\pdfoutput=1\relax\pdfpagewidth=8.26in\pdfpageheight=11.69in\pdfcompresslevel=9 \documentclass[twoside]{article} \usepackage{amsfonts, amsmath} % used for R in Real numbers \pagestyle{myheadings} \markboth{Some Liouville theorems for the $p$-Laplacian } { Isabeau Birindelli \& Fran\c coise Demengel } \begin{document} \setcounter{page}{35} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent 2001-Luminy conference on Quasilinear Elliptic and Parabolic Equations and Systems,\newline Electronic Journal of Differential Equations, Conference 08, 2002, pp 35--46. \newline http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Some Liouville theorems for the $p$-Laplacian % \thanks{ {\em Mathematics Subject Classifications:} 35J60, 35D05. \hfil\break\indent {\em Key words:} Liouville, $p$-Laplacian. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Published Octrober 21, 2002.} } \date{} \author{Isabeau Birindelli \& Fran\c coise Demengel} \maketitle \begin{abstract} In this paper we propose a new proof for non-linear Liouville type results concerning the $p$-Laplacian. Our method differs from the one used by Mitidieri and Pohozaev because it uses a comparison principle that can be applied to nondivergence form operators. \end{abstract} \numberwithin{equation}{section} \newtheorem{thm}{Theorem}[section] \newtheorem{pro}[thm]{Proposition} \newtheorem{lem}[thm]{Lemma} \newtheorem{rema}[thm]{Remark} \section{Introduction} In 1981 Gidas and Spruck proved in their famous work \cite{GS2} that for $10\quad \mbox{in } \mathbb{R}^N. $$ The proof is very difficult but a simpler proof was given by Chen and Li using the moving plane method \cite{ChL}. Similarly, non-existence results hold for the inequality $$ \Delta u + u^p \leq 0,\ u>0\quad {\rm in }\ \Sigma $$ where $\Sigma$ is a cone in $\mathbb{R}^N$ (see Berestycki, Capuzzo Dolcetta, Nirenberg \cite{BCN2}). The values of $p$ for which there is no positive solution depend on the cone $\Sigma$. For example for $\Sigma=\mathbb{R}^N$, $p\in (0,\frac{N}{N-2})$. The generalization of this result to the $p$-Laplacian ($\Delta_p=\mathop{\rm div}(|\nabla .|^{p-2}\nabla)$) is very recent. Mitidieri and Pohozaev proved among other things the following result. \begin{thm}\label{th1} 1) Suppose that $N>p>1$, and $u\in W^{1,p}_{loc} (\mathbb{R}^N)\cap {\cal C} (\mathbb{R}^N)$ is a nonnegative weak solution of \begin{equation}\label{eq 0} - \mathop{\rm div} (|\nabla u|^{p-2 }\nabla u) \geq h(x) u^q \quad \mbox{in } \mathbb{R}^N \end{equation} with $h$ satisfying \begin{equation} \label{eqh} h(x)=a|x|^\gamma\quad \mbox{for $|x|$ large, $a>0$ and $\gamma>-p$}. \end{equation} Suppose that $$p-1< q\leq {(N+\gamma)(p-1)\over N-p}\,.