\documentclass[twoside]{article} \usepackage{amsfonts, amsmath} \pagestyle{myheadings} \markboth {Nonlinearities in a second order ODE} { Pablo Amster } \begin{document} \setcounter{page}{13} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent USA-Chile Workshop on Nonlinear Analysis, \newline Electron. J. Diff. Eqns., Conf. 06, 2001, pp. 13--21\newline http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Nonlinearities in a second order ODE % \thanks{ {\em Mathematics Subject Classifications:} 34G20. \hfil\break\indent {\em Key words:} Second order ODE, Dirichlet and Periodic Problems. \hfil\break\indent \copyright 2001 Southwest Texas State University. \hfil\break\indent Published Janaury 8, 2001. } } \date{} \author{ Pablo Amster} \maketitle \begin{abstract} In this paper we study the semilinear second order ordinary differential equation $$u''+r(t)u' + g(t,u) = f(t)\,. $$ Under a growth condition on $g$, we prove the existence and uniqueness for the Dirichlet problem and establish conditions for the existence of periodic solutions. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{cor}[theorem]{Corollary} \renewcommand{\theequation}{\thesection.\arabic{equation}} \catcode`@=11 \@addtoreset{equation}{section} \catcode`@=12 \section{Introduction} The two-point boundary-value problem for a semilinear second order ODE $$u''+ru' + g(t,u) =0, \quad u(0)=u_0, \quad u(T)=u_T$$ has been studied by many authors. In his pioneering work, Picard \cite{P} proved the existence of a solution by an application of the well known method of successive approximations under a Lipschitz condition on $g$ and a smallness condition on $T$. Sharper results were obtained by Hamel \cite{H} in the special case of a forced pendulum equation (see also \cite{M1}, \cite{M2}). The existence of periodic solutions for this equation was first considered by Duffing \cite{Du} in 1918. In the absence of friction (i.e. $r=0$), variational methods have been applied by Lichtenstein \cite{L}, who considered the functional $$I(u)= \int_0^T \frac {(u')^2}2 - G(t,u(t)) dt,$$ where $G(t,x)=\int_0^xg(t,s)ds$. Finally, we want to mention the topological approach introduced in 1905 by Severini \cite{S} who used a shooting method. He also presented and gave a survey of results obtained using Leray-Schauder techniques and degree theory. For further results, see \cite{M3}. In this work, we prove the existence and uniqueness of a solution to the Dirichlet problem under a growth condition on $g$. Then, we apply this result for finding periodic solutions. Let $S:H^2(0,T)\to L^2(0,T)$ be the semilinear operator given by $$Su= u''+ru' + g(t,u)\,.$$ Assume that the function $g$ satisfies the growth condition \begin{equation} \label{g1} \frac {g(t,u)-g(t,v)}{u-v}\le \frac{c_p}{p(t)} \quad \mbox{for } t\in [0,T] \mbox{ and } u,v \in \mathbb{R} \quad (u\neq v)\,, \end{equation} where $p\in C^1([0,T])$ is strictly positive, $r_0 := pr - p' \in H^1(0,T)$ is non-decreasing, and $c_p < \lambda_p$ with $\lambda_p$ the first eigenvalue of the problem $$-(pu')'=\lambda_p u, \quad u(0)=u(T)=0\,.