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First moments of energy

and convergence to equilibrium ∗

Jérôme Busca

Abstract

A basic question is to establish convergence to equilibrium for globally
defined solutions to evolution problems. The purpose here is to emphasize
the role of symmetry. In particular, it is proved that in some cases the first
moments of energy are constant on the ω-limit set of the solution. This key
property is used to prove convergence in two model evolution problems.
This communication is based on two joint works with P. Felmer [3] and
M.A. Jendoubi, P. Polacik [4].

1 Introduction and Main Results

A basic question in the study of evolution problems is the following: do globally
defined in time solutions converge to an equilibrium? In case the problem is
dissipative, one can typically prove that the ω−limit set (i.e. the set of all
accumulation points of the solution u) ω(u) is included in the set of the solutions
of some limiting stationary equation (steady states). This is usually done thanks
to some appropriate Lyapunov energy functional.
If the set of steady states contains a continuum, then the convergence issue

is whether the solution actually selects one of them as t→ +∞, that is, whether
ω(u) is a singleton.
In this generality, or even if one specializes to nonlinear parabolic evolution

problems for instance, the question is still open, and appears to be surprinsingly
difficult. Couterexamples in the non-autonomous case suggest that limitations
do exist (see [21]). Partial results are available for instance in the analytic
setting [12] [14] [22], in one dimension [18] [23], or under assumptions on the
linearized operator, either explicitly stated as such, or resulting from the nature
of the specific problem [10] [11] [17].
There is a large literature devoted to these questions, and I will not attempt

to give any review of the results. For a very clear account on this, I refer to [5]
and [13].
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46 Convergence to Equilibrium

It is my purpose here to show that when the solutions enjoy some symmetry,
the convergence question can be solved. The simplest nontrivial case is probably
when the problem is posed in the whole space, is translation and rotationally
invariant, and the set of positive steady states is made of all translates of a
single radial solution. In this case, proving convergence of positive solutions of
the evolution problem is tantamount to proving that ω(u) cannot contains more
than one of such translates. To this purpose, I intend to introduce a method
that makes use of first moments of the energy, a tool which appears to be new.
These moments will be shown to assume constant values on the ω−limit set,
just as energy does. However, unlike the latter, they are able to discriminate,
meaning taking different values on, distinct translates.

For the interested reader I mention references [19] [20] where a thorough
investigation of the links between symmetry and convergence is given, is the
context of stable equilibria (different from the one I address here).

Rather than elaborating on this in full generality, let me select two simple
instances where one can easily highlight the main underlying idea. These exam-
ples are taken from joint works with P. Felmer [3] and M.A. Jendoubi, P. Polacik
[4]. These two evolutions problems will turn out to share the same stationary
equation, namely the so-called scalar field equation

∆w − w + wp = 0 in RN

w > 0, w(x)→ 0 as |x| → ∞
(1.1)

with p subcritical, i.e. 1 < p < (N + 2)/(N − 2), N ≥ 3, an assumption that I
make throughout this paper. By the well-known results of Berestycki-Lions [1],
Gidas, Ni and Nirenberg [9] and Kwong [15] we know that the set of solutions
to (1.1) is made of all translates of a unique positive radial solution. Note that
the ground state condition

w(x)→ 0 as |x| → ∞ (1.2)

is an essential piece of information here.

I now turn to the description of the two model problems.

1) A dissipative case: a nonlinear parabolic equation. Let us consider a
globally defined in time weak positive solution u = u(x, t) ∈ C

(
[0,+∞), H1(RN )

)
to the following problem:

ut = ∆u− u+ up in RN × (0,+∞)

u(·, 0) = u0(·) ∈ C∞0 (R
N )

(1.3)

We have the following convergence result:

Theorem 1.1 ([4, 7, 8]) Under the above assumptions, u(·, t) converges (in
the H1(RN ) sense) either to zero or to a solution of (1.1).
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2) A conservative case: a nonlinear elliptic equation. Let us now con-
sider an entire positive solution u = u(x), x = (x1, · · · , xN+1) to the scalar field
equation

∆RN+1u− u+ u
p = 0

in RN+1, and suppose we are interested in solutions which are not necessarily
ground states in the sense of (1.2). The simplest case is to assume that u goes to
zero in a cylindrical set of directions. This leaves out one variable (xN+1, say)
in the direction of which one wants to study the possible asymptotic behaviour
of u. For that reason, it is convenient to think of xN+1 as time, and recast the
problem as:

utt +∆u− u+ up = 0 in RN × (−∞,+∞)

u(·, t)→ 0 as |x| → ∞, uniformy in t ∈ R,
(1.4)

with (x, t) = (x1, · · · , xN , xN+1) and ∆ =
∑
1≤i≤N

∂2

∂x2i
, the Laplace operator in

R
N .
Since this problem is conservative, soliton-like solution may exists, so it is

natural to assume that

ut(x, t)→ 0 as t→ +∞, for all x ∈ R
N . (1.5)

Under these assumptions, one has the following convergence results:

Theorem 1.2 ([3]) Let u be a bounded weak solution to (1.4) satisfying (1.5).
Then u(·, t) converges (in the H1(RN ) sense) either to zero or to a solution of
(1.1) as t→ +∞.

