\documentclass[twoside]{article} \usepackage{amsfonts, amsmath} % used for R in Real numbers \pagestyle{myheadings} \markboth{On the spectrum of the p-biharmonic operator} { Abdelouahed El Khalil, Siham Kellati \& Abdelfattah Touzani} \begin{document} \setcounter{page}{161} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent 2002-Fez conference on Partial Differential Equations,\newline Electronic Journal of Differential Equations, Conference 09, 2002, pp 161--170. \newline http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % On the spectrum of the p-biharmonic operator % \thanks{ {\em Mathematics Subject Classifications:} 35P30, 34C23. \hfil\break\indent {\em Key words:} p-biharmonic operator, Duality mapping, Palais-Smale condition, \hfil\break\indent unbounded weight. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Published December 28, 2002.} } \date{} \author{Abdelouahed El Khalil, Siham Kellati \& Abdelfattah Touzani} \maketitle \begin{abstract} This work is devoted to the study of the spectrum for p-biharmonic operator with an indefinite weight in a bounded domain. \end{abstract} \numberwithin{equation}{section} \newtheorem{thm}{Theorem}[section] \newtheorem{lem}[thm]{Lemma} \newtheorem{prop}[thm]{Proposition} \newtheorem{rem}[thm]{Remark} \newtheorem{cor}[thm]{Corrolary} \section{Introduction} Let $\Omega$ be a bounded domain in $\mathbb{R}^{N}$, $N\geq 1$, not necessary regular; $1\frac{N}{2p}& \mbox{for }\frac{N}{p}\geq 2\\ =1 &\mbox{for }\frac{N}{p}<2. \end{cases} $$ We assume that $|\Omega^{+}_{\rho}|\not=0$, where $\Omega^{+}_{\rho}=\{x\in \Omega; \rho(x)>0\}$ and $\lambda\in \mathbb{R}$. We consider the eigenvalue problem $$\begin{gathered} \Delta_p^{2}u=\lambda\rho(x)|u|^{p-2}u \quad\mbox{in } \Omega\\ u\in W_{0}^{2,p}(\Omega). \end{gathered} \eqno{(1.1)} $$ Here $\Delta_p^{2}:=\Delta(|\Delta u|^{p-2}\Delta u)$, the operator of fourth order called the $p$-biharmonic operator. For $p=2$, the linear operator $\Delta_{2}^{2}=\Delta^{2}=\Delta.\Delta$ is the iterated Laplacian that multiplied with positive constant appears often in Navier-Stokes equations as being a viscosity coefficient. Its reciprocal operator denoted $(\Delta^{2})^{-1}$ is the celebrated Green's operator \cite{Lio}. It is important to indicate that here we don't suppose any boundary conditions on the high order partial derivatives $\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}$ on the boundary set $\partial\Omega$ of the domain $\Omega$. The particular case $\rho\equiv 1$ and $u=\Delta u=0$ on $\partial\Omega$ was considered recently by Dr\'abek and \^Otani \cite{Dra}. There the authors proved the existence, the simplicity, and the isolation of the first eigenvalue of (1.1) by using a transformation of a problem to a known Poisson's problem, and using the well-known advanced regularity of