$$ To state a general existence and uniqueness result for the Dirichlet problem associated to our equation, we need the following apriori bounds. \begin{lemma} Assume that $g$ satisfies \eqref{g1} and let $u, v\in H^2(0,T)$ with $\mathop{\rm Tr}(u)=\mathop{\rm Tr}(v)$. Then $$\| p(Su-Sv)\|_2 \ge (\lambda_p-c_p)\| u-v\|_2$$ and $$\| p(Su-Sv)\|_2 \ge \frac {\lambda_p-c_p}{\sqrt{\lambda_p}} \big( \int_0^T p(u'-v')^2\big)^{1/2}$$ \end {lemma} \paragraph{Proof.} A simple computation shows that $$\| p(Su-Sv)\|_2\| u-v\|_2\ge \int_0^T p(u' -v')^2 - \int_0^T r_0(u-v) (u' -v') - c_p \| u-v\|_2^2$$ and because $-\int_0^T r_0(u-v) (u' -v') = \frac 12 \int_0^T r_0'(u-v)^2 \ge 0$, the result follows since $\| u-v\|_2^2 \le \frac 1{\lambda_p}\int_0^T p(u'-v')^2$. \hfill$\diamondsuit$\smallskip \noindent{\bf Remarks} i) For simplicity and by the previous lemma, we may denote by $k_1$ the best constant such that $\| u - v\|_{1,2} \le k_1 \| p(Su - Sv)\|_{2}$ for $u, v\in H^2(0,T)$ with $\mathop{\rm Tr}(u)=\mathop{\rm Tr}(v)$. \\ ii) In particular, if $r\in H^1(0,T)$ is non-decreasing, the result holds for $p\equiv 1$ and $c_1 < \lambda_1 = \left( \frac {\pi}T\right)^2$. \begin{theorem} Let $g$ satisfy \eqref{g1}. Then the Dirichlet problem \begin{equation} \gathered Su=f(t) \quad\mbox{in } (0,T) \\ u(0)=u_0, \quad u(T)=u_T \endgathered \label{e1} \end{equation} is uniquely solvable in $H^2(0,T)$ for any $f\in L^2(0,T)$ and arbitrary boundary data. \end{theorem} \paragraph{Proof.} Without loss of generality, we may suppose that $p\equiv 1$. For $0\le \sigma \le 1$ we consider the operator $S_\sigma$ given by $S_\sigma u:= u''+ ru' +\sigma g(t,u)$. We remark that if $k_\sigma$ is the constant of lemma 1.1 for $S_\sigma$, then $k_\sigma \le k_1$. From the theory of linear operators, for fixed $\overline u\in H^1(0,T)$ we may define $u=K\overline u$ as the unique solution of the problem \begin{gather*} S_{0}u=f(t)- g(t,\overline u) \quad \mbox{ in } (0,T) \\ u(0)=u_0, \quad u(T)=u_T\,. \end{gather*} Continuity of $K:H^1(0,T)\to H^1(0,T)$ follows immediately from the inequality $$\|K\overline u - K\overline v\|_{1,2}\le k_1 \| S_{0}(K\overline u) - S_{0}(K\overline v)\|_2 = k_1\| g(\cdot,\overline u) - g(\cdot,\overline v)\|_2$$ and the fact that $\| g(\cdot,\overline u) - g(\cdot,\overline v)\|_2 \to 0$ for $\overline u \to \overline v$ in $H^1(0,T)\hookrightarrow C([0,T])$. Moreover, if $\varphi(t)= \frac{u_T-u_0}T t + u_0$ we have that $$\|K\overline u -\varphi \|_{1,2} \le k_1\|f - g(\cdot ,\overline u) - S_0\varphi\|_2 \le C$$ for some constant $C= C(R)$. Moreover, as $$\| (K\overline u)''\|_2 = \| f - g(\cdot ,\overline u) - r(K\overline u)'\|_2$$ it follows that $K(B_R)$ is $H^2$-bounded. Thus, by the compactness of the imbedding $H^2(0,T)\hookrightarrow H^1(0,T)$ we conclude that $K$ is compact. Let us assume that $u = \sigma Ku$ for some $\sigma \in (0,1]$. Then $u'' + ru' + \sigma g(t,u)=\sigma f$, and $$\| u-\sigma\varphi\|_{1,2} \le k_1 \| S_\sigma u - S_\sigma(\sigma\varphi)\|_2 = k_1\| \sigma f - S_\sigma(\sigma\varphi)\|_2$$ This proves that the set $\{ u: u = \sigma Ku \}$ is uniformly bounded, and by