Since time is reversible in (1.4), it is straightforward to get the same result
as t → −∞ if one assumes the equivalent of (1.5) as t → −∞. Moreover, it
is an interesting fact that the right- and left-hand limits actually turn out to
coincide. I refer to [3] for a proof of this.
Theorem 1.1 has been obtained in earlier independent works by Cortazar,

Elgueta, del Pino [7] and Feireisl and Petzeltová [8] by different methods. The-
orem 1.1 and Theorem 1.2 are quite particular cases of the results in [4] and [3]
respectively. I simplified the setting here in order to draw a parallel between
these two results.
In the sequel, I denote by case 1, or parabolic case (resp. 2 or elliptic case)

the situation prevailing in Theorem 1.1 (resp. 1.2).

2 Sketch of the proofs

The key role is played by the energy functional

E(u(·, t)) =

∫ {
1

2
|∇u|2 − F (u)

}
dx, (2.1)
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where F (s) =

∫ s
0

f(ζ) dζ = −
1

2
s2 +

1

p+ 1
sp+1, f(ζ) = −ζ + ζp, and its first

“moments” (for want of a better name):

Ei(u(·, t)) =

∫
xi

{
1

2
|∇u|2 − F (u)

}
dx, (2.2)

i = 1, · · · , N . As for the ω−limit set, it is defined as usual by:

ω(u) = ∩
T>0

∪
t≥T
{u(·, t)} (2.3)

in the parabolic case. In the elliptic case, some care is needed. One introduces
the {v(t)}t∈R, defined as v(t)(x, τ) = u(x, t+ τ), for all (x, τ) ∈ R

N × [0, 1]. The
correct notion of (right-hand) ω−limit set turns out to be in this case:

ω(u) = ∩
T>0

∪
t≥T
{v(t)}.

Here the closures are taken for instance in the C2(RN ) (resp. C2(RN × [0, 1]))
topology.
The relevant properties of these functions are summarized in the following

result.

Proposition 2.1 In both cases 1 and 2 we have:

a) ω(u) is either {0} or made of positive steady states, i.e. solutions to (1.1)

b) E is constant on ω(u)

c) Each function E1, · · · , EN assumes a constant value on ω(u).

Note that in case 2, it is part of result a) that the functions in ω(u) do not
depend on τ ∈ [0, 1].
Theorem 1.1 and 1.2 are simple consequences of this proposition. Indeed,

suppose for contradiction that ω(u) were to contain two distinct translates of the
radial solution of (1.1), sayw1 and w2. Up to a Euclidean change in co-ordinates,
w1(x) = w1(|x|) and w2(x) = w2(|x− αe1|) with α 6= 0. Now E1(w1) = E1(w2)
yields:

0 = E1(w1) = E1(w2)

=

∫
x1

{
1

2
|∇w2|

2 − F (w2)

}
dx

=

∫
(x1 − α)

{
1

2
|∇w2(|x− αe1|)|

2 − F (w2(|x− αe1|))

}
dx+ αE(w2)

= αE(w2).

Here and in the sequel, unless otherwise specified, all integrals in space range
over RN .
Multiplying the stationary equation in (1.1) by w2 and integrating by parts,

it is straightforward to see that E(w2) 6= 0, a contradiction. Convergence then
follows easily from the fact that ω(u) is a singleton, by compactness arguments
that I do not reproduce here.
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Lemma 2.1 ∃ε0 > 0 ∃C > 0 such that ∀α = (α1, · · · , αN ) ∈ NN , ∀k ∈ {0, 1}
in case 1 ({0, 1, 2} in case 2), |α|+ k ≤ 2,∣∣∂αx ∂kt u(x, t)∣∣ ≤ Ce−ε0|x| for all (x, t) ∈ RN × R+ (resp. R).
Proof: It results from Corollary 3.1 in [7] and Lemma 2.1 in [3], to which I refer.
The proof is based on comparison principles, together with Harnack inequality
and blow-up arguments in the parabolic case.

We now turn to the proof of part a) and b) in Proposition 2.1.

Case 1: It is well-known that t 7→ E(u(·, t)) is decreasing since:

d

dt

{∫ {
1

2
|∇u|2 − F (u)

}
dx

}
= −

∫
u2tdx. (2.4)

Hence

∫ +∞
0

dt

∫
u2tdx < ∞. Making use of Lemma 2.1, it is standard to infer

part a) and b) in Proposition 2.1.

Case 2: Let us test equation (1.4) with ut:∫ t′
t

ds

∫
{ututt +∆uut + f(u)ut} dx = 0.

