\documentclass[twoside]{article} \usepackage{amsfonts, amsmath} % used for R in Real numbers \pagestyle{myheadings} \markboth{ On the $L^{\infty}$-regularity} {L. Aharouch, E. Azroul and A. Benkirane} \begin{document} \setcounter{page}{1} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent 2002-Fez conference on Partial Differential Equations,\newline Electronic Journal of Differential Equations, Conference 09, 2002, pp 1--8. \newline http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % On the $L^{\infty}$-regularity of solutions of nonlinear elliptic equations in Orlicz spaces % \thanks{ {\em Mathematics Subject Classifications:} 35J60. \hfil\break\indent {\em Key words:} Orlicz Sobolev spaces, boundary-value problems. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Published December 28, 2002.} } \date{} \author{Lahsen Aharouch, Elhoussine Azroul, \& Abdelmoujib Benkirane} \maketitle \begin{abstract} Our main result is a maximum principle bounding the absolute values of the solution in terms of the supremum of the absolute values of the boundary data. \end{abstract} \numberwithin{equation}{section} \newtheorem{lem}{Lemma}[section] \newtheorem{thm}{Theorem}[section] \newtheorem{Def}{Definition}[section] \newtheorem{rem}{Remark}[section] \section{Introduction} Let $\Omega$ be a bounded Lipshitz domain in $\mathbb{R}^n$ ($n\geq 1$), let $M(t)$ be an $N$-function i.e. continuous, convex, with $M(t)>0 $ for $t>0$, $M(t)/t\to 0$ as $t\to 0$ and $M(t)/t\to \infty$ as $t\to \infty$, and $m(t)$ be its right derivatives. Consider the nonlinear boundary-value problem $$ \begin{gathered} Au = -\mathop{\rm div} a(\nabla u) = f \quad \mbox{in } \Omega \\ u = \theta \quad \mbox{in } \partial\Omega \end{gathered} \eqno{(1.1)} $$ with prescribed boundary datum $\theta$, where $a = \{a_i , 1\leq i\leq n\}$ is a vector of Carath\'eodory functions defined on $\mathbb{R}^n$ satisfying the hypotheses \begin{itemize} \item[(H1)] $|a(\xi)| \leq \lambda_1 m(|\xi|)$ for all $\xi \in \mathbb{R}^n$ and some positive constant $\lambda_1$. \item[(H2)] $ a(\xi).\xi \geq \lambda_2 |\xi|m(|\xi|)$ for all $\xi \in \mathbb{R}^n$ and some positive constant $\lambda_2$. \end{itemize} \begin{Def}\rm Let $\theta\in W^1 L_M (\Omega)$ and $f\in L^1 (\Omega)$. A function $u\in W^1 L_M (\Omega)$ is called a weak solution of the boundary-value problem (1.1) if $u-{\theta} \in W_{0}^1 L_M (\Omega)$ and $$\int_{\Omega}a(\nabla u).\nabla \varphi = \int_{\Omega}f. \varphi \quad \mbox{for all } \varphi\in {\cal C}_{0}^{\infty}(\Omega). $$ Here $W_{0}^{1}L_M (\Omega)$ and $W^{1}L_M (\Omega)$ denote the Orlicz-Sobolev Spaces associated to the $N$-function $M$ (see section 2). \end{Def} Recently, Fuchs and Gongbao proved in \cite[Theorem 1.1]{fg2} that if $u$ is a weak solution of (1.1) with the second member $f$ lies in $L^{\infty}(\Omega)$, and $\sup_{\partial\Omega}\theta (x)< \infty$, then $u$ is bounded from above; i.e., $$ \sup_{\Omega}u(x)\leq \mathop{\rm const} (\sup_{ \partial\Omega}\theta (x),\|u\|_{L^1 (\Omega)},n, |\Omega|,M,\|f\|_{L^{\infty} \Omega)},\lambda_1,\lambda_2)< \infty. $$ For this, the authors have supposed additionally to (H1)-(H2) that the $N$-function $M$ satisfies the $\Delta_2$-condition near infinity. The aim of this paper is to prove (Theorem 3.2) the previous statement for the general operators, $$ Au = -\mathop{\rm div} (a(x,u,\nabla u)) \eqno{(1.2)} $$ without assuming the $\Delta_2$-condition. To do this, we replace the hypothesis (H1) by the more general growth condition, $$ |a(x,s,\xi)|\leq c(x) + k_1 {\overline {P}}^{-1}M(k_2 |s|) + k_3 {\overline {M}}^{-1}M(k_4 |\xi|) \eqno{(1.3)} $$ and the hypothesis (H2) by $$ a(x,s,\xi)\xi \geq \alpha M(\frac{|\xi|}{\beta}). \eqno{(1.4)} $$ (see section 3). To generalize theorem of \cite{fg2}, in our case, we need to prove the following approximating result (see theorem 3.2) $$W_{0}^{1, 1}(\Omega)\cap W^1 L_M (\Omega) = W_{0}^{1}L_M (\Omega). $$ which guaranties that $\varphi = \max (u-k, 0)$ can be taken as a test function (for details see theorem 3.2). When $M(t) = |t|^p$ ($p>1$) (i.e., $a$ satisfies the polynomial growth condition), the regularity result of the solution of (1.1) are investigated in \cite{l} and \cite{gt}. Non-standard examples of $M(t)$ which occur in the mechanics of solids and fluids are $M(t) = t\ln(1+t)$, $M(t) = \int_{0}^{t}s^{1-\alpha}(\mathop{\rm arsinh} s)^{\alpha}ds$ ($0\leq \alpha\leq 1$) and $M(t) = t\ln(1 + \ln(1 + t))$ (see \cite{fs1,fs2,fs3,fg2}) for more details). When $Au = -\Delta u$ (corresponding to the Poisson equation), the reader is referred to \cite{abt}, where the regularity of $u$ is studied in Orlicz Spaces with respect to the second member $f$ (in particular where $f$ is a measure). Finally. note that some problems of the calculus of variations (see \cite[remark 1.2]{fg2}) can be lead to the equation (3.1) as in section 3, contributions in this sense include the works \cite{fg1, ab}. \section{Preliminaries} {\bf 2-1} Let $M : \mathbb{R}^{+}\to \mathbb{R}^{+}$ be an $N$-function, i.e. $M$ is continuous, convex, with $M(t)>0 $ for $t>0$, $M(t)/t\to 0$ as $t\to 0$ and $M(t)/t\to \infty$ as $t\to \infty$. The $N$-function conjugate to $M$ is defined as $\overline {M}(t) = \sup\{st - M(t), s\geq 0\}$. We will extend these $N$-functions into even functions on all $\mathbb{R}$. The $N$-function $M$ is said to satisfy the $\Delta_2$-condition if, for some $k$ $$ M(2t)\leq kM(t)\quad \forall t\geq 0. \eqno{(2.1)} $$ When this inequality holds only for $t\geq \mbox{some}\ t_0 >0$, $M$ is said to satisfy the $\Delta_2$-condition near infinity. Moreover, we have the following Young's inequality $$ \forall s,t \geq 0,\quad st \leq M(s) + \overline {M}(t) \eqno{(2.2)} $$ Let $P$ and $M$ be two $N$-functions. $P<0$, $\frac{P(t)}{M(\varepsilon t)}\to 0$ as $t\to \infty$ This is the case if and only if $$ \lim_{t\to \infty}\frac{M^{-1}(t)}{P^{-1}(t)} = 0 $$ {\bf 2-2} Let $\Omega$ be an open subset of $\mathbb{R}^n$. The Orlicz