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A remark on some nonlinear elliptic problems ∗

Lucio Boccardo

Abstract

We shall prove an existence result of W 1,p
0 (Ω) solutions for the bound-

ary value problem

− div a(x, u,∇u) = F in Ω

u = 0 on ∂Ω
(0.1)

with right hand side in W−1,p′(Ω). The features of the equation are that
no restrictions on the growth of the function a(x, s, ξ) with respect to s are
assumed and that a(x, s, ξ) with respect to ξ is monotone, but not strictly
monotone. We overcome the difficulty of the uncontrolled growth of a
thanks to a suitable definition of solution (similar to the one introduced
in [1] for the study of the Dirichlet problem in L1) and the difficulty of the
not strict monotonicity thanks to a technique (the L1-version of Minty’s
Lemma) similar to the one used in [5].

1 Introduction and assumptions

We deal with boundary value problems with differential operators A defined as

A(v) = −div (a(x, v,∇v))

where Ω is a bounded domain of RN , N ≥ 2, a : Ω × R × RN → RN is
a Carathéodory function (that is, measurable with respect to x in Ω for every
(s, ξ) in R×RN , and continuous with respect to (s, ξ) in R×RN for almost every
x in Ω). We assume that there exist a real positive constant α, a continuous
function β(s) and a nonnegative function k in Lp

′
(Ω), where 1 < p, such that

for almost every x in Ω, for every s in R, for every ξ and η in RN

a(x, s, ξ) · ξ ≥ α|ξ|p , (1.1)
[a(x, s, ξ)− a(x, s, η)] · [ξ − η] ≥ 0 , (1.2)

|a(x, s, ξ)| ≤
(
k(x) + [β(s)|ξ|]p−1

)
. (1.3)
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Thus, A is not well defined on the whole W 1,p
0 (Ω), but only in W 1,p

0 (Ω)∩L∞(Ω).
Note that if we assume

[a(x, s, ξ)− a(x, s, η)] · [ξ − η] > 0, ξ 6= η, (1.4)

|a(x, s, ξ)| ≤
(
k(x) + |s|p−1 + |ξ|p−1

)
, (1.5)

instead of (1.2), (1.3), A turns out to be pseudomonotone, coercive and is hence
surjective on W 1,p

0 (Ω) (see [6, 7, 8, 10]). A model operator for our setting is

−
∑
i

∂

∂xi

(
(1 + |v|γiχ

Ei
)
∂v

∂xi

)
where γi ≥ 0 and χ

Ei
is the characteristic function of the measurable subset

Ei ⊂ Ω. Concerning the right hand side of (0.1), we assume that

F ∈W−1,p′(Ω). (1.6)

The aim of this note is to prove existence of solutions for (0.1) under the weaker
assumption (1.2), without using the almost everywhere convergence of the gra-
dients of the approximate equations, since this is impossible to prove in our
setting. The main tools of our proof are a version of Minty’s Lemma, similar
to that one used in [5] to study nonlinear boundary value problems in L1, and
a definition of solution, similar to the one introduced in [1] for the Dirichlet
problem in L1. Other existence results of finite energy solutions, similar to the
one of Theorem 2.2, can be found [3] (see also [9, 13, 2, 4] for existence results
and [12, 14] for uniqueness results).

2 Existence

We recall that, for k > 0 and s in R, the truncating function is defined as

Tk(s) = min
{
k,max{−k, s}

}
.

The composition of functions in W 1,p
0 (Ω) with Tk will play an important role in

our approach to the existence of solutions of (0.1). More precisely, we will use
the following definition of solution, which is similar to the one introduced in [1]
for the Dirichlet problem in L1.

Definition 2.1 A function u ∈W 1,p
0 (Ω) is a T -solution of (0.1) if

u ∈W 1,p
0 (Ω), ∀ϕ ∈W 1,p

0 (Ω) ∩ L∞(Ω) :∫
Ω

a(x, u,∇u)∇Tk[u− ϕ] = 〈F, Tk[u− ϕ]〉
(2.1)

Theorem 2.2 Under the assumptions (1.1), (1.2), (1.3), (1.6) there exists a
T -solution u of (2.1).
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Remark 2.3 Note that, even if a(x, s, ξ) is unbounded with respect to s, the
integral in (2.1) is well defined, since ∇Tk[u − ϕ] is not zero on the subset
{x ∈ Ω : |u(x)− ϕ(x)| ≤ k}, that is in subsets where u is bounded.

Remark 2.4 If in (2.1) we take ϕ = 0, we have∫
Ω

a(x, u,∇u)∇Tk(u) = 〈F, Tk(u)〉,

so that Lebesgue and Fatou Theorems imply that a(x, u,∇u)∇u ∈ L1(Ω), but
we are not able to prove that a(x, u,∇u) ∈ L1(Ω), which would imply that u is
a solution in D′(Ω), that is

u ∈W 1,p
0 (Ω) :

∫
Ω

a(x, u,∇u)∇φ = 〈F, φ〉, ∀φ ∈ D(Ω).

