state. This
means that we want the constant in Eq. (7) to be as small as possible.
Originally, the UQCM was found by guessing a transformation which con-

tained two free parameters, and then determining them by demanding that
condition (ii) be satisfied, and that the distance between the two-qubit out-
put density matrix and the ideal two-qubit output be input state independent.
That the UQCM machine satisfies condition (iii) has been shown by Gisin and
Massar, and by Bruss, et. al. [10, 11].
The unitary transformation which implements the UQCM [9] is given by

|0〉a|0〉b|Q〉x →

√
2

3
|00〉ab| ↑〉x +

√
1

3
|+〉ab| ↓〉x

|1〉a|0〉b|Q〉x →

√
2

3
|11〉ab| ↓〉x +

√
1

3
|+〉ab| ↑〉x, (8)

where

|+〉ab =
1
√
2
(|10〉ab + |01〉ab), (9)

and satisfies conditions (i), (ii), and (iii). The system labeled by a is the original
(input) qubit, while the other system b represents the qubit onto which the
information is copied, and is analogous to “blank paper” in a copier. The states
of the copy machine are labeled by x. The state space of the copy machine is two
dimensional, and it is spanned by the vectors | ↑〉x and | ↓〉x. We assume that
copy machine is always in the same state, |Q〉x, initially. The reduced density
operators of both copies at the output are equal and they can be expressed as
(we give the expressions for qubit a, the ones for qubit b are similar)

ρ̂(out)a =
5

6
|ψ〉a〈ψ|+

1

6
|ψ⊥〉a〈ψ⊥|, (10)

where
|ψ⊥〉a = β

∗|0〉a − α
∗|1〉a, (11)

is the state orthogonal to |ψ〉a. This implies that the copy contains 5/6 of the
state we want and 1/6 of the one we do not.

The density operator ρ
(out)
a given by Eq.(10) can be rewritten in a “scaled”

form:

ρ̂(out)a = sρ̂(id)a +
1− s

2
1̂, (12)

which guarantees that the distance (6) is input-state independent, i.e. the condi-
tion specified by Eq. (7) is automatically fulfilled. The scaling factor in Eq.(12)
is s = 2/3.
We note once again that the UQCM copies all input states equally well,

and, therefore, it is suitable for copying when no a priori information about
the state of the original qubit is available. This corresponds to a uniform prior
probability distribution on the state space of a qubit (Poincare sphere). This
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suggests that another measure of the quality of the copies is the average fidelity
F which is equal to the mean overlap between a copy and the input state [10]

F =

∫
dΩa〈ψ|ρ̂

(out)
a |ψ〉a, (13)

where
∫
dΩ =

∫ 2π
0
dϕ
∫ π
0
dϑ sinϑ/4π. It is easy to see that the fidelity F and

the scaling factor s are related as

s = 2F − 1. (14)

The UQCM transformation is the one which minimizes F [10].
It is possible to generalize universal, that is, input-state-independent, quan-

tum copiers in several ways. One is to suppose that you wish to produce more
than two copies (by the number of copies we mean the number of output qubits
which are similar to the input qubit). One would expect that the more copies
one produces, the lower the quality of each copy. It is also possible to imagine
that instead of feeding in just one original qubit into the copier, if one had sev-
eral identical qubits one could feed all of them into the copier to produce better
copies. For example, starting with two identical originals, one could produce
3 copies. The quality of these copies would presumably be better than that of
3 copies produced from only one original. Specific transformations have been
found for a copier which starts with N originals and produces M ≥ N copies
[10], and these have been shown to be optimal [10]-[13]. The reduced density
matrixes of the output qubits are in the scaled form (see Eq. (12)) with a scaling
factor

s =
N(M + 2)

M(N + 2)
. (15)

Note that the scaling factor is an increasing function of the number of originals
and a decreasing function of the number of copies, as expected.
Another possible generalization is to consider copying systems of dimension

higher than two. In this case, because a system with d > 2 dimensions contains
more quantum information than a two-dimensional one, we would expect that
the quality of the copies will be an decreasing function of d. An explicit copying
transformation is known for general d in the case in which we have one original
and produce two copies [14]. In the case in which we have N identical originals
and produce M ≥ N copies, it is known that the optimal transformation again
leads to reduced density matrixes for the individual copies of scaled form with
the scaling factor [12, 13]

s =
N(M + d)

M(N + d)
. (16)

As expected, it is a decreasing function of d.

