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Transient effects of stochastic

multi-population models ∗

Thomas C. Gard

Abstract

We give some estimates for exit probabilities through specific portions
of the boundary of bounded subsets of the feasible region for solutions of
stochastic population interaction models. These exit probability estimates
can indicate initial tendencies for survival or extinction for the modeled
populations. When the subset boundaries are given by level curves of
multiple Liapunov type functions, the estimates are more tractable.

1 Introduction and main result

Transient effects are often overlooked in the mathematical analysis of population
dynamics models. Generally the focus of qualitative investigations is on long
term properties such as asymptotic stability, while for the short term picture,
simulations are carried out. Even after fairly exhaustive efforts of the latter type,
it may be still difficult to conclude anything of very general nature concerning
short-to-intermediate time horizon events. Such information could have crucial
practical significance. If the location of a stable equilibrium, periodic solution or
strange attractor is close to the boundary of the feasible region, or if trajectories
typically sweep close to the boundary before settling down near some special
trajectory, the transient behavior of the model may be more important than
some of these other qualitative properties. The situation may be even more
critical if random features ([1]) are incorporated in the model.
We address this situation with a result for a generic such model - an Ito

stochastic n-dimensional multi-population interaction model (in Kolmogorov
form)

dX = D(X)[f(X) dt+G(X) dW ]. (1.1)

Here
X = (X1, X2, ..., Xn)

with Xi representing the ith-species population density, and

D = D(X) = diag{X1, X2, ..., Xn};
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82 Transient effects of stochastic multi-population models

more precisely,

X = X(t, ω) = {X1(t, ω), X2(t, ω), ..., Xn(t, ω)}

and
W =W (t, ω) = {W1(t, ω),W2(t, ω), ...,Wm(t, ω)}

with the Wj denoting independent Brownian motion processes, t > 0, and
ω ∈ Ω, a probability sample space. Formally, (1.1) can arise if one models
the impact of environmental stochasticity by characterizing the net per capita
growth rates of the populations F (x),

Fi(x) =
1

xi

dxi

dt
, (1.2)

as random noise fluctuations about some average values f(x) with intensities
G(x) dependent on the population size x

F (x) = f(x) +G(x)N

where
N = N(t, ω) = {N1(t, ω), N2(t, ω), ..., Nm(t, ω)}

with the Nj , t > 0, and ω ∈ Ω, specifying independent white noises.
Specifically, we are interested in the solutions X = X(t, ω;x) of (1.1) which

satisfy the initial conditions

X(0, ω;x) = x ∈ B,

for almost all ω, where B is a bounded subset of the the positive cone in Rn

Rn+ = {x = (x1, ..., xn) : xi > 0, i = 1, ..., n},

the interior of the feasible region for (1.1). The result in this paper gives esti-
mates for exit probabilities of X through certain portions of the boundary of
B. The result generalizes slightly an earlier result ([9],[10]) of the author, and
indicates the use of multiple Liapunov functions in its application in the study
of practical persistence for stochastic population interaction models([11]).
The set-up thus far is nearly identical to the setting of the Wentzell-Freidlin

exit problem ([6]). Our goal here also is similar to that in the W-F problem - to
obtain features of the exit probability of X from B. However, unlike the W-F
problem, we do not consider the noise necessarily as a small perturbation, and
the set B is not required to be an attractor or a basin of attraction of an equilib-
rium of a corresponding deterministic model. Also, instead of trying to obtain
the complete exit distribution - which may not be needed to deduce important
biological implications, we will be satisfied, for now, with just determining some
relevant characteristics of the exit probability.
We will assume that (1.1) is non-degenerate in B, i. e., that there is a

positive constant m such that

ξTD(x)G(x)GT (x)D(x)ξ ≥ m‖ξ‖2 (H)
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for all ξ in Rnand x in B (superscript T denoting transpose). It is well-known
(see [8], for example) that if the noise intensity matrix G satisfies (H) in B, then
any such solution X must exit B in finite (random) time

τ = τx = inf{t ≥ 0 : X(t) /∈ B,X(0) = x}

almost surely (no matter what the form of the drift term f(x)). In fact, the
expected exit time

v(x) = E(τx)

is known ([8]) to solve the following boundary value problem:

Lv(x) = v̇(x) + 12 trace(D(x)G(x)G
T (x)D(x)vxx(x)) = −1, x ∈ intB (1.3)

v(x) = 0, x ∈ ∂B (1.4)

where above

v̇(x) =

n∑
i=1

xifi(x)
∂v(x)

∂xi
and vxx(x) =

{ ∂2v(x)
∂xi∂xj

}n
i,j=1
.