Leray-Schauder theorem $K$ has a fixed point. Uniqueness of the solution follows from lemma~1.1. \hfill$\diamondsuit$\smallskip As a simple consequence, we have an existence result for the general Dirichlet problem \begin{equation} \gathered Su=f(t,u,u') \quad\mbox{ in } (0,T) \\ u(0)=u_0, \quad u(T)=u_T \endgathered \label{e2} \end{equation} \begin{cor} Let $f$ be continuous and $g$ satisfy \eqref{g1}. Assume that the growing condition \begin{equation} \label{f} |f(t,u,x)| \le c|(u,x)| + d \end{equation} holds for some constant $c < \frac 1{k_1\|p\|_\infty}$. Then \eqref{e2} is solvable in $H^2(0,T)$. \end {cor} \paragraph{Proof.} By \eqref{f} and the previous theorem, the operator $K:H^1(0,T) \to H^1(0,T)$ given by $K \overline u =u$, with $u$ the unique solution of \begin{gather*} Su=f(t,\overline u,\overline u') \quad\mbox{ in } (0,T) \\ u(0)=u_0, \quad u(T)=u_T \end{gather*} is well defined and compact. Moreover, as $$\|K \overline u -\varphi\|_{1,2}\le k_1 \|p(S(K \overline u) - S\varphi)\|_2 \le k_1 \|p\|_\infty \left( \|S\varphi)\|_2 + c\|\overline u\|_{1,2} + d\right)$$ then $K(B_R)\subset B_R$ for $R$ large and the result follows from Schauder Theorem. \section{ Solutions to the periodic problem } In this section we'll apply the previous results to the periodic problem \begin{equation} \gathered Su=f(t) \quad\mbox{ in } (0,T) \\ u(0)= u(T), \quad u'(0)= u'(T) \endgathered \label{per} \end{equation} It is well known that the forced pendulum equation $u'' + b\sin (u) = f$ admits periodic solutions for constant $b$ if $f$ is periodic and {\sl orthogonal to constants}. We'll show in the general case that in the presence of friction this orthogonality condition can be reinterpreted in terms of a certain $p_1>0$. More precisely, we'll show that in some cases -including the generalized pendulum equation- \eqref{per} is not solvable for any $f$ such that $\big< p_1,f\big>$ is large enough. \begin{lemma} For any $c \in \mathbb{R}$ there exists a unique $p_c$ such that $p_c (0) = p_c (T)=c$ and $p_c' - r p_c$ is constant. Furthermore, $p_c = c p_1$, and $p_1$ is strictly positive. \end{lemma} \paragraph{Proof.} From the equation $p_c' - r p_c = k_c$ we obtain that $$p_c = \left( c + k_c \int_0^t e^{-\int_0^s r}ds\right) e^{\int_0^t r}$$ and from the condition $p_c (0) = p_c (T)=c$ we conclude that $$k_c = c \frac {1- e^{\int_0^T r}}{\int_0^T e^{\int_s^T r}ds}= ck_1$$ Thus, $p_c = cp_1$. Moreover, if $k_1 \ge 0$ it's immediate that $p_1 >0$, and if $k_1 < 0$, assuming that $p_1$ vanishes there exists $t_0 \in (0,T)$ such that $p_1 (t_0) = 0 \le p_1'(t_0)$. Then $ k_1 = p_1'(t_0) \ge 0$, a contradiction. \hfill$\diamondsuit$\smallskip Using the preceding lemma we'll see that periodic solutions of $Su=f$ satisfy an orthogonality condition. Indeed, from $$u'' + ru' +g(t,u)= f$$ we obtain $$(p_1u')' -k_1u' +p_1g(t,u)= p_1f\,.$$ By the equality $ p_1u'\Big|_0^T = u\Big|_0^T = 0$ we have $$ \int_0^T p_1g(t,u)= \int_0^T p_1f\,.