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Abstract

We use bifurcation theory to show the existence of infinitely many
solutions at the first eigenvalue for a class of Dirichlet problems in one
dimension.

It has been observed that complexity of the solution curve for the boundary
value problem

u′′ + λf(u) = 0 for 0 < x < L, u(0) = u(L) = 0 (1)

seems to mirror that of the nonlinearity f(u), see e.g. P. Korman, Y. Li and T.
Ouyang [6]. Namely, if f(u) is convex (f = eu is a prominent example), f(u)
has at most one critical point, and correspondingly the solution curve of (1)
admits only one turn. Similarly for many functions with two inflection points
(like cubics, or modified Gelfand’s equation) one can show that solution curve
admits exactly two turns, see [6] and also P. Korman and Y. Li [5]. It is natural
to ask: will solution curve admit infinitely many turns if f(u) changes concavity
infinitely many times. It has been known for a while that this indeed might
happen, see e.g. R. Schaaf and K. Schmitt [8], D. Costa, H. Jeggle, R. Schaaf
and K. Schmitt [2], H. Kielhofer and S. Maier [4]. Recent contributions include
Y. Cheng [1] and S.-H. Wang [10]. This note was stimulated by an example in
Y. Cheng [1], who has shown that for f(u) = u+sin

√
u the problem (1) admits

infinitely many solutions at λ = λ1, where λ1 denotes as usual the principal

eigenvalue of −u′′ on (0, L), λ1 =
π2

L2 . The proof in [1] used the quadrature
method. In this note we use bifurcation theory to obtain a similar result. The
bifurcation approach gives a clear understanding of the solution curve, and
opens a way to considering higher dimensions. The papers [8] and [2] also
used bifurcation approach, and they considered more general equations, as well
as the PDE case in two dimensions. Our approach is different, we work with a
smooth curve of solutions (rather than a continuum of solutions bifurcating from
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106 Infinitely many solutions at a resonance

infinity), and we obtain an extension to more general nonlinearities. Moreover,
we can estimate the number of turns the solution curve makes, until it reaches
any level umax = c.

We begin with a simple example.

Theorem 1 The problem

u′′ + λ(u + sinu) = 0 for 0 < x < L, u(0) = u(L) = 0 (2)

has a C1 curve of positive solutions bifurcating (forward) off the trivial solution
at λ = λ1

2 . This curve crosses infinitely many times the line λ = λ1, and tends
to infinity at λ = λ1. This curve exhausts the set of all positive solutions of (2).
There are infinitely many positive solutions at λ = λ1, while at any other λ the
number of positive solutions is at most finite.

The proof will use the following lemma, which shows that there are no pos-
itive solutions for λ > 0 small, and for λ large. We did not attempt to get the
optimal bounds.

Lemma 1 If the problem (2) has a positive solution, then

λ1

2
< λ <

π

π − 1
λ1. (3)

Proof: Set f(u) = u + sinu. Observe that 0 < f(u) < 2u for all u > 0.
Multiplying the equation (2) by u, integrating by parts, and using the Poincare
inequality

2λ

∫ L
0

u2 dx > λ

∫ L
0

f(u)u dx =

∫ L
0

u′
2
dx ≥ λ1

∫ L
0

u2 dx,

from which the left inequality in (3) follows.

On the other hand, multiplying the equation (3) by φ1 = sin
π
Lx, and inte-

grating over (0, L), we obtain (with λ1 =
π2

L2
)

∫ L
0

(−λ1u+ λu + λ sinu)φ1 dx = 0. (4)

Since φ1 > 0, we obtain a contradiction in (4), provided that

g(u) ≡
(λ − λ1)

λ
u+ sinu > 0

for all u > 0. This will certainly happen if λ > λ1, and g(π) ≥ 1, which leads
to the right inequality in (3).
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Proof of the Theorem 1. It is well-known that there is a curve of positive
solutions of (2) bifurcating off the trivial one (to the right) at λ12 . Similarly there
a curve of positive solutions bifurcating from infinity at λ = λ1, see e.g. p. 673
in E. Zeidler [11]. We claim that both branches link up, giving a unique solution
curve. Indeed, let us start with the branch bifurcating from infinity. This branch
extends globally, since at each of its points either the implicit function theorem
or a bifurcation theorem of Crandall-Rabinowitz applies, see [6] for details. By
Lemma 1 this branch is constrained to a strip λ1

2 < λ <
π
π−1λ1, and so it has

to go to zero at λ1. By uniqueness of the bifurcating solution, this branch has
to link up with the lower one.