(Equation (1.3) is known as Dynkin’s equation ([5]).) The expected exit time
has been suggested as characterizing relative persistence in the case of models of
the form (1.1) and computation techniques have been proposed ([14],[15]). For
simplicity and clarity here we will assume (H) and that at least an estimate of
E(τ) has been determined. The question then is where (through which portion
of the boundary of B) does the exit take place. The answer may indicate if
modeled populations are at risk in the near future.

The main point in this paper is that it may be useful to consider sets B
defined by certain multiple Liapunov type functions Vk. In particular we assume
the boundary of B is given by pieces of certain level surfaces of the functions Vk

Skj = {x : Vk(x) = νj},

where the νj are positive constants. Such functions, sometimes referred to
as average Liapunov functions, have the property that, if νj is small, some
component of x is small for every x in Skj . Construction of Liapunov functions
has been a principal technique in the investigation of permanence or uniform
persistence ([13]), in particular, practical persistence, in deterministic dynamical
system models of population interactions ([2],[3],[4],[7],[12]). The typical form
for such functions is

Vk(x) =

n∏
i=1

xαkii ,

where the αki are constants, at least one of which being positive for each k. We
are ready to state the main result. For simplicity, we state the result for a single
Liapunov type function V .
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Theorem 1 Suppose V is a non-negative C2 function defined on the bounded
set B with

η = inf{V (x) : x ∈ B} and µ = sup{V (x) : x ∈ B},

and assume that the level surface

S = {x : V (x) = η}

forms part of the boundary of B. Suppose also that condition (H) holds in B.
For any x ∈ B, let X(t) = X(t, ω;x) be the solution of (1.1) with X(0) = x,
and let

τ = τx = inf{t ≥ 0 : X(t) /∈ B},

the first exit time of X starting from x in B. If there is a positive constant c,
such that

LV = V̇ +
1

2
tr(DGGTDVxx) ≥ c (1.5)

then

Prob{X(τ) ∈ S} ≤
µ− V (x) − cE(τ)

µ− η
. (1.6)

If the level surface
T = {x : V (x) = µ}

forms part of the boundary of B, if (H) holds in B, and if there is a positive
constant c such that

LV = V̇ +
1

2
tr(DGGTDVxx) ≤ −c (1.7)

then

Prob{X(τ) ∈ T } ≤
V (x)− η − cE(τ)

µ− η
. (1.8)

Proof: For x ∈ B, η ≤ V (x) ≤ µ. Let

S = {x ∈ ∂B : V (x) = η}, T = {x ∈ ∂B : V (x) = µ}, R = ∂B − S − T,

and further, let

p = Prob{X(τ) ∈ S}, q = Prob{X(τ) ∈ T }, r = Prob{X(τ) ∈ R}.

Since (H) holds in B, p+ q + r = 1. Therefore,

E(V (X(τ))) = pη +

∫
R

V (x)dP + qµ (1.9)

≤ pη + rµ + qµ = pη + (1− p)µ

On the other hand, by Dynkin’s Formula and (1.5), we get

E(V (X(τ))) − V (x) = E

∫ τ
0

LV (X(s)))ds ≥ cE(τ) (1.10)
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Now from (1.9) and (1.10), we have

pη + (1− p)µ ≥ V (x) + cE(τ) (1.11)

Solving (1.11) for p, we obtain

p ≤
µ− V (x) − cE(τ)

µ− η

which is the first conclusion of the Theorem.
Similarly

E(V (X(τ))) = pη +

∫
R

V (x)dP + qµ (1.12)

≥ pη + rη + qµ = (1− q)η + qµ

which, similarly to (1.10) and (1.11), together (1.7) leads to

(1− q)η + qµ ≤ V (x)− cE(τ). (1.13)

Solving for q in (1.13) gives

q ≤
V (x)− η − cE(τ)

µ− η

which is the second conclusion, and the proof is complete. ♦

Before giving a population example, we will consider the following simple
example - the simplest of all SDEs - to get a feeling about what this result gives
us. In this case we know both the expected exit time E(τ) and the probability
of exit q explicitly, and so we can compare with the estimate (1.8) obtained in
the result above.

Example 1. We consider dX = dW,X(0) = x ∈ (0, 1]. For some r in (0, 1),
take

V (x) = xr.

In this example, W is a scalar Brownian motion (with W (0) = 0 a.s.), and
thus X is Brownian motion starting at x. The set B is the unit interval [0, 1].
The boundary of B is made up of the level sets for V corresponding to η = 0
and µ = 1. That V is not differentiable at 0 causes no problems. Indeed, for
x ∈ (0, 1],

LV (x) =
1

2
r(r − 1)xr−2 ≤ −

1

2
r(1 − r). (1.14)

The probability of exit for X through the top boundary

u(x) = Prob{X(τ) = 1}(= q)

solves the boundary-value problem

0 = Lu(x) =
1

2
u′′(x), u(0) = 0, u(1) = 1.
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(See ([8]), for example.) The solution is

u(x) = x. (1.15)

The expected exit time v(x) = Ex(τ) on the other hand solves the problem:

−1 = Lv(x) =
1

2
v′′(x), v(0) = 0, v(1) = 0.