$$ \begin{cor} With the previous notation, let us assume that $g(t,u) \le g_{max}$ for any $t\in [0,T]$, $u\in \mathbb{R}$ and some constant $ g_{max}\in \mathbb{R}$ (respectively, $g(t,u) \ge g_{min}$ for any $t\in [0,T]$, $u\in \mathbb{R}$ and some constant $ g_{min}\in \mathbb{R}$). Then \eqref{per} is not solvable for any $f\in L^2(0,T)$ such that $\big< p_1,f\big> > g_{max}\| p_1\|_1$ (resp. $\big< p_1,f \big> < g_{min}\| p_1\|_1$). \end{cor} \rm Now we'll give some existence results for \eqref{per}, assuming that $g$ satisfies \eqref{g1}. Our method is based in the existence and uniqueness result given by Theorem 1.2: indeed, for fixed $s\in \mathbb{R}$ we may define $u_s$ as the unique solution of the problem \begin{gather*} Su=f(t) \quad\mbox{ in } (0,T) \\ u(0)= u(T) = s \end{gather*} \begin{lemma} The mapping $s\to u_s$ is continuous for the $H^1$-norm. \end{lemma} \paragraph{Proof.} For $s\to s_0$ and $w_s=u_s-u_{s_0}$ we have \begin{eqnarray*} 0 &=& \int_0^T p(Su_s-Su_{s_0})w_s\\ &\le& pw_s'w_s\Big|_0^T-\int_0^T p(w_s')^2 + \frac {r_0w_s^2}2 \Big|_0^T- \int_0^T r_0' \frac {w_s^2}2 + c_p \int_0^T w_s^2 \end{eqnarray*} Because $\int_0^T r_0' \frac {w_s^2}2 \ge 0$, we conclude that $$0\le (1- \frac {c_p}{\lambda_p}) \int_0^T p(w_s')^2 \le pw_s'w_s\Big|_0^T + r_0 \frac {w_s^2}2 \Big|_0^T\,.$$ Since $w_s(0) = w_s(T) = s-s_0 \to 0$ it suffices to prove that $\|w_s \|_{1,\infty}$ is bounded. As $\| u_s - s\|_{1,2}\le k_1\|p(f-g(\cdot , s))\|_2$, we deduce that $w_s$ is $H^1$-bounded. Moreover, from the equality $u_s'' = f - ru_s'-g(t,u_s)$ we obtain that $\|w_s\|_{2,2}$ is bounded, and from the imbedding $H^2(0,T) \hookrightarrow C^1([0,T])$ the proof is complete. \hfill$\diamondsuit$\smallskip From the previous remarks, the solvability of \eqref{per} is equivalent to the solvability of the equation $\psi(s) = \int_0^T p_1f$, where $\psi:\mathbb{R}\to \mathbb{R}$ is given by $\psi (s)=\int_0^T p_1g(t,u_s)$. Continuity of $\psi$ follows immediately from the previous lemma, and hence \eqref{per} will admit a solution if and only if there exist $s^\pm$ such that $$\psi(s^+)\ge \big< p_1,f\big> \ge \psi(s^-)$$ \paragraph{Remark.} Writing $u_s(t) -s = \int_0^t p^{-1/2} p^{1/2}u_s'$ we obtain that $$\| u_s -s\|_\infty \le \delta_p \|p(f-g(\cdot ,s))\|_2 $$ for $\delta_p = \left( \int_0^T\frac 1p \right)^{1/2} \frac {\sqrt{\lambda_p}}{\lambda_p-c_p}$. Thus, if we consider the condition \begin{equation} \label {g2} \|p g(\cdot ,s)\|_2 \le c|s| + d \quad \mbox{ with } c\delta_p < 1 \end{equation} then $ u_s(t) \in {\mathcal J}_s^\varepsilon$ for any $t\in [0,T]$, where ${\mathcal J}_s^\varepsilon$ is the interval centered in $s$ with radius $\delta_p(c|s| + d) + \varepsilon$, $\varepsilon = \delta_p \|pf\|_2$. As a simple consequence we have the following \begin{theorem} Let $g$ satisfy \eqref{g1}-\eqref{g2}, and assume that there exist $s^\pm$ such that $$g|_{[0,T]\times {\mathcal J}_{s^+}^\varepsilon} \ge \frac {\int_0^T p_1f}{\| p_1\|_1} \ge g|_{[0,T]\times {\mathcal J}_{s^-}^\varepsilon}$$ for $\varepsilon = \delta_p \|pf\|_2$. Then \eqref{per} admits a solution $u_s$ for some $s$ between $s^-$ and $s^+$. In particular, if there exist $s^\pm$ such that $$g|_{[0,T]\times \mathcal J_{s^+}^\varepsilon} \ge 0 \ge g|_{[0,T]\times \mathcal J_{s^-}^\varepsilon}$$ then \eqref{per} admits a solution $u_s$ for some $s$ between $s^-$ and $s^+$ for any $f\perp p_1$ such that $ \delta_p \|pf\|_2\le \varepsilon$. \end{theorem} \paragraph{Proof.