4 Probabilistic copiers

Instead of trying to construct a device which will copy all possible input states,
one could design one which will copy only states from a particular set of allowed
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input states. Presumably a copier of this type can achieve higher fidelities for its
copies than one which is required to accept all possible states as inputs. In fact,
it might even be possible for the copier to be perfect for certain input sets. This
suspicion is correct, but the size of the input sets for which it is true is small. If
the input set contains any two states which are not orthogonal, a perfect copier
is impossible [15], and if we are copying qubits, then this means that it is not
possible to build a perfect copier for input sets of more than two states.

There is a way around this problem, however. What we have been discussing
in the previous paragraph is a copier which produces perfect copies and works
every time. What happens if we relax this latter requirement? We still demand
that the copies for our allowed input set be perfect, and we permit the copier to
have a certain probability of failure, but impose the requirement that the copier
lets us know when it has failed and when it has succeeded. One can think of the
copier as having a red light on top. We put in one of our allowed input states,
and the copier produces an output. If the red light stays off, the copying process
has succeeded, and our output consists of perfect copies. If it goes on, which it
does with a certain nonzero probability if the input set contains nonorthogonal
states, then the copying process has failed, and we discard the output.

This type of copier was proposed and the transformation for it constructed
by Duan and Guo [16, 17]. Let us suppose that we want to copy one of two
states, |ψ1〉 and |ψ2〉, where, for simplicity, we shall assume that their inner
product is real and nonnegative, 〈ψ1|ψ2〉 = r ≥ 0. The copying transformation
is given by

|ψj〉a|0〉b|Q〉x →
1

√
1 + r

(|ψj〉a|ψj〉b|X0〉x +
√
r|Φ〉ab|X1〉x), (17)

for j = 1, 2. Here we have that x〈Xj |Xk〉x = δjk and |Φ〉ab is an arbitrary
state of the a− b system with norm one. This transformation is consistent with
unitarity, has the same failure probability for each input state, and gives the
lowest possible failure probability. The way it works is that we take a qubit,
which is either in the state |ψ1〉a or |ψ2〉a, but we do not know which, and
send it through a device which implements the above transformation. We then
measure the device itself in order to determine whether it is in the state |X0〉x
or |X1〉x. If it is in the former, the transformation has succeeded, and we have
two copies of the input state as our output. The probability of this happening
is 1/(1 + r). If it is the latter the transformation has failed, and we discard the
output.

A number of generalizations of this type of copier are possible. Larger sets
of allowed states can be considered [17] or one might have multiple copies of the
input state and wish to produce more than two copies at the output [18]. It is
also possible to design copiers which lie between the universal and probabilistic
ones. In particular, they are designed to copy a finite set of allowed states, the
copies they produce are not perfect, and these are produced with only a certain
probability [19]. In these one finds that there is a trade-off between the quality
of the copies and the probability of successfully producing them. The success
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probability for producing perfect copies is the smallest, and this probability
increases as the quality of the copies decreases.

5 Conclusion

The study of quantum copying has increased our understanding of the properties
of quantum information. What its role in devices which process quantum will be
is not yet clear. It can perhaps best be used to split the quantum information in
a qubit, allowing some of that information to be processed in one way and some
in another. The development of quantum algorithms is a very active field of
research, and quantum copying should prove to be a useful part of the quantum
programmer’s tool kit.
A final question is how can one actually build a quantum copier. Designs in

terms of quantum logic networks exist [19]-[21], and the gates from which these
are constructed have actually been realized in several laboratories. However,
putting together enough of them to build a quantum copier is still a major
problem. Nevertheless, it may soon be possible to actually construct a quantum
copier due to a clever proposal by Simon, Weihs, and Zeilinger [22]. They showed
how two-photon down conversion can be utilized to realize the UQCM on a single
qubit . This proposal can be realized with present technology, and the hope is
that a working quantum copier will be a reality in a few years.

Acknowledgments
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