Its solution is
v(x) = x− x2. (1.16)

Now, the conclusion (1.8) of the theorem is equivalent to

u(x) ≤
V (x)− 0− cv(x)

1− 0
(1.17)

Using (1.15) and (1.16) and taking the value of c from (1.14) in (1.17) results
in the estimate of x by a concave function:

x ≤ xr −
1

2
r(1 − r)(x − x2), 0 ≤ x ≤ 1. (1.18)

Inequality (1.18) could be called a “bow saw inequality”.
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Figure 1:

2 A predator-prey example

We consider the following predator-prey example to illustrate that the key con-
ditions (1.2) and (1.3) are obtainable in the population interaction situation.
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Example 2.

dX = X [a− bX − Y h(X,Y )]dt+ g1XdW1 (2.1)

dY = Y [−k +mXh(X,Y )]dt+ g2Y dW2

In (2.1), a, b, k,m, g1 and g2 are positive constants and the function h satisfies

h(x, y) > 0 in R2+ = {(x, y) : x > 0, y > 0}.

We consider the multiple Liapunov functions

V0 = mx+ y, V1 = xy
−α, V2 = x

βy

where α and β are positive constants to be determined possibly from the analysis
of the corresponding deterministic predator-prey model

dx

dt
= x[a− bx− yh(x, y)] (2.2)

dy

dt
= y[−k +mxh(x, y)]

For (2.2) the derivative of V0 along solution trajectories satifies

V̇0 = mx(a− bx)− ky ≤ c− kmx− ky = c− kV0, (2.3)

for a sufficiently large constant c. If we take

K =
c

k
,

from (2.3) it follows that all trajectories of (2.2) must eventually reside in the
set

C = {(x, y) ∈ R
2

+ : V0(x, y) = mx+ y ≤ K}.

It is of interest, therefore, to choose positive constants η1, η2, µ1,and µ2 so that

B = {(x, y) ∈ R
2

+ : η1 ≤ V1 ≤ µ1, η2 ≤ V2 ≤ µ2} ⊆ intC.

The boundary ∂B of B is contained in the set C and is composed of the four
segments Sη1 , Sµ1 , Sη2 , and Sµ2 , where

Sη1 = {(x, y) ∈ R
2

+ : V1 = η1, η2 ≤ V2 ≤ µ2}

with the other segments given analogously.
Now, for the choices of V1 and V2 above, we have

V̇1 = V1[a− bx+ αk − h(x, y)(y + αmx)] (2.4)

V̇2 = V2[β(a− bx)− k − h(x, y)(βy −mx)].
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The noise intensity matrix here is DGGTD = diag{g21x
2, g22y

2} and thus we
obtain

tr(DGGTDV1xx) = V1[α(α+ 1)g
2
2 ] (2.5)

tr(DGGTDV2xx) = V2[β(β − 1)g
2
1 ]

Putting together (2.4) and (2.5) we get

LV1 = V1[a− bx+ αk − h(x, y)(y + αmx) +
1

2
(α(α + 1)g22)] (2.6)

LV2 = V2[β(a− bx)− k − h(x, y)(βy −mx) +
1

2
(β(β − 1)g21)]. (2.7)

For the special case of Michaelis-Menten dynamics,

h(x, y) =
r

s+ x

where r and s are positive constants, we have

a− bx+ αk − h(x, y)(y + αmx)

= a− bx+ αk − r(y + αmx)/(s + x)

= a+ αk − [b+ rαm/(s+ x)]x − ry/(s+ x)

and

β(a− bx)− k − h(x, y)(βy −mx)
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= β(a− bx)− k − r(βy −mx)/(s+ x)

= βa− k − [βb− rm/(s+ x)]x − rβy/(s+ x)

both of which are bounded in B. Therefore, if g22 sufficiently large, there is a
c1 > 0, such that in B

LV1 ≥ c1.

Thus, from the theorem

p1 = Prob{(X(τ), Y (τ)) ∈ Sη1} ≤
µ1 − V1(x) − c1E(τ)

µ1 − η1
. (2.7)

Similarly, if β < 1 and g21 sufficiently large, there is a c2 > 0, such that in B,

LV2 ≤ −c2,

and so

q2 = Prob{(X(τ), Y (τ)) ∈ Sµ2} ≤
V2(x)− η2 − c2E(τ)

µ2 − η2
. (2.8)

Inequalities (2.7) and (2.8) give estimates for first tendencies of predator extinc-
tion and prey explosion respectively.
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