} As $u_s^\pm([0,T])\subset \mathcal J_{s^\pm}^\varepsilon$, we obtain: $$\int_0^T p_1g(t,u_{s^+}) \ge \int_0^T p_1f \ge \int_0^T p_1g(t,u_{s^-})$$ and the result holds. \hfill$\diamondsuit$\smallskip Using the fact that $|s| - \delta_p(c|s| + d)\to + \infty$ we deduce the following existence results: \begin{cor} Let $g$ satisfy \eqref{g1}-\eqref{g2}, and assume, for some $M >0$ that $$g(t,x) sg (x) \ge 0 \mbox{ for } \quad |x| \ge M$$ or $$g(t,x) sg (x) \le 0 \mbox{ for } \quad |x| \ge M$$ Then \eqref{per} is solvable for any $f\perp p_1$. \end {cor} \begin{cor} Let $g$ satisfy \eqref{g1}-\eqref{g2}, and assume that $$\lim_{|x| \to +\infty}g(t,x)sg (x) = +\infty \quad \mbox{or } \quad \lim_{|x| \to +\infty}g(t,x)sg (x) = -\infty$$ uniformly on $t$. Then \eqref{per} is solvable for any $f$. \end {cor} \paragraph{Proof.} Under the first assumption, there exists $M$ such that $$g(t,x)sg(x) \ge \frac {|\int_0^T p_1f|}{\|p_1\|_1}\quad \mbox{ for }|x|\ge M $$ Hence, taking $s >0$ such that $s - \delta_p (cs + d + \| pf\|_2)\ge M$ we have $$\int_0^T p_1 g(t,u_s) \ge |\int_0^T p_1 f| \ge \int_0^T p_1 f\,.$$ In the same way, for $s<0$ with $s + \delta_p (-cs + d + \| pf\|_2)\le -M$ we obtain $\int_0^T p_1 g(t,u_s) \le \int_0^T p_1 f$ and the proof is complete. The case $g(t,x)sg (x)\to -\infty$ is analogous. \hfill$\diamondsuit$\smallskip \paragraph{Remark.} In the previous corollaries (2.5)-(2.6), we also have that all the solutions belong to a compact arc of $H^1(0,T)$, namely $\{ u_s: -S \le s \le S \}$ with $$S = \frac {M +\delta_p(d+\| pf\|_2|)}{1-\delta_p c}\,.$$ \medskip We may also apply theorem (2.4) to the forced pendulum equation with friction \begin{equation} \label{p} u'' + ru' + b\sin (u) = f\,. \end{equation} We first remark that in this case condition \eqref{g1} reads \begin{equation} \label{b} |b(t)| \le \frac{c_p}{p(t)} \quad \mbox{for any } t\in [0,T] \end{equation} for some $p>0$ with $pr-p'$ nondecreasing and $c_p < \lambda_p$. \begin {theorem} With the previous notation, let us assume that \\ i) $b$ satisfies \eqref{b} and does not vanish in $(0,T)$.\\ ii) $\|p(f\pm b)\|_2 \le \frac c{\delta_p}$ for some $c< \frac{\pi}2$.\\ iii) $|\int_0^T p_1f| \le cos (c) \|p_1b\|_1$ \noindent Then there exist $s_1 \in [-\frac {\pi}2, \frac {\pi}2]$, $s_2 \in [\frac {\pi}2, \frac {3}2\pi]$ such that $u_{s_i}+ 2k\pi$ is a periodic solution of \eqref{p} for any integer $k$. \end{theorem} \paragraph{Proof.} From the previous computations for $s = \frac {\pi}2 + k\pi$ we obtain that $$\|u_s-s\|_\infty \le \delta_p \| p(f- (-1)^k b\|_2 \le c < \frac {\pi}2$$ As $\sin u_s = (-1)^k \cos(u_s-s)$, taking $k$ such that $(-1)^kb>0$ we conclude that $$\int_0^T p_1b\sin u_s = \int_0^T p_1|b|\cos (u_s -s) \ge cos (c)\| p_1b\|_1 \ge \int_0^T p_1f$$ In the same way, for $s = \frac {\pi}2 + (k\pm 1)\pi$ $$\int_0^T p_1b\sin u_s = -\int_0^T p_1|b|\cos (u_s -s) \le -cos (c)\| p_1b\|_1\le \int_0^T p_1f $$ and the result holds. \hfill$\diamondsuit$\smallskip \paragraph{Remark.