class $K_{M}(\Omega)$ [resp. The Orlicz space $L_M (\Omega)$] is defined as the set of (equivalence classes of) real-valued measurable functions $u$ on $\Omega$ such that, $$ \int_{\Omega}M(u(x))dx<+\infty \quad (\mbox{resp. } \int_{\Omega}M(\frac{u(x)}{\lambda})dx \ \mbox{for some } \lambda >0). $$ $L_M (\Omega)$ is a Banach space under the norm $$ \|u\|_M = \inf\{\lambda >0 : \int_{\Omega}M(\frac{u(x)}{\lambda})dx \leq 1\} $$ and $K_M(\Omega)$ is a convex subset of $L_M (\Omega)$. The closure in $L_M (\Omega)$ of the set of bounded measurable functions with compact support in $\overline {\Omega}$ is denoted by $E_M (\Omega)$. \noindent{\bf 2-3} We now turn to the Orlicz-Sobolev spaces, $W^1 L_M (\Omega)$ [resp. $W^1 E_M (\Omega)$] is the space of functions $u$ such that $u$ and its distributional derivatives up to order 1 lie in $L_M (\Omega)$ [resp. $E_M (\Omega)$]. It is a Banach space under the norm $$ \|u\|_{1.M} = \sum_{|\alpha|\leq 1}\|D^{\alpha}u\|_M $$ Thus, $W^1 L_M (\Omega)$ and $W^1 E_M (\Omega)$ can be identified with subspaces of the product of $N + 1$ copies of $L_M (\Omega)$. Denoting this product by $\Pi L_M$, we will use the weak topologies $\sigma (\Pi L_M, \Pi E_{\overline {M}})$ and $\sigma (\Pi L_M, \Pi L_{\overline {M}})$. The space $W_{0}^{1} E_M (\Omega)$ is defined as the (norm) closure of the Schwartz space ${\cal D}(\Omega)$ in $W^1 E_M (\Omega)$ and the space $W_{0}^{1} L_M (\Omega)$ as the $\sigma (\Pi L_M, \Pi E_{\overline {M}})$ closure of ${\cal D}(\Omega)$ in $W^1 L_M (\Omega)$. Now, we recall the following concept. \begin{Def} \rm A domain $\Omega$ has the segment property if for every $x\in \partial \Omega$ there exists an open set $G_x$ and a nonzero vector $y_x$ such that $x\in G_x$ and if $z\in \overline {\Omega}\cap G_x$, then $z + ty_x \in \Omega$ for all $0 0$ such that $$\int_{\Omega}M(\frac{D^{\alpha}u_n -D^{\alpha}u}{\lambda})\; dx\to \ 0 \ \ \mbox{as}\ \ n\to \ \infty \ \ \forall \ \ |\alpha|\leq 1.$$ By using Jensen's inequality, we have $$M(\frac{1}{\mathop{\rm meas}(\Omega)}\int_{\Omega}(\frac{D^{\alpha}u_n -D^{\alpha}u}{\lambda})\; dx)\leq \frac{1}{\mathop{\rm meas}(\Omega)}\int_{\Omega}M(\frac{D^{\alpha}u_n -D^{\alpha}u}{\lambda})\; dx$$ for $n$ large enough. Then, $$M(\frac{1}{\mathop{\rm meas}(\Omega)}\int_{\Omega}(\frac{D^{\alpha}u_n -D^{\alpha}u}{\lambda})\; dx)\to 0, \ \ \mbox{as}\ \ n\to \ \infty \ \ \forall \ \ |\alpha|\leq 1,$$ which gives, since $M^{-1}$ is right continuous in $\mathbb{R}^+$, $$\int_{\Omega}|D^{\alpha}u_n -D^{\alpha}u|\; dx \to 0 \quad \mbox{as } n\to \infty \; \forall \, |\alpha|\leq 1. $$ This completes the proof. \hfil$\square$\smallskip Let $M$ and $P$ be two $N$-functions such that $P<0, \gamma >0, \varepsilon >0$ and $\alpha\in[0, 1+\varepsilon]$ denote constants and suppose that $u\in L^1 (\Omega)$ satisfies the estimate $$\int_{A_k}(u-k)dx \leq \gamma k^{\alpha}|A_k|^{1+\varepsilon}, $$ for all $k\geq k_0$, where $A_k$ denotes the set of points $x\in\Omega$ for which $u(x)>k$. Then $ \sup_{\Omega}u$ is bounded by a finite constant depending on $\gamma ,\varepsilon ,\alpha ,k_0$ and $\|u\|_{L^1 (A_{k_0})}$. \end{lem} \noindent{\bf Proof of Theorem 3.2 } Let $k_0 = \sup_{\partial \Omega}\theta <\infty$ and let $u$ be a weak solution of (3.1). Let us remark that by the lemma 3.1, it suffices to show that $$ \int_{A_k}(u-k)dx \leq \mathop{\rm const} (n,|\Omega|,M,\|f\|_{L^{\infty} (\Omega)},\alpha ,\beta)|A_k|^{1+\frac{1}{n}}\quad \forall k\geq k_0. \eqno{(3.2)} $$ Observe that $$ \begin{aligned} \int_{A_k}f(u-k)dx \leq & |A_k|^{1/n}\Big(\int_{A_k}|u-k|^{\frac{n}{n-1}}dx\Big)^{\frac{n-1}{n}} \\ \leq & c(n)|A_k|^{1/n}\int_{A_k}|\nabla u|dx. \end{aligned} \eqno{(3.3)} $$ On the other hand, we have $$ \begin{aligned} {\int_{A_k}|\nabla u|dx }\leq & {\int_{A_k}\beta\frac{|\nabla u|}{\beta}dx \leq \int_{A_k}(\overline {M}(\beta) + M(\frac{|\nabla u|}{\beta}))dx}\\ \leq & {\overline {M}(\beta)|A_k|+\int_{A_k} M(\frac{|\nabla u|}{\beta})dx}. \end{aligned} \eqno{(3.4)} $$ Moreover by theorem 3.1, the function $\varphi = \max(u-k,0)$ lies in the space $ W_{0}^{1}L_M (\Omega)$. Hence $\varphi$ is admissible in (3.1) and we obtain, $$ \int_{A_k}M(\frac{|\nabla u|}{\beta})dx \leq \frac{1}{\alpha} \int_{A_k}f(u-k)dx. \eqno{(3.5)} $$ The right hand side of this inequality can be estimated with H\"older's inequality and the imbedding $W_{0}^{1.1}(\Omega)\hookrightarrow L^{1^{*}}(\Omega)$ as follows: $$\begin{aligned} \frac{1}{\alpha} \int_{A_k}f(u-k)dx \leq &\frac{1}{\alpha}\|f\|_{\infty}|A_k|^{1/n}(\int_{A_k} |u-k|^\frac{n}{n-1}dx)^{\frac{n-1}{n}}\\ \leq &\frac{2\beta}{\alpha}c(n)\|f\|_{\infty}|A_k|^{1/n} \int_{A_k}\frac{|\nabla u|}{2\beta}dx. \end{aligned} $$ Using Young's inequality we can write $$ \begin{aligned} {\frac{1}{\alpha} \int_{A_k}f(u-k)dx} \leq &{\overline {M}(\frac{2\beta}{\alpha}c(n)\|f\|_{\infty}|A_k|^{1/n})| A_k| + \int_{A_k}M(\frac{|\nabla u|}{2\beta})dx}\\ \leq &{\overline {M}(\frac{2\beta}{\alpha}c(n)\|f\|_{\infty} |A_k|^{1/n})|A_k| + \frac{1}{2}\int_{A_k}M(\frac{|\nabla u|}{\beta})dx.} \end{aligned} \eqno{(3.6)} $$ Then the conclusion follow immediately from (3.3)--(3.6). \begin{rem} \rm The method used in the proof of the above theorem gives also $ \inf_{\Omega}u > -\infty$ provided that $\theta$ is bounded from below. In particular, boundedness of $\theta$ implies $u\in L^{\infty}(\Omega)$ (compare with remark 1.1 \cite{fg2}). \end{rem} \paragraph{Example} Let $M(t) = e^{|t|} - |t| - 1$, we set $a(x, s, \xi )= (a_i (x, s, \xi ))_{1\leq i\leq n}$ such that $$ a_i (x, s, \xi ) = \begin{cases} \frac{e^{|\xi_i|}-|\xi_i|-1}{|\xi_i|}\mathop{\rm sign}\xi_i &\mbox{if }|\xi_i|\neq 0\\ 0 &\mbox{if }|\xi_i| = 0\,. \end{cases} $$ Then $M(t)$ and $a(x, s, \xi)$ satisfy the conditions (1.3) and (1.4). Note that the $N$-function $M(t)$ does not satisfy the $\Delta_2$-condition. \begin{rem} \rm Let $m(t)$ the right derivative of $M(t)$. Then $m(t)$ and $a(x, s, \xi)$ don't satisfy the condition $(H_2)$. Indeed, take $\xi = (0, \dots ,0, n, 0, \dots , 0), n\in \mathbb{N}$. Then we have $a(x, s, \xi)\xi = e^n -n-1$, and $|\xi|m(|\xi|) = n(e^n -1)$. But for all constant $C>0$ there exists $n$ large enough, such that $\frac{e^n -n-1}{n(e^n -1)}< C$. \end{rem} \begin{thebibliography}{99} \frenchspacing \bibitem{a} R. A. A{\sc dams}, {\em Sobolev Spaces, New York (1975).