$$ Then $u\equiv 0$. \\ 2) Let $N\leq p$. If $u\in W^{1,p}_{loc} (\mathbb{R}^N)\cap {\cal C} (\mathbb{R}^N)$ is a weak solution of $$-\mathop{\rm div} (|\nabla u|^{p-2 }\nabla u)\geq 0\;\;\mbox{in } \;\mathbb{R}^N $$ and $u$ is bounded below then $u$ is constant. \end{thm} In this paper we present a new simple proof of Theorem \ref{th1}. The proof of Mitidieri and Pohozaev relies on variational methods and the use of global test function. On the other hand here we use the notion of viscosity solutions and therefore use local test functions. This kind of technique should allow us to extend Theorem \ref{th1} to a large class of non divergence operators. An example of such operators is given by: $$ Lu= |\nabla u|^{\alpha}\big({\rm Tr}(A(x)D^2u) +k D^2u: \frac{\nabla u}{|\nabla u|}\otimes\frac{\nabla u}{|\nabla u|}\big) $$ where $\alpha\in \mathbb{R}$, and $A(x)$ is a symmetric matrix with $$ \lambda |\xi|^2\leq A\xi\cdot\xi\leq \Lambda |\xi|^2$$ and $k\in\mathbb{R}$ satisfies $\lambda+k>0$. More generally this kind of proof can be used for fully nonlinear equations: Suppose that we consider $F(x,\nabla u,D^2u)$ where for example $F(x,\xi,M)$ satisfies for some $\lambda>0$ \begin{gather*} |\xi|^\alpha \lambda {\rm Tr} N \leq F(x,\xi,M+N) - F(x,\xi, M)\leq |\xi|^\alpha \Lambda {\rm Tr} N,\\ F(x,\xi, 0)=0 \end{gather*} for any symmetric and positive matrix $N$. Cutr\`i and Leoni \cite{CL} have used similar arguments to study Liouville theorems for fully non-linear operators $F(x, D^2u)$ which satisfy the above inequality for $\alpha=0$. We would like to remark that the first result of Theorem \ref{th1} is optimal in the sense that for any $q>(N+\gamma)(p-1)/(N-p)$ we construct a nonnegative solution of (\ref{eq 0}). A similar example was given in \cite{BM} when $p=2$. Let us also remark that the condition on $\gamma$ in (\ref{eqh}) is optimal. Indeed, for $\gamma< -p$, Dr\'abek in \cite{Dr} has proved the existence of non trivial weak solutions in $\mathbb{R}^N$ (see e.g. Theorem 4.1 of \cite{DKN}). When treating the equation instead of the inequality, the values of $q$ for which non existence results hold true are not the same. Precisely for the following equation \begin{equation}\label{eq 01} -\Delta_p u = r^\gamma u^q ,\;\;u\geq 0\quad \mbox{in } \mathbb{R}^N, \end{equation} Serrin and Zou have proved in \cite{SZ} that for $p-1p$ our main non-existence result in this section is the following \begin{thm}\label{lnl} Suppose that $N>p>1$. Let $u\in W^{1,p}_{loc} (\mathbb{R}^N)\cap {\cal C} (\mathbb{R}^N)$ be a nonnegative weak solution of \begin{equation}\label{eq} -\Delta_p u \geq h(x) u^q \quad\mbox{in } \mathbb{R}^N, \end{equation} with $h$ satisfying (\ref{eqh}). If $0< q\leq {(N+\gamma)(p-1)\over N-p}$, then $u\equiv 0$. \end{thm} The proof is inspired by the one given in \cite{CL}, where the authors treat fully nonlinear strictly elliptic equations. Let us start by one remark and two propositions. \begin{rema} \label{r1} \rm The following comparison result holds true: Let $u$ and $\phi$ satisfy $u, \phi\in W^{1,p}(\Omega)$ \begin{gather*} -\Delta_pu\geq -\Delta_p\phi \quad \mbox{in } \Omega\\ u\geq \phi \quad \mbox{on } \partial\Omega\,. \end{gather*} Then $u\geq \phi$ in $\Omega$. This is a standard result and it is easy to see for example by multiplying $-\Delta_p u+\Delta_p \phi$ by $(\phi-u)^+$. \end{rema} \begin{pro}\label{prop10} Let $\Omega$ be an open set in $\mathbb{R}^N$, and let $f\in {\cal C}(\overline{\Omega})$. Suppose that $u\in W^{1,p}_{\rm loc} (\Omega)\cap {\cal C}(\overline{\Omega}) $ is a weak solution of $-\Delta_p u\geq f$ in $\Omega$. If $x_0\in \Omega$ and $\varphi\in {\cal C}^2(\Omega)\cap {\cal C} (\overline{\Omega})$ are such that $$ \nabla \varphi(x_0)\neq 0,\ u(x_0)- \varphi(x_0) = \inf_{y\in \Omega} u(y)-\varphi(y)\,, $$ then $-\Delta_p \varphi(x_0)\geq f(x_0)$. \end{pro} This proof is inspired by Juutinen \cite{Juu}. \paragraph{Proof.} Without loss of generality we can suppose that $u(x_0)=\varphi(x_0)$. Let us note first that it is sufficient to prove that the property holds for every $\varphi$ such that $\varphi(y)< u(y)$ for all $y\neq x_0$ in a sufficiently small neighborhood of $x_0$. Indeed, suppose that the property holds for such functions then taking $\varphi_\epsilon (y) = \varphi(y)-\epsilon {|y-x_0|^4}$ and letting $\epsilon$ go to zero, one obtains the result for every $\varphi$. Suppose by contradiction that there exists some $x_0\in \Omega$ and some ${\cal C}^2 $ function $\varphi$ such that $\nabla \varphi(x_0)\neq 0$, $\varphi(x_0)= u(x_0)$ and $\varphi(y)< u(y)$ on some ball $B(x_0,r)\setminus \{x_0\}$ and $-\Delta_p \varphi(x_0)0\}$, and define $$\bar\varphi = \varphi+{m\over 2}. $$ One has $-\Delta_p \bar\varphi u(x_0)$. This ends the proof of Proposition \ref{prop10}. \hfill$\square$ \smallskip Finally let us recall that if $v$ is radial i.e. $v(x)=V(|x|)\equiv V(r)$ for some function $V$ in ${\cal C}^2$, then if $x$ is such that $V' (|x|)\neq 0$, $$ \Delta_p v(x) =|V'(r)|^{p-2}\big((p-1)V^{\prime\prime}(r)+{N-1\over r}V'(r)\big). $$ Hence for any constants $C_1$ and $C_2$ if $N\neq p$ and for $\lambda={p-N\over p-1}$ the function $\phi(x)=C_2|x|^{\lambda}+ C_1$ satisfies $\Delta_p \phi=0$ for $x\neq 0$. Before giving the proof of Theorem \ref{lnl} let us define $m(r)=\inf_{x\in B_r}u(x)$ and prove the following Hadamard type inequality \begin{pro} \label{p1} Let $N\neq p$. Suppose that $-\Delta_p u\geq 0$ and $u\geq 0$. Let $\lambda = {p-N\over p-1}$. For any $00$ and for $i=1$ and $i=2$, $u(x)\geq m(r_i)=\phi(r_i)$ for $x\in \partial B_{r_i}$, hence $u$ and $\phi$ satisfy the conditions of Remark \ref{r1}. and $u(x)\geq \phi(|x|)$ in $B_{r_2}\setminus B_{r_1}$. Taking the infimum we obtain that $\inf_{|x|=r} u(x)\geq \phi(r)$ for $r\in [r_1,r_2]$. By the minimum principle $m(r)=\inf_{|x|=r} u(x)$. This completes the proof of the first part of proposition \ref{p1}. For $N=p$ consider $$ \psi(r)= {m(r_1)\log({r\over r_2})+m(r_2)\log({r_1\over r})\over\log({ r_1\over r_2})}. $$ Remark that $\Delta_N\psi=0$ and $\psi(r_1)=m(r_1)$ and $\psi(r_2)=m(r_2)$. Now proceed as above. \begin{rema}\label{r3} \rm Clearly if $\lambda<0$ i.e. $p< N$, then $g(r):=m(r)r^{-\lambda}$ is an increasing function. Just observe that $r_1^\lambda-r^\lambda\geq 0$ and let $r_2$ tend to $+ \infty$ in (\ref{i2}) and one obtains for $r\geq r_1$: $$ m(r)\geq { m(r_1)r^\lambda\over r_1^\lambda}. $$ \end{rema} \paragraph{Proof of Theorem \ref{lnl}.