We show next that the solution curve changes its direction infinitely many
times. Define F (u) =

∫ u
0
f(t) dt, G(u) = uf(u) − 2F (u). Notice that G′(u) =

uf ′(u)− f(u). Differentiating the problem (1) with respect to λ, we get

u′′λ + λf
′(u)uλ + f(u) = 0 for 0 < x < L, uλ(0) = uλ(L) = 0. (5)

Multiplying the equation (1) by uλ, and (5) by u, then subtracting and inte-
grating, we obtain

−λ
d

dλ

∫ L
0

G(u) dx =

∫ L
0

uf(u) dx. (6)

Since the integral on the right in (6) is positive, it follows that
∫ L
0
G(u(x)) dx is

monotone in λ. If we can show that this integral is not monotone as the solution
curve goes to infinity, it will follow that the solution curve is not monotone in λ,
i.e. it has to change its direction infinitely many times. Let s = u(L2 ). Clearly,

u(L2 )→∞ as λ→ λ1, since u(x) achieves its maximum at the midpoint of the
interval (0, L). Define φ(x) by u(x) = sφ(x), and set

I(s) ≡

∫ L
0

G(u(x)) dx =

∫ L
0

G(sφ(x)) dx. (7)

To show that I(s) is not monotone in s it suffices to show that I ′(s) changes

sign infinitely many times. Defining J(s) =
∫ L
0
sin(sφ(x))φ(x) dx, we express

I ′(s) =

∫ L
0

[sφ(x) cos(sφ(x)) − sin(sφ(x))] φ(x) dx = sJ ′(s)− J(s). (8)

We claim that the function J(s) changes sign infinitely many times. Indeed,
performing a change of variables by letting u = sφ(x), we have

J(s) = 2

∫ L
2

0

sin(sφ(x))φ(x) dx =
2

s

∫ u(L2 )
0

sinu
dx

du
u du. (9)

Here dx
du
is the derivative of the inverse function to u(x). Since dx

du
u is an in-

creasing function, it is easy to see that

J(s)

{
> 0, if u(L2 ) = nπ, and n is odd

< 0 if u(L2 ) = nπ, and n is even.
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Hence J(s) changes sign infinitely many times. It follows that J(s) has infinitely
many points of negative minimum, where by (8) I ′(s) is positive, and infinitely
many points of positive maximum where I ′(s) is negative. It follows that I ′(s)
changes sign infinitely many times, and so I(s) is not monotone, and hence the
solution curve changes its direction infinitely many times.

It remains to show that the solution curve intersects the line λ = λ1 infinitely
many times. From (4) we conclude

(λ1 − λ)

∫ L
0

uφ1 dx = λ

∫ L
0

sinu φ1 dx = λ

∫ L
0

sin sφ φ1 dx. (10)

It follows from a standard analysis of bifurcation from infinity that φ(x) =
φ1(x) + o(1) for s large. We then have∫ L

0

sin sφ φ1 dx = J(s) + o(1)

∫ L
0

sin(sφ) dx. (11)

We now recall an asymptotic formula from sec. 40 in Y.V. Sidorov et al [9] (see
also Corollary 1 in sec. 39).

Lemma 2 Assume that the functions f(x) and g(x) are infinitely differentiable
on the interval [0, 1], and assume that

g(x) < g(0) for all x ∈ (0, 1], and g′(0) = 0, g′′(0) < 0.

Then as s→∞∫ 1
0

f(x)eisg(x) dx =
1

2
ei(sg(0)−

π
4 )

√
2π

s|g′′(0)|
f(0) + O(

1

s
).

Using elliptic regularity, we notice that

|φ(x) − φ1(x)|C2[0,1] = o(1) as s→∞,

which implies in particular that φ′′(L2 ) = −
π2

L2
+ o(1). Applying Lemma 2

to J(s) = 2=
∫ L
2

0
eisφ(x)φ(x) dx = L=

∫ 1
0
eisφ(

L
2 ξ)φ(L2 ξ) dξ, we conclude that

(observe that φ(L2 ) = 1, φ
′(L2 ) = 0)

J(s) ∼
c0√
s
sin
(
s−
π

4

)
,

for some positive constant c0. Similarly∫ L
0

sin(sφ) dx ∼
c0√
s
sin
(
s−
π

4

)
.

It follows from (11) that the integral on the left changes sign infinitely many
times, and then from (10) we conclude that the solution curve crosses the line
λ = λ1 infinitely many times, completing the proof.
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We now consider more general equations. Recall that we denote F (u) =∫ u
0 f(t) dt.
We say that a function f(u) satisfies Schaaf-Schmitt condition if there exist

two monotone sequences {xn} and {yn} with xn →∞, yn →∞ such that

F (xn)− F (x) ≥ 0 for all 0 ≤ x < xn (12)

F (yn)− F (x) ≤ 0 for all 0 ≤ x < yn,

both inequalities being strict on a set of positive measure. Setting x = 0, we
observe that (12) implies in particular

F (xn) ≥ 0, F (yn) ≤ 0 for all n. (13)

Lemma 3 Let f(u) ∈ C1[0,∞) satisfy Schaaf-Schmitt condition, and g(u) ∈
C1[0,∞) be a positive function with g′(u) > 0 for all u > 0. Then∫ xn