Integrating by part (see Lemma 2.1) results in:

E(u(·, t′))− E(u(·, t)) =
1

2

∫
u2t (x, s)dx

∣∣∣∣t
′

s=t

.

Hence by assumption (1.5) and Lemma 2.1, clearly ∃ lim
t→+∞

E(u(·, t)), Now, test-

ing (1.4) with φ ∈ C∞0 (R
N ) and integrating by parts results in:

∫ t+1
t

ds

∫
{utt +∆u + f(u)}φ(x)dx = 0

∫
ut(s, x)φ(x)dx

∣∣∣∣t+1
s=t

+

∫ t+1
t

ds

∫
{u∆φ+ f(u)φ} dx = 0.

Since the first term in this last expression goes to zero as t→ +∞ by assumption
(1.5) and Lemma 2.1, it is clear from the definition of ω(u), Lemma 2.1, and
(1.5) again that any v = v(x, τ) ∈ ω(u) is actually independent of τ and satisfies
∀φ ∈ C∞0 (R

N )
∫
{v∆φ+ f(v)φ} dx = 0. Since v ∈ C2, it implies that v is a

steady state. This completes the proof of part a) and b) in Proposition 2.1.

I shall know sketch the proof of part c) in Proposition 2.1 in Case 1 and 2.

Case 1: That the Ei’s are constant on ω(u) rely on the following lemma:

Lemma 2.2 i) We have
d

dt
Ei (u(·, t)) = −

∫
RN

xiu
2
t dx



50 Convergence to Equilibrium

ii) There exists δ > 0 such that

∫ +∞
0

dt

∫
eδ|x|u2t dx < +∞.

Hence the limits limt→+∞ Ei (u(·, t)), i = 1, · · · , N , are well-defined.

Proof of i) Denoting by ui the derivative of u with respect to xi one has:

d

dt
Ei (u(·, t)) = −

∫
ut {∇ · (xi∇u) + xif(u)} dx

= −

∫
xiu

2
t dx−

∫
utui dx

∫
utui dx =

∫
{∆u+ f(u))ui dx

= −

∫
∇u · ∇ui dx+

∫
f(u)ui dx = 0 .

Proof of ii) Taking polar co-ordinates x = (r, θ), define for r > 0:

HT (r) =
1

2

∫ T
0

dt

∫
SN−1

u2t (r, θ, t) dθ.

Denoting by ∆r =
∂2

∂r2
+
(N − 1)

r

∂

∂r
the radial Laplace operator, we have: We

have:

∆rH
T =

∫ T
0

dt

∫
SN−1

ut∆rut dθ +

∫ T
0

dt

∫
SN−1

|∇rut|
2 dθ

≥ −
1

2

∫
SN−1

u2t (0, r, θ) dθ −

∫ T
0

dt

∫
SN−1

f ′(u)u2t dθ,

hence:
∆rH

T (r) ≥ −ψ(r) + αHT (r) ∀r ≥ R0,

for some positive constants α,R0 and some ψ ∈ C∞0 (R
N ), ψ ≥ 0.

Now a simple comparison argument with the solutions of ∆rg0 − αg0 =
−ψ, g0(r0) = 0, g0(r) → 0 as r → ∞ and ∆rg1 − αg1 = 0, g1(r0) = 1,
g1(r) → 0 as r → ∞ implies ∀r0 ≥ R0 ∃δ > 0 ∃C > 0 ∀T > 0 ∀r ≥ r0
0 ≤ HT (r) ≤ C

(
1 +HT (r0)

)
e−2δr. Since

∫ +∞
0 dt

∫
u2t dx < +∞ by Fubini’s

Theorem HT (r0) → H∞(r0) < ∞ as T → ∞ for a.e. r0. Hence H∞(r) ≤
Ce−2δr ∀r ≥ r0.

Case 2: Let us define

Ẽi = Ei −
1

2

∫
xiu

2
tdx.
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Differentating Ẽi results in:

d

dt
Ẽi(u) = −

∫
ut {∇ · (xi∇u) + xif(u)} dx−

∫
xiututt dx

integrating by parts:
d

dt
Ẽi(u) =

∫
utuidx (2.5)

differentiating once more:

d2

dt2
Ẽi(u) =

∫
{∆u+ f(u)}uidx−

∫
utuitdx

= −

∫
∇u · ∇ui − f(u)ui + utui

= −

∫
∂

∂xi

{
1

2
|∇u|2 − F (u) +

u2t
2

}
dx = 0 ,

thanks to Fubini’s Lemma. Note that I have repeatedly used Lemma 2.1 here.
Hence Ẽi(u) = αt + β for constants α, β. Now (2.5) together with assumption

(1.5) imply lim
t→∞

d

dt
Ẽi(u(·, t)) = 0. Thus α = 0, hence t 7→ Ẽi(u(·, t)) is constant.

Hence Ei is constant on ω(u) by (1.5). This completes the proof of part c) in
Proposition 2.1, hence that of Theorem 1.2.
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