} We suppose by contradiction that $u\not\equiv 0$ in $\mathbb{R}^n$, but since $u\geq 0$ by the strict maximum principle of Vasquez \cite{V} we get that $u>0$. Let $0 m(r_1) =\zeta(x)$ while for $|x|\geq R$, $\zeta(x)\leq 0 0$ and hence, for $|x|=r_1$, $-\Delta_p\zeta (x)=0$ while, of course, $\nabla \zeta (x)=0$. Now we have two cases: First case $\bar r=r_1$. This implies $$ u(\bar x)-m(r_1)= u(\bar x)-\zeta(\bar x)\leq u(x)-\zeta(x) $$ for all $x$. In particular choosing $ x=\tilde x$, one gets $$ u(\bar x)-m(r_1)\leq u(\tilde x)-\zeta(\tilde x)=0. $$ Finally $u(\bar x)= m(r_1)$ and $\bar x$ is a minimum for $u$ on $B(0,r_1)$. Since $-\Delta_p u\geq 0$, Hopf's principle as stated in Vasquez \cite{V} implies that $\nabla u(\bar x)\neq 0$. On the other hand $\nabla u (\bar x)= \nabla \zeta (\bar x)= 0$, a contradiction. \noindent Second case: $r_1< \bar r< R$. Now $\nabla \zeta (\bar x)\neq 0$, and using Proposition \ref{prop10} one has $$ h(\bar x)u^q(\bar x)\leq -\Delta_p \zeta (\bar x). $$ We choose $r_1$ and $R$ sufficiently large in order that $h(x) = a|x|^\gamma$ for $|x|\geq \min (r_1, R/2)$. Combining this with (\ref{i3}), we obtain $$ a\bar r^\gamma m(\bar r)^q\leq a\bar r^\gamma u^q(\bar x)\leq (k+1)^{(p-1)}(N+2p-3)m(r_1)^{(p-1)}(R-r_1)^{-p}. $$ Since $m$ is decreasing we have obtained for some constant $C>0$ $$ m(R)\leq C m(r_1)^{(p-1)\over q}\bar r^{-\gamma\over q}(R-r_1)^{-p\over q}. $$ Now we choose $r_1={R\over 2}$, we use Remark \ref{r3} and the previous inequality becomes \begin{equation} \label{eR}m(R)\leq C m(R)^{(p-1)\over q}R^{-p-\gamma\over q}. \end{equation} First we will suppose that $q\leq p-1$; hence, using the monotonicity of $m(R)$, the above inequality becomes $$ R^{p+\gamma\over q} \leq Cm(R)^{{(p-1)\over q}-1} \leq Cu(0)^{{(p-1)\over q}-1}. $$ But this is absurd since the left hand side tends to infinity when $R$ does. This conclude the proof of this case. Now suppose that $q>p-1$, then (\ref{eR}) becomes \begin{equation}\label{i5} m(R)R^{-\lambda }\leq CR^{-\lambda-{p+\gamma\over q-p+1}}. \end{equation} Clearly $-\lambda-{p+\gamma\over q-p+1}={N-p\over p-1}-{p+\gamma \over q-p+1}\leq 0$ when $ q\leq {(N+\gamma) (p-1)\over N-p}$. If $q< (N+\gamma) (p-1)/(N-p)$ we have reached a contradiction since the right hand side of (\ref{i5}) tends to zero for $R\rightarrow +\infty$ while the left hand side is an increasing positive function as seen in Remark \ref{r3}. We now treat the case $q=(N+\gamma)(p-1)/(N-p)$. Let us remark that for this choice of $q$ we have that for some $C_1>0$, $c>0$ and $r>r_1>0$, with $r_1$ large enough: \begin{equation}\label{if1} -\Delta_p u\geq ar^\gamma u^q\geq C_1r^{-N}\quad\mbox{since} \quad m(r)\geq c r^{p-N\over p-1}. \end{equation} We choose $\psi(x) = g(|x|)$ with $$ g(r) = \gamma_1 r^{p-N\over p-1} \log^\beta r+\gamma_2 $$ where $\gamma_1$ and $\gamma_2$ are two positive constants such that for some $r_1>1$ and some $r_2>r_1$: $$ m(r_2) = g(r_2),\quad m(r_1)\geq g(r_1), $$ while $\beta$ is a positive constant to be chosen later. It is easy to see that \begin{eqnarray*} \Delta_p \psi&= &|\gamma_1|^{p-1} r^{-N} \big\vert{p-N\over p-1}\log^\beta r +\beta \log^{\beta-1} r\big\vert^{p-2} \\ &&\times \left[(p-1)\beta(\beta-1)\log^{\beta-2} r -\beta(3N-2p-2)\log^{\beta-1} r\right] \end{eqnarray*} Suppose now that $p>2$, and choose $0<\beta<{1\over p-1}<1$, then there exists $C>0$ such that $$ \Delta_p \psi\geq -|\gamma_1|^{p-1}Cr^{-N}(\log r)^{\beta(p-1)-1}\geq -|\gamma_1|^{p-1}Cr^{-N}(\log r_1)^{\beta(p-1)-1}. $$ On the other hand for $p\leq 2$ we can choose $\beta=1$ and a calculation similar to the one above implies that $$ \Delta_p \psi\geq -c|\gamma_1|^{p-1}r^{-N} \left(\log r_1\right)^{p-2}. $$ In both cases we can choose $\gamma_1$ small enough to get $$ \Delta_p \psi \geq -C_1r^{-N}\geq \Delta_p u. $$ Since $u\geq \psi$ on the boundary of $B_{r_2}\setminus B_{r_1}$, one obtains by the comparison principle (Remark \ref{r1}) that $u\geq \psi$ everywhere in $B_{r_2}\setminus B_{r_1}$. When $r_2$ goes to infinity it is easy to see that $\gamma_2\rightarrow 0$, and we obtain $$ u(x)\geq c |x|^{p-N\over p-1} \log^\beta |x|, $$ for $|x|\geq r_1$. This implies that $$ m(r)\geq cr^{p-N\over p-1} \log r $$ for $r> r_1$. We have reached a contradiction since $$m(r)\leq Cr^{p-N\over p-1}.$$ Hence $u\equiv 0$. This concludes the proof of Theorem \ref{lnl}. \hfill$\square$ We treat now the case $N\leq p$ where the result is much stronger. \begin{thm}\label{Np} Let $N\leq p$. If $u\in W^{1,p}_{loc}(\mathbb{R}^N)\cap {\cal C} (\mathbb{R}^N)$ is bounded below and is a weak solution of $$ -\Delta_p u\geq 0\;\;\mbox{in } \;\mathbb{R}^N, $$ then $u$ is constant. \end{thm} \begin{rema} \rm For $N\leq p$, for any $q>0$ and for any nonnegative $h$, if $u\in W^{1,p}_{loc}(\mathbb{R}^N)\cap {\cal C} (\mathbb{R}^N)$ is a weak solution of $$ -\Delta_p u\geq h(x) u^q \;\;\mbox{in } \;\mathbb{R}^N $$ then $u\equiv 0$. \end{rema} \paragraph{Proof of Theorem \ref{Np}.} Without loss of generality we can suppose that $u\geq 0$. First we will consider $N0$. When we let $r_2\rightarrow +\infty$ inequality (\ref{i7}) becomes \begin{equation}\label{i8} m(r)\geq m(r_1). \end{equation} But of course $m(r)$ is decreasing hence (\ref{i8}) implies that $m(r)$ is constant i.e. $m(r)=m(0)=u(0)$ for any $r>0$. Clearly this can be repeated with balls centered in any point of $\mathbb{R}^N$. Hence $u$ is constant. For the case $N=p$ just use inequality (\ref{i2b}) in Proposition \ref{p1} and proceed as above. This concludes the proof of Theorem \ref{Np}. \subsection*{Counterexample} We are going to show that for $N>p$, $\gamma\geq 0$ and $q>(N+\gamma)(p-1)/(N-p)$ there exists a non-negative function $u$ such that $$ -\Delta_p u\geq r^\gamma u^q \quad\mbox{in }\mathbb{R}^N $$ hence proving that $(N+\gamma)(p-1)/(N-p)$ is an optimal upper bound for $q$ in Theorem \ref{lnl}. Indeed consider $g(r)=C(1+r)^{-\alpha}$ with $\alpha$ and $C$ two positive constants to be determined. Clearly $\Gamma(x)=g(|x|)$ satisfies \begin{eqnarray*} -\Delta_p\Gamma &=&C^{p-1}\alpha^{p-1}(1+r)^{-(\alpha+1)(p-2)} [-(\alpha+1)(p-1)(1+r)^{-(\alpha+2)}+\\ &&+{(N-1)\over r} (1+r)^{-(\alpha+1)}]\\ &\geq& C^{p-1}\alpha^{p-1}(1+r)^{-\alpha(p-1)-p}[N-1-(\alpha+1)(p-1)] \end{eqnarray*} with $r=|x|$. Now let $\epsilon>0$ such that $q=(N+\gamma-\epsilon)(p-1)/(N-p-\epsilon)$ and let $\alpha=(N-p-\epsilon)/(p-1)$. Clearly we have $\alpha (p-1)+p+\gamma=N+\gamma-\epsilon=\alpha q$. Furthermore $N-1-(\alpha+1)(p-1)=N-p -\alpha(p-1)=\epsilon>0$. Hence choosing $C$ such that $C^{p-1}\alpha^{p-1}(\epsilon)=C^q$ we obtain that $\Gamma(x)$ satisfies $$ -\Delta_p \Gamma\geq C^q (1+r)^\gamma (1+r)^{-\alpha (p-1)-p-\gamma}\geq r^\gamma\Gamma^q \quad\mbox{in }\mathbb{R}^N. $$ \section{The equation} In this section we are interested in studying non-existence results concerning the equation. Clearly in view of Theorem \ref{Np}, we are only interested in the case $N>p$. \begin{thm} Suppose that $u\in W^{1,p}_{\rm loc}(\mathbb{R}^N)$ is nonnegative and satisfies \begin{equation}\label{st1} -\Delta_p u = r^\gamma u^q, \end{equation} for some $\gamma \geq 0$. If $$p-10. $$ Moreover the estimates on $u$ and $u'$ imply that the terms $|u'|^{p-1}u(R) R^{N-1}$, $ |u'|^p(R) R^N$ and $R^{\gamma+N} u^{q+1}(R)$ behave respectively as $R^{N-1+{\gamma+p\over p-1-q}+{(\gamma+q+1)(p-1)\over p-1-q}}$, $R^{\gamma+N+{\gamma+p\over p-1-q}(q+1)}$ and $R^{N-p\left({\gamma+q+1\over q-p+1}\right)}$. All the exponents are negative, and then $\int_0^R r^{\gamma+N-1} u^{q+1} dr\rightarrow 0$ when $R\rightarrow +\infty$, hence $u\equiv 0$. This concludes the proof. \hfill$\square$ \paragraph{Acknowledgments} This work was mainly done while the first author was visiting the Laboratoire d'Analyse, G\'eom\'etrie et Mod\'elisation of the University of Cergy-Pontoise. She wishes to thank the people of the laboratoire for the kind invitation and their welcome. The authors wish to thank Ilkka Holopainen for providing some interesting references. \begin{thebibliography}{99} \frenchspacing \bibitem{AC} C. Azizieh, Ph. Clement, A priori estimates and continuation methods for positive solutions of $p$-Laplace equations. {\it J. Differential Equations} 179 (2002), no. 1, 213--245. \bibitem{BCN1} { H.Berestycki, I. Capuzzo Dolcetta, L. Nirenberg} { Probl\'emes Elliptiques ind\'efinis et Th\'eor\`eme de Liouville non-lin\'eaires}, {\it C.R.A.S. S\'erie I.} 317, 945-950, (1993). \bibitem{BCN2} { H.Berestycki, I. Capuzzo Dolcetta, L. Nirenberg}, Superlinear indefinite elliptic problems and nonlinear Liouville theorems. {\it Topol. Methods Nonlinear Anal. }4 (1994), no. 1, 59--78. \bibitem{BCDC} I. Birindelli, I. Capuzzo Dolcetta, A. Cutr\'\i, Liouville theorems for semilinear equations on the Heisenberg group, {\it Ann. Inst. H. Poincar\'e Anal.Nonlin\'eaire, }{\bf 14} (1997), 295-308. \bibitem{BM} I. Birindelli, E. Mitidieri, Liouville theorems for elliptic inequalities and applications. {\it Proc. Roy. Soc. Edinburgh }Sect. A 128 (1998), no. 6, 1217--1247. \bibitem{CGS} L.A. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. {\it Comm. Pure Appl. Math. }42 (1989), no. 3, 271--297. \bibitem{ChL} { W. Chen, C.Li} { A priori estimates for prescribing scalar curvature equations}, {\it Ann. of Math.} 48 (1997), 47-92. \bibitem{CL}A. Cutr\'\i, F. Leoni, On the Liouville property for fully nonlinear equations. {\it Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire }17 (2000), no. 2, 219--245. \bibitem{DP} L. Damascelli, F. Pacella,{ Monotonicity and symmetry results for $p$-Laplace equations and applications.} {\it Adv. Differential Equations } 5 (2000), no. 7-9, 1179--1200. \bibitem{Dr} P. Dr\'abek, Nonlinear eigenvalue problem for the $p$-Laplacian in $\mathbb{R}^N$, {\it Math. Nachr. } 173 (1995), 131-139. \bibitem{DKN}P. Dr\'abek, A. Kufner, F. Nicolosi, {\it Quasilinear elliptic Eequations with degenerations and singularities} De Gruyter Series In Nonlinear Analysis And Applications, Berlin, New York, 1997. \bibitem{G}B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, {\it Nonlinear Partial Differential equations in engineering and applied sciences,} Eds. R. Sternberg, A. Kalinowski and J. Papadakis, Proc. Conf. Kingston, R.I. 1979, Lect. Notes on pure appl. maths, 54, Decker, New York, 1980, 255-273. \bibitem{GS1} B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations. {\it Comm. Partial Differential Equations} 6 (1981) \bibitem{GS2}B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations. {\it Comm. Pure Appl. Math. }34 (1981), no. 4, 525--598. \bibitem{hkm}J. Heinonen,T. KilpelŠinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. \bibitem{H1} I. Holopainen, A sharp $L\sp q$-Liouville theorem for $p$-harmonic functions. {\em Israel J. Math.} 115 (2000), 363--379. \bibitem{H2}I. Holopainen, Volume growth, Green's functions, and parabolicity of ends. {\em Duke Math. J.} 97 (1999), no. 2, 319--346. \bibitem{Juu} P. Juutinen, Minimization problems for Lipschitz functions, {\it Dissertation, University of JyvŠskulŠ}, JyvŠskulŠ, Ann. Acad. Sci. Fenn. Math. Diss. No. 115 (1998), \bibitem {To} P. Tolksdorff, {Regularity for a more general class of quasilinear elliptic equations}, {\it Journal of Differential Equations}, 51 (1984), 126-150. \bibitem{SZ}J. Serrin, Henghui Zou, Non-existence of positive solutions of Lane-Emden systems. {\it Differential Integral Equations } 9 (1996), no. 4, 635--653. \bibitem{sz} J. Serrin, Henghui Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear ellptic equations Preprint. \bibitem{V} { J.L. Vasquez} { A strong maximum principle for some quasilinear elliptic equations}, {\it Appl. Math. Optim.} 12: 191-202, (1984). \end{thebibliography} \noindent\textsc{Isabeau Birindelli} \\ Universit\`a di Roma ``La Sapienza'' \\ Piazzale Aldo moro, 5\\ 00185 Roma, Italy \\ e-mail: isabeau@mat.uniroma1.it \medskip \noindent\textsc{Fran\c coise Demengel}\\ Universit\'e de Cergy Pontoise,\\ Site de Saint-Martin, 2 Avenue Adolphe Chauvin\\ 95302 Cergy Pontoise\\ e-mail: Francoise.Demengel@math.u-cergy.fr \end{document}