Agmon-Douglis-Niremberg \cite{Gi-Tr}. Note that this transformation processus is not applicable to our situation because the quantity $\Delta u$ does not necessary vanished on $\partial \Omega$ and the eventual regularity is not required in any bounded domain. The main objective of this work is to show that problem (1.1) has at least one non-decreasing sequence of positive eigenvalues $(\lambda_{k})_{k\geq 1}$, by using the Ljusternich-schnirelmann theory on $C^{1}$ manifolds, see e.g. \cite{Szu}. Our approach is based only on some properties of the considered operator. So that we give a direct characterization of $\lambda_{k}$ involving a minimax argument over sets of genus greater than $k$. We set $$\lambda_{1}=\inf\big\{\|\Delta v\|_p^{p}, v\in W_{0}^{2,p}(\Omega); \int_{\Omega}\rho(x)|v|^{p}dx=1\big\}, $$ where $\|.\|_p$ denotes the $L^{p}(\Omega)$-norm. It is not difficult to show that $\|\Delta u\|_p$ defines a norm in $W_{0}^{2,p}(\Omega)$ and $W_{0}^{2,p}(\Omega)$ equipped with this norm is a uniformly convex Banach space for $12$ and $r>\frac{N}{2p}$. Let $u,v \in W_{0}^{2,p}(\Omega)$. By H\"older's inequality, we have $$ \big|\int_{\Omega} \rho(x) |u(x)|^{p-2}u(x)v(x)dx\big|\leq \| \rho\|_{r}\|u\|_{s}^{p-1}\| v\|_{p_{2}} $$ where $\frac{1}{p_{2}}=\frac{1}{p}-\frac{2}{N}$ and $s$ is given by $$ \frac{p-1}{s}+\frac{1}{p_{2}}+\frac{1}{r}=1.\eqno{(3.2)} $$ Therefore, $$\frac{p-1}{s}=1-\frac{1}{r}-\frac{1}{p_{2}}> 1-\frac{2p}{N}-\frac{1}{p_{2}}=\frac{p-1}{p_{2}}. $$ Then it suffices to take $$\max(1,p-1)\frac{N}{2p}$. In this case $W_{0}^{2,p}(\Omega)\hookrightarrow L^{q}(\Omega)$, for any $q\in[p,+\infty[$. There is $q\geq p$ such that $\frac{1}{q}+\frac{1}{r}+\frac{p-1}{p}=\frac{1}{q}+\frac{1}{r}+\frac{1}{p'}=1$.\\ We obtain that $$\frac{1}{q}=\frac{1}{p}-\frac{1}{r}\leq \frac{1}{p}.\eqno{(3.4)}$$ By H\"older's inequality, we arrive at $$ \big|\int_{\Omega} \rho(x) |u(x)|^{p-2}u(x)v(x)dx\big| \leq \|\rho\|_{r}\|u\|_p^{p-1}\| v\|_{q}, $$ for any $u,v\in W_{0}^{2,p}(\Omega)$. Then $B'$ is also well defined.\\ Third case: $\frac{N}{p}<2$ and $r=1$. In this case $W_{0}^{2,p}(\Omega)\hookrightarrow C(\overline{\Omega})\cap L^{\infty}(\Omega)$. Then for any $u,v \in W_{0}^{2,p}(\Omega)$, we have $$ \big|\int_{\Omega} \rho(x) |u(x)|^{p-2}u(x)v(x)dx\big|<\infty, $$ with $\rho\in L^{1}(\Omega)$, and $B'$ is well defined. Step 2. $B'$ is completely continuous. Let $(u_{n}) \subset W_{0}^{2,p}(\Omega)$ be a sequence such that $u_{n}\to u$ weakly in $W_{0}^{2,p}(\Omega)$. We have to show that $B'(u_{n})\to B'(u)$ strongly in $W_{0}^{2,p}(\Omega)$, i.e.,\\ $$ \sup_{v\in W_{0}^{2,p}(\Omega)\,\, \|\Delta v\|_p\leq 1} \Big|\int_{\Omega}\rho[|u_{n}|^{p-2}u_{n}-|u|^{p-2}u]v\, dx\big|\to 0,\quad \mbox{as } n\to +\infty. $$ For this end, we distinguish three cases as in step 1 above. For $\frac{N}{p}> 2$, and $r>\frac{N}{2p}$. Let $s$ be as in (3.3). Then \begin{align*} &\sup_{v\in W_{0}^{2,p}(\Omega),\, \|\Delta v\|_p\leq 1} \Big|\int_{\Omega}\rho\big[|u_{n}|^{p-2}u_{n}-|u|^{p-2}u\big]v dx\Big|\\ &\leq \sup_{v\in W_{0}^{2,p}(\Omega),\, \|\Delta v\|_p\leq 1} \big[\|\rho\|_{r} \big\| |u_{n}|^{p-2}u_{n}-|u|^{p-2}u\big\|_{\frac{s}{p-1}} \|v\|_{p_{2}}\big]\\ &\leq c\|\rho\|_{r} \big\| |u_{n}|^{p-2}u_{n}-|u|^{p-2}u\big\|_{\frac{s}{p-1}}, \end{align*} where $c$ is the constant of Sobolev's embedding \cite{Ada}. On the other hand, the Nemytskii's operator $u\mapsto |u|^{p-2}u$ is continuous from $L^{s}(\Omega)$ into $L^{\frac{s}{p-1}}(\Omega)$, and $u_{n}\to u$ weakly in $W_{0}^{2,p}(\Omega)$. So, we deduce that $u_{n}\to u$ strongly in $L^{s}(\Omega)$ because $s0$ such that $$ \|v\|_{q}\leq c\|\Delta v\|_p,\quad \forall v\in W_{0}^{2,p}(\Omega). $$ Thus $$ \sup_{\stackrel{v\in W_{0}^{2,p}(\Omega)}{\|\Delta v\|_p\leq 1}} \big|\int_{\Omega}\rho[|u_{n}|^{p-2}u_{n}-|u|^{p-2}u]v\,dx\big| \leq c\|\rho\|_{r}\big\| |u_{n}|^{p-2}u_{n}-|u|^{p-2}u \big\|_p^{p-1}. $$ From the continuity of $u\mapsto|u|^{p-1}u$ from $L^{p}(\Omega)$ into $L^{p'}(\Omega)$, and from the compact embedding of $W_{0}^{2,p}(\Omega)$ in $L^{p}(\Omega)$, we have the desired result.\\ If $\frac{N}{p}<2$ and $r=1,$ $W_{0}^{2,p}(\Omega)\subset C(\overline{\Omega}),$ then we obtain $$ \sup_{\stackrel{v\in W_{0}^{2,p}(\Omega)}{\|\Delta v\|_p\leq 1}} \big|\int_{\Omega}\rho\big[|u_{n}|^{p-2}u_{n}-|u|^{p-2}u\big]v\,dx\big| \leq c\|\rho\|_{1}\sup_{\overline{\Omega}} \big| |u_{n}|^{p-2}u_{n}-|u|^{p-2}u\big|, $$ where $c$ is the constant given by embedding of $W_{0}^{2,p}(\Omega)$ in $C(\overline{\Omega})\cap L^{\infty}(\Omega)$. It is clear that $$ \sup_{\overline{\Omega}}\big| |u_{n}|^{p-2}u_{n}-|u|^{p-2}u\big|\to 0,\quad \mbox{as } n\to +\infty. $$ Hence $B'$ is completely continuous, also in this case.\\ (ii) $\{u_{n}\}$ is bounded in $W_{0}^{2,p}(\Omega)$. Hence without loss of generality, we can assume that $u_{n}$ converges weakly in $W_{0}^{2,p}(\Omega)$ for some function $u\in W_{0}^{2,p}(\Omega)$ and $\|\Delta u_{n}\|_p\to c$. For the rest we distinct two cases: \\ If $c=0$ then $u_{n}$ converges strongly to $0$ in $W_{0}^{2,p}(\Omega)$. If $c\not =0$, then we argue as follows: $$ \langle \Delta_p^{2}u_{n},u_{n}-u\rangle =\|\Delta u_{n}\|_p^{p}-\langle \Delta_p^{2}(u_{n}),u\rangle . $$ Applying $\epsilon_{n}$ of (3.1) to $u$, we deduce that $$ \Theta_{n}:=\langle \Delta_p^{2}(u_{n}),u\rangle -\|\Delta u\|_p^{p}\langle B'(u_{n}),u\rangle \to 0\quad \mbox{as } n\to +\infty.\eqno{(3.5)} $$ Thus $$ \langle\Delta_p^{2}u_{n},u_{n}-u\rangle =\|\Delta u_{n}\|_p^{p}-\Theta_{n}-\|\Delta u_{n}\|_p^{p} \langle B'(u_{n}),u\rangle . $$ That is, $$\langle\Delta_p^{2}u_{n},u_{n}-u\rangle =\|\Delta u_{n}\|_p^{p}(1-\langle B'(u_{n}),u\rangle )-\Theta_{n}.