} \bibitem{ab} E. A{\sc zroul} and A. B{\sc enkirane}, {\em On a necessary condition of the calcules of variations in orlicz space,}{ Math. Slovaca, {\bf 51} (2001), No1, 93-105.} \bibitem{abt} E. A{\sc zroul}, A. B{\sc enkirane} and M. T{\sc ienari}, {\em On the regularity of solutions to the Poisson equation in Orlicz-spaces, }{Bull. Belg. Math. Soc. {\bf 7} (2000), 1-12.} \bibitem{e} A. E{\sc lkhalil}, {\em Autour de la premi\`ere courbe propre du $p-$Laplacien,} {Th\`ese de Doctorat, Facult\'e des Sciences Dhar-Mahraz Fes 6 Mai 1999.} \bibitem{fg1} M. F{\sc uchs} and L. G{\sc ongbao}, {\em Variational Inequalities for Energy Functionals with Nonstandard Growth Condition,} {Abstract Appl. Anal. {\bf 3} (1998), 1-2, 41-64.} \bibitem{fg2} M. F{\sc uchs} and L. G{\sc ongbao}, {\em $L^{\infty}$-bounds for elliptic equations on Orlicz-Sobolev spaces,} { Archiv der Mathematik, {\bf 72} (1999), 293-297.} \bibitem{fo} M. F{\sc uchs} and V. O{\sc smolovski,} {\em Variational integrals on Orlicz-Sobolev spaces, }{Z. Anal. Anwendungen, {\bf 17} (1998), No.2, 393-415.} \bibitem{fs1} M. F{\sc uchs} and G. S{\sc eregin}, {\em Variational methods for fluids for Prandtl-Eyring type and plastic materials with logarithmic hardening,} Preprint No. 476. SFB256, Universit\"at Bonn, Math. Methods Appl. Sci. in press. \bibitem{fs2} M. F{\sc uchs} and G. S{\sc eregin}, {\em A regurality theory for variational integrals with LlnL-growth,} {Calc. of Variations , {\bf 6} (1998), 171-187.} \bibitem{fs3} M. F{\sc uchs} and G. S{\sc eregin}, {\em Regurality for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening,} Preprint No. 421, SFB256, Universit\"at Bonn. \bibitem{gt} D. G{\sc ilbarg} and N. S. T{\sc rudinger}, {\em Elliptic partial differential equations of second order,} { Berlin-Heidelberg-New York (1983).} \bibitem{g1} J. P. G{\sc ossez,} {\em Nonlinear elliptic boundary-value problems for equations with rapidly (or slowly) increasing coefficients,}{Trans. Amer. Math. Soc, {\bf 190} (1974), 163-205.} \bibitem{g2} J. P. G{\sc ossez,} {\em Some approximation properties in Orlicz-Sobolev spaces,} {Studia Math, {\bf 74} (1982), 17-24.} \bibitem{l} J. L. L{\sc ions}, {\em Quelques m\'ethodes de r\'esolution des probl\`emes aux limites non lin\'eaires,} {Dunod, Paris, (1969).} \end{thebibliography} \noindent\textsc{Lahsen Aharouch} (e-amil: lahrouche@caramail.com)\\ \textsc{Elhoussine Azroul} (e-mail: elazroul@caramail.com)\\ \textsc{Abdelmoujib Benkirane} (e-mail: abenkirane@fsdmfes.ac.ma)\\[2pt] D\'epartement de Math\'ematiques et Informatique\\ Facult\'e des Sciences Dhar-Mahraz\\ B.P. 1796 Atlas F\`es, Maroc \end{document}