Proof of Theorem 2.2. Consider the approximate problems

un ∈W 1,p
0 (Ω) : −div(a(x, Tn(un),∇un) = F. (2.2)

The solutions un exist thanks to the Leray-Lions existence theorem (see [10]).
Moreover, the use of un as test function in (2.2) and the assumption (1.1) imply
that the sequence {un} is bounded in W 1,p

0 (Ω). Thus, there exists a function
u ∈ W 1,p

0 (Ω) and a subsequence {unj} such that unj converges weakly to u in
W 1,p

0 (Ω) and almost everywhere. Now we use an idea of G.J. Minty ([11]), in
the framework of [5]: thanks to the monotonicity of a(x, s, ξ) with respect to ξ,
if ϕ ∈W 1,p

0 (Ω) ∩ L∞(Ω) and n > k + ‖ϕ‖L∞(Ω), we have that∫
Ω

a(x, unj ,∇ϕ)∇Tk[unj − ϕ] ≤ 〈F, Tk[unj − ϕ]〉.

The weak convergence of the sequence {unj
} in W 1,p

0 (Ω) and the remark that
∇Tk[unj − ϕ] is not zero on the subset {x ∈ Ω : |unj (x)− ϕ(x)| ≤ k} (subset of
{x ∈ Ω : |unj (x)| ≤ k + ‖ϕ‖L∞(Ω)}) allow to pass to the limit in the previous
inequality, so that∫

Ω

a(x, u,∇ϕ)∇Tk[u− ϕ] ≤ 〈F, Tk[u− ϕ]〉.

Let h and k be positive real numbers, let t belong to (−1, 1), and let ψ be a
function in W 1,p

0 (Ω) ∩ L∞(Ω). Choose ϕ = Th(u) + t Tk[u− ψ] in the previous
inequality. Setting Gk(s) = s− Tk(s), we obtain

I =
∫

Ω

a(x, u,∇Th(u) + t∇Tk[u− ψ])∇Tk(Gh(u)− t Tk[u− ψ])

≤ 〈F, Tk(Gh(u)− t, Tk[u− ψ])〉 = J .
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We then have

I =
∫
{|Gh(u)−t Tk[u−ψ]|≤k}

a(x, u,∇Th(u) + t∇Tk[u− ψ])∇Gh(u)

−t
∫
{|Gh(u)−t Tk[u−ψ]|≤k}

a(x, u,∇Th(u) + t∇Tk[u− ψ])∇Tk[u− ψ]

= H + L .

Choosing h ≥ k + ‖ψ‖L∞(Ω), we have |Tk[u − ψ]| = k on the set {|u| ≥ h}; on
the same set, we have ∇Th(u) = 0. Since ∇Gh(u) is different from zero only on
{|u| ≥ h}, we obtain

H =
∫
{|Gh(u)−t Tk[u−ψ]|≤k}

a(x, u, 0)∇Gh(u) = 0 ,

being a(x, s, 0) = 0 as a consequence of (1.1). Since ∇Tk[u − ψ] is different
from zero only on the set {x ∈ Ω : |u(x) − ψ(x)| ≤ k}, and on this set |u| ≤
k + ‖ψ‖L∞(Ω) ≤ h, then

{|Gh(u)− t Tk[u− ψ]| ≤ k} ∩ {|u− ψ| ≤ k}
= {| − t Tk[u− ψ]| ≤ k} ∩ {|u− ψ| ≤ k}
= {|u− ψ| ≤ k} ,

where the last passage is due to the fact that |t| < 1. Hence,

L = −t
∫

Ω

a(x, u,∇u+ t Tk[u− ψ])∇Tk[u− ψ] ,

and so, for h ≥ k + ‖ψ‖L∞(Ω), we have

I = −t
∫

Ω

a(x, u,∇u+ t Tk[u− ψ])∇Tk[u− ψ] .

On the other hand, we have, since |t| < 1, Tk(s) is odd and u ∈W 1,p
0 (Ω),

lim
h→+∞

〈F, Tk(Gh(u)− t Tk[u− ψ])〉 = −t〈F, Tk[u− ψ]〉

We thus have proved that

−t
∫

Ω

a(x, u,∇u+ t Tk[u− ψ])∇Tk[u− ψ] ≤ −t〈F, Tk[u− ψ]〉 ,

for every ψ ∈W 1,p
0 (Ω) ∩ L∞(Ω), and for every k > 0. Choosing t > 0, dividing

by t, and then letting t tend to zero, we obtain∫
Ω

a(x, u,∇u)∇Tk[u− ψ] ≥ 〈F, Tk[u− ψ]〉 ,

while the reverse inequality is obtained choosing t < 0, dividing by −t, and then
letting t tend to zero. This completes the proof of Theorem 2.2. �
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