$$ Hence, $$ \limsup_{n\to +\infty} \langle \Delta_p^{2}u_{n},u_{n}-u \rangle \leq c^{p}{\limsup_{n\to +\infty}}(1-\langle B'(u_{n}),u\rangle ). $$ On the other hand, from (i) $ B'(u_{n})\to B'(u)$ in $W^{-2,p'}(\Omega)$ and $pB(u)=1$, because $pB(u_{n})=1$ for all $n\in\mathbb{N}^*$. So $pB(u)= \langle B'(u),u\rangle =1$. This yields that \begin{align*} 1-\langle B'(u_{n}),u \rangle =& \langle B'(u),u>-0$ such that $$ c\|\Delta u\|_p\leq\|v\|\leq \frac{1}{c}\|\Delta u\|_p. $$ This implies that the set $$ V=F_{k}\cap\{v\in W_{0}^{2,p}(\Omega):B(v)\leq \frac{1}{p} \} $$ is bounded. Thus $V$ is a symmetric bounded neighbourhood of $0 \in F_{k}$. By (f) in \cite[Prop. 2.3]{Szu}, $\gamma(F_{k}\cap\cal{M})= k. $ Because $F_{k}\cap\cal{M}$ is compact and $\Gamma_{k}\not=\emptyset$. Now, we claim that $\lambda_{k}\to +\infty$, as $k\to +\infty$. Indeed let be $(e_{n},e_{j}^*)_{n,j}$ a bi-orthogonal system such that $e_{n}\in W_{0}^{2,p}(\Omega)$ and $e_{j}^*\in W^{-2,p'}(\Omega)$, the $e_{n}$ are linearly dense in $W_{0}^{2,p}(\Omega)$; and the $e_{j}^*$ are total for $W^{-2,p'}(\Omega)$, see e.g. \cite{Szu}. For $k\in\mathbb{N}^*$, set $$ F_{k}=\mathop{\rm span}\{e_{1},\dots,e_{k}\},\quad F_{k}^{\bot}=\mathop{\rm span}\{e_{k+1,e_{k+2},\dots}\}. $$ By (g) of Proposition 2.3 in \cite{Szu}, we have for any A$\in \Gamma_{k},$ $A\cap F_{k-1}^{\bot}\not=\emptyset$. Thus $$ t_{k}:=\inf_{A\in\Gamma_{k}}\sup_{u\in A\cap F_{k-1}^{\bot}}pA(u)\to +\infty. $$ Indeed, if not, for $k$ is large, there exists $u_{k}\in F_{k-1}^{\bot}$ with $\|u_{k}\|_p=1$ such that $$t_{k}\leq pA(u_{k})\leq M, $$ for some $M>0$ independent of $k$. Thus $\|\Delta u_{k}\|_p\leq M$. This implies that $(u_{k})_{k}$ is bounded in $W_{0}^{2,p}(\Omega)$. For a subsequence of $\{u_{k}\}$ if necessary, we can assume that $\{u_{k}\}$ converge weakly in $W_{0}^{2,p}(\Omega)$ and strongly in $L^{p}(\Omega)$. By our choice of $F_{k-1}^{\bot}$ , we have $u_{k}\hookrightarrow 0$ weakly in $W_{0}^{2,p}(\Omega)$. Because $\langle e_{n}^*,e_{k}\rangle=0$, $\forall k\geq n$. This contradicts the fact that $\|u_{k}\|_p=1\, \forall k$. Since $\lambda_{k}\geq t_{k}$, the claim is proved. This completes the proof. \hfill$\square$ \begin{cor} \label{cor3.1} (i) $\lambda_{1}=\inf\{\|\Delta v\|_p^{p}, v\in W_{0}^{2,p}(\Omega); \int_{\Omega}\rho(x)|v|^{p}dx=1\}$.\\ (ii) $0<\lambda_{1}\leq\lambda_{2}\leq\dots\leq\lambda_{n}\to +\infty$. \end{cor} \paragraph{Proof} (i) For $u\in \cal{M}$, we put $K_{1}=\{u,-u\}$. It is clear that $\gamma (K_{1})=1 $, that $A$ is even and that $$ pA(u)=\max_{K_{1}}pA\geq\inf_{K\in \Gamma_{1}}\max_{K}pA. $$ Hence $$ \inf_{u\in\cal{M}}pA(u)\geq \inf_{K\in \Gamma_{1}}\max_{K}pA=\lambda_{1}. $$ On the other hand, $\forall K\in\Gamma_{1},\ \forall u\in K$, $$ \sup_{K}pA\geq pA(u)\geq \inf_{u\in\cal{M}}pA(u). $$ So $$ \inf_{K\in \Gamma_{1}}\max_{K}pA =\lambda_{1}\geq\inf_{u\in\cal{M}}pA(u). $$ Thus $$\lambda_{1}=\inf_{u\in\cal{M}}pA(u)=\inf\{\|\Delta v\|_p^{p}, v\in W_{0}^{2,p}(\Omega):\int_{\Omega}\rho(x)|v|^{p}dx=1\}. $$ (ii) For all $i\geq j$, $\Gamma_{i}\subset\Gamma_{j}$. From the definition of $\lambda_{i},i\in\mathbb{N}^*$, we have $\lambda_{i}\geq\lambda_{j}$. $\lambda_{n}\to +\infty$ is already proved in Theorem \ref{thm3.1}. Which completes the proof. \hfill$\square$ \begin{cor}\label{coro3.2} Assume that $|\Omega^{-}_{\rho}|\not=0$ with $\Omega^{-}_{\rho}=\{x\in\Omega: \rho(x)<0\}$. Then $\Delta_p^{2}$ has a decreasing sequence of the negative eigenvalues $(\lambda_{-n})(\rho)_{n\geq 0}$, such that $\lim_{n\to +\infty}\lambda_{-n}=-\infty$. \end{cor} \paragraph{Proof} First, remark that $\Omega^{-}_{\rho}=\Omega^{+}_{(-\rho)},$ so $|\Omega^{+}_{(-\rho)}|=|\Omega^{-}_{\rho}|\not=0$. From Theorem \ref{thm3.1}, $\Delta_p^{2}$ has an increasing sequence of the positive eigenvalues $\lambda_{n}(-\rho)$, such that $\lim_{n\to+\infty}\lambda_{n}(-\rho)=+\infty$. Note that $\lambda_{n}(-\rho)$ satisfies $$ \Delta_p^{2}u=\lambda_{n}(-\rho)(-\rho)|u|^{p-2}u =-\lambda_{n}(-\rho)\rho|u|^{p-2}u, $$ for $u\in W_{0}^{2,p}(\Omega)$. Put $ \lambda_{-n}(\rho):=-\lambda_{n}(-\rho)$ then $\lambda_{n}(-\rho)_{n\geq 0}$ is an increasing positive sequence so $(\lambda_{-n})(\rho)_{n\geq 0}$ is a negative decreasing sequence. On the other hand, $\lim_{n\to +\infty}\lambda_{n}(-\rho)=+\infty$. So $$\lim_{n\to +\infty}\lambda_{-n}(\rho)=-\infty.$$ \begin{thebibliography}{00} \frenchspacing \bibitem{Ada} R. A{\sc dams}, {\em Sobolev spaces},{ Academic Press, New-York (1975).} \bibitem{Dra} P . D{\sc r\'abek} and M. \^O{\sc tani}, {\em Global bifurcation result for the p-biharmonic operator}, Electronic Journal of Differential Equations, Vol. 2001(2001), No. 48, 1-19. \bibitem{Gi-Tr} D. G{\sc ilbarg} and N{\sc eil} S. T{\sc rudinger}, {\em Elliptic Partial Differential Equations of second order}, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo {(1983).} \bibitem{Lin} P. L{\sc indqvist}, {\em On the equation $\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)+\lambda|u|^{p-2}u=0$}, Proc. Amer. Math. Soc., 109 (1990), 157-164. \bibitem{Lio} J. L. L{\sc ions}, {\em Quelques m\'ethodes de r\'esolution des probl\`emes aux limites non lin\'eaires,} {Dunod, Paris} {(1969).} \bibitem{Szu}A. S{\sc zulkin}, {\em Ljusternick-Schnirelmann theory on $C^{1}$-manifolds}, Ann. Inst. Henri Poincar\'e, Anal. Non., 5 (1988), 119-139. \end{thebibliography} \noindent\textsc{Abdelouahed El Khalil} (e-mail: lkhlil@hotmail.com) \\ \textsc{Siham Kellati} (e-mail: siham360@caramail.com)\\ \textsc{Abdelfattah Touzani} (e-mail: atouzani@iam.net.ma)\\[2pt] Department of Mathematics and Informatic,\\ Faculty of Sciences Dhar-Mahraz, \\ P.O. Box 1796 Atlas-Fez, Morocco \end{document}