0

f(u)g(u) du > 0,

∫ yn
0

f(u)g(u) du < 0. (14)

Proof: Using (12) and (13) we have∫ xn
0 f(u)g(u) du =

∫ xn
0 g(u)d [F (u)− F (xn)]

= g(0)F (xn)−
∫ xn
0 g

′(u) [F (u)− F (xn)] du > 0,

and the second inequality in (14) is proved similarly. ♦

Theorem 2 Consider the problem

u′′ + λ (u+ f(u)) = 0 for 0 < x < L, u(0) = u(L) = 0. (15)

Assume that f(u) ∈ C2[0,∞) satisfies

f(0) = 0, f ′(0) > −1, (16)

u+ f(u) > 0 for all u > 0, (17)

f(u)

u
→ 0 as u→∞. (18)

Assume finally that either f(u) or uf(u) satisfies Schaaf-Schmitt condition.
Then the problem (15) has a C1 curve of positive solutions bifurcating off the
trivial solution at λ = λ1

1+f ′(0) . This curve makes infinitely many turns, and

tends to infinity at λ = λ1. This curve exhausts the set of positive solutions of
(15).

Proof: Similar to Theorem 1. Examining our derivation of (9), one sees that
this time

J(s) =
2

s

∫ u(L2 )
0

f(u)
dx

du
u du =

2

s

∫ s
0

f(u)
dx

du
u du.

Since by (17) the function dx
du
is increasing, applying Lemma 3 we see that

J(s) changes sign infinitely many times, and hence the solution curve changes
direction infinitely many times. Clearly, an analog of Lemma 1 holds, so that
the curves bifurcating from zero and infinity have to link up. ♦
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Remarks.

1. One can have several variations of the Theorem 2. For example, we could
drop the condition (16), and have a curve bifurcating from infinity, and
making infinitely many turns. Alternatively, we could drop the condition
(18) and obtain a curve bifurcating from zero, and making infinitely many
turns.

2. It follows from [8] that the problem (15) has infinitely many solutions at
λ = λ1 if f(u) satisfies Schaaf-Schmitt condition. Clearly, it may happen
that uf(u) satisfies Schaaf-Schmitt condition, while f(u) does not.

3. Another novelty of our approach is that we can estimate the number of
turns the solution curve makes until it reaches any level u(0) = c.

4. Arguing as in Lemma 1, we see that either the solution curve crosses
the line λ = λ1 infinitely many times, or else it makes infinitely many
turns to the left of this line. (Assuming that λ > λ1 for sufficiently large
s, we multiply the equation (15) by u, integrate by parts, and obtain a
contradiction.)

Acknowledgment. We wish to thank Y. Cheng and S.-H. Wang for sending
us preprints of their work, and K.R. Meyer, T. Ouyang and J. Shi for useful
comments.

References

[1] Y. Cheng, On an open problem of Ambrosetti, Brezis and Cerami, Differ-
ential Integral Equations, to appear.

[2] D. Costa, H. Jeggle, R. Schaaf and K. Schmitt, Oscillatory perturbations of
linear problems at resonance, Results in Mathematics 14, 275-287 (1988).

[3] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties
via the maximum principle, Commun. Math. Phys. 68, 209-243 (1979).

[4] H. Kielhofer and S. Maier, Infinitely many positive solutions of semilinear
elliptic problems via sub- and supersolutions, Comm. Partial Differential
Equations 18 , 1219-1229 (1993).

[5] P. Korman and Y. Li, On the exactness of an S-shaped bifurcation curve,
Proc. Amer. Math. Soc. 127(4), 1011–1020 (1999).

[6] P. Korman, Y. Li and T. Ouyang, Exact multiplicity results for boundary-
value problems with nonlinearities generalising cubic, Proc. Royal Soc. Ed-
inburgh, Ser. A. 126A, 599-616 (1996).

[7] E.M. Landesman and A.C. Lazer, Nonlinear perturbations of linear elliptic
boundary value problems at resonance, J. Math. Mech. 19, 609-623 (1970).



Philip Korman & Yi Li 111

[8] R. Schaaf and K. Schmitt, A class of nonlinear Sturm-Liouville problems
with infinitely many solution, Trans. Amer. Math. Soc. 306(2), 853-859
(1988).

[9] Y.V. Sidorov, M.V. Fedoryuk and M.I. Shabunin, Lectures on the Theory
of Functions of Complex Variable, Mir Publishers, Moscow (1985).

[10] S.-H. Wang, On the bifurcation curve of positive solutions of a boundary
value problem, Preprint.

[11] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. I,
Springer (1986).

Philip Korman
Institute for Dynamics and
Department of Mathematical Sciences
University of Cincinnati
Cincinnati Ohio 45221-0025
e-mail: kormanp@math.uc.edu

Yi Li
Department of Mathematics
University of Iowa
Iowa City Iowa 52242
e-mail: yi-li@uiowa.edu