} In particular, condition iii) is fulfilled if $f$ is orthogonal to $p_1$. \medskip If we assume that $\|pf\|_2\le \frac {\pi}{2\delta_p}$ we also obtain existence under slightly different conditions. \begin {theorem} With the previous notation, let us assume that \\ i) $b$ satisfies \eqref{b} and does not vanish in $(0,T)$ \\ ii) $\|pf\|_2\le \frac {\pi}{2\delta_p}$, $ \|p(f-|b|)\|_2 < \frac c{\delta_p}$ for some $c< \frac{\pi}2$. \\ iii) $\sin (\delta_p \|pf\|_2) \le \frac {\int_0^Tp_1f}{\|p_1b\|_1} \le \cos (\delta_p \|p(f-|b|)\|_2)$. \noindent Then, if $b>0$ (resp. $b<0$) there exist $s_1 \in [0, \frac {\pi}2]$, $s_2 \in [\frac {\pi}2, \pi]$ (resp. $s_1 \in [-\frac {\pi}2, 0]$, $s_2 \in [\pi, \frac 32 {\pi}]$) such that $u_{s_i}+ 2k\pi$ is a periodic solution of \eqref{p} for any integer $k$. \noindent Moreover, if we replace ii) and iii) by \\ ii') $\|pf\|_2\le \frac {\pi}{2\delta_p}$, $ \|p(f+|b|)\|_2 < \frac c{\delta_p}$ for some $c< \frac{\pi}2$. \\ iii') $\sin (\delta_p \|pf\|_2) \le \frac {-\int_0^Tp_1f}{\|p_1b\|_1} \le \cos (\delta_p \|p(f+|b|)\|_2)$ \noindent then if $b<0$ (resp. $b>0$) there exist $s_1 \in [0, \frac {\pi}2]$, $s_2 \in [\frac {\pi}2, \pi]$ (resp. $s_1 \in [-\frac {\pi}2, 0]$, $s_2 \in [\pi, \frac 32 {\pi}]$) such that $u_{s_i}+ 2k\pi$ is a periodic solution of \eqref{p} for any integer $k$. \end{theorem} \paragraph{Proof.} It follows like in the previous theorem, using the fact that if $s=k\pi$ then $\|u_s-s\|_\infty \le \delta_p\| pf\|_2$, and $$|\int_0^T p_1b\sin u_s | \le \|p_1 b\|_1 \sin (\delta_p \|pf\|_2)\,.$$ \begin{thebibliography}{00} \bibitem{Du} Duffing, G., Erzwungene Schwingungen bei ver\"anderlicher Eigenfrequenz, Vieweg. Braunschweig, 1918. \bibitem{H} Hamel, G., \"Uber erzwungene Schwingungen bei endlichen Amplituden. Math. Ann., 86 (1922), 1-13. \bibitem{L} Lichtenstein, L., \"Uber einige Existenzprobleme der Variationsrechnung. Methode der unendlichvielen Variabeln, J.Reine Angew. Math. 145 (1915), 24-85. \bibitem{M1} Mawhin, J., Periodic oscillations of forced pendulum-like equations. Lecture Notes in Math., Springer, 964 (1982), 458-76. \bibitem{M2} Mawhin, J., The forced pendulum: A paradigm for nonlinear analysis and dynamical systems. Expo. Math., 6 (1988), 271-87. \bibitem{M3} Mawhin, J., Boudary value problems for nonlinear ordinary differential equations: from successive approximations to topology. \bibitem{P} Picard, E., Sur l'application des m\'ethodes d'approximations succesives \`a l'\'etude de certaines \'equations diff\'erentielles ordinaires, J.Math. Pures Appl. 9 (1893), 217-271. \bibitem{S} Severini, C., Sopra gli integrali delle equazione differenziali del secondo ordine con valori prestabiliti in due punti dati, Atti R. Acc. Torino 40 (1904-5), 1035-40. \end{thebibliography} \noindent{\sc Pablo Amster} \\ Depto. de Matem\'atica, CONICET \\ Facultad de Cs. Exactas y Naturales \\ Universidad de Buenos Aires \\ Ciudad Universitaria, Pab. I - (1428)\\ Buenos Aires, Argentina \\ e-mail: pamster@dm.uba.ar \end{document}