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Cross diffusion systems on n spatial dimensional

domains ∗

Dung Le

Abstract

We show that there exists a global attractor for a triangular cross
diffusion system with Lotka-Volterra reaction given on a two dimensional
domain.

1 Introduction

In population dynamics, Shigesada, Kawasaki, Teramoto [24] proposed to study
the cross diffusion system

∂u

∂t
= ∆[(d1 + α11u + α12v)u] + u(a1 − b1u− c1v),

∂v

∂t
= ∆[(d2 + α21u + α22v)v] + v(a2 − b2u− c2v),

∂u

∂n
=

∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.1)

Here, Ω is a bounded domain in Rn and the initial data u0, v0 are nonnegative
functions.

When αij = 0, the above system is the well known Lotka-Volterra competition-
diffusion system which has been studied intensively. For nonzero αij , (1.1) is a
strongly coupled parabolic system which has attracted attention in recent years
and reopened many fundamental questions. In a series of papers [2, 3, 4], Amann
considered a general class of strongly coupled parabolic systems and established
local existence and uniqueness results. Roughly speaking, he showed that, for
u0, v0 in W 1,p with p > n, there exist ε > 0 and a unique solution u, v defined
in (0, ε).

Yagi [26, 27] investigated global existence problem for (1.1) which is given
on a two dimensional domain. Under certain conditions on αij ’s, he proved that
solutions to (1.1) cease to exist in finite time if and only if their Lp norms blow
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up. Recently, Lou, Ni and Wu in [21] studied the case when α21 = 0 and n = 2
and established global existence results for the system

∂u

∂t
= ∆[(d1 + α11u + α12v)u] + u(a1 − b1u− c1v),

∂v

∂t
= ∆[(d2 + α22v)v] + v(a2 − b2u− c2v),

∂u

∂n
=

∂v

∂n
= 0, x ∈ ∂Ω, t > 0.

(1.2)

To the best of our knowledge, there has been no work on the dynamics or
long time behavior of solutions to the above systems. In [22], Redlinger proved
the existence of global attractors for certain triangular systems but his result
does not apply to ours. This is the purpose of this paper to discuss not only
global existence but also long time dynamics of solutions to a class of cross
diffusion systems which includes (1.2).

On a bounded domain Ω ⊂ Rn where n ≥ 1, let us consider the parabolic
system

∂u

∂t
= ∇(P (u, v)∇u + R(u, v)∇v) + g(u, v), x ∈ Ω, t > 0,

∂v

∂t
= ∇(Q(v)∇v) + f(u, v), x ∈ Ω, t > 0,

(1.3)

with Neumann or Robin type boundary conditions

Q(v)
∂v

∂n
+ r0(x)v(x) = 0,

P (u, v)
∂u

∂n
+ R(u, v)

∂v

∂n
+ r(x)u(x) = 0,

(1.4)

and initial conditions

v(x, 0) = v0(x), u(x, 0) = u0(x), x ∈ Ω.

The functions v0, u0 are nonnegative functions in W 1,p(Ω) for some p > n (see
[2]). In (1.3), P and Q represent the self-diffusion pressures, and R is the cross-
diffusion pressure acting on the population u by v. It is easy to see that (1.2)
is a special case of (1.3).

System of the form (1.3) is strongly coupled and of triangular form because
the cross diffusion terms occur only in one equation and therefore the diffusion
matrix is triangular. Such system was investigated by Amann in [4] where
he established necessary conditions for the global existence of solutions. In
particular, he proved that if one can control the L∞ norms of every components
of the solution then the solution exists globally in time.

In Section 2, under certain structural conditions and for any dimension
n ≥ 2, we will show that global existence as well as the existence of the global
attractor for (1.3) can be proven if one can control the L∞ norm of one com-
ponent and the Lp norm (for some finite p ≥ n) of the other component of the
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solutions. Moreover, our main point here is to show that if the Lp norms of the
solutions can be estimated appropriately then their Hölder norms are ultimately
uniformly bounded (see Definition 2.1 and Theorem 2.2). This fact is important
in establishing the existence of global attractors. The result of this type is well
known for reaction diffusion systems (see [8, 14]). However, in our case, the
presence of the cross diffusion term causes enormous difficulties and the proof
of this assertion becomes much more complicated. To this end, we first esti-
mate the term ∇v and then u and reduce the problem to an integro-differential
inequality. This inequality is a special case of a functional inequality whose
solution dynamics gives our desired estimate. We believe that this functional
inequality is interesting in itself and can be useful to other problems.

In Section 3, we will consider (1.2)(with general P,Q,R) on 2 dimensional
domains and show that Theorem 2.2 can apply here. We thus sharpen Yagi’s
and Lou, Ni and Wu’s results by showing that the system defines a dynamical
system which possesses an absorbing set. Therefore, the global attractor with
finite Hausdörf dimension for (1.3) exists and attracts all solutions (see Theorem
3.1).

We mention here that steady state solutions of (1.3) were studied in [6, 13,
20, 23]. When n = 1, the dynamics of the solutions of (1.3) was investigated
in [7, 28]. If (1.3) satisfies more restrictive conditions on the structure of the
system as well as on the initial data, global existence can be obtained via certain
invariant principles as in [18]. Recently, duality methods were used in [5] to
obtain global existence results for certain coupled systems whose diffusion terms
are linear. This method is not applicable to (1.3)and does not seem to provide
uniformly boundedness estimates of Theorem 2.2. In a forthcoming paper, we
will establish that the Lp assumption of Theorem 2.2 can be relaxed to certain
L1 estimates if additional assumptions on the structure of (1.3) are satisfied.

2 Uniformly Boundedness

Throughout this work, in order to simplify the statements of our theorems and
proof, we will make use of the following terminology.

Definition 2.1 Consider the initial-boundary problem (1.3),(1.4). Assume a pri-
ori that there exists a solution (u, v) defined on a subinterval I of R+. Let P
be the set of functions on I such that there exists a positive constant C0, which
may generally depend on the parameters of the system and the W 1,p norm of
the initial value (u0, v0), such that

ω(t) ≤ C0, ∀t ∈ I. (2.1)

However, if I = (0,∞) then there exists a positive constant C∞ that depends
only on the parameters of the system but does not depend on the initial value
of (u0, v0) such that

lim sup
t→∞

ω(t) ≤ C∞. (2.2)

If ω ∈ P and I = (0,∞), we will say that ω is ultimately uniformly bounded.
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For example, if ‖u(·, t)‖∞, ‖v(·, t)‖∞, as functions in t, belong to the class
P then (2.1) says that the supremum norms of the solutions to (1.3) do not
blow up in any finite time interval and are bounded by some constant that may
depend on the initial conditions. This implies that the solutions exist globally
(see [2]). Moreover, for t sufficiently large, (2.2) says that the norms of the
solutions can be majorized by a universal constant independent of the initial
data. This property implies that there is an absorbing ball for the solutions and
therefore shows the existence of the global attractor if certain compactness is
proven.

We will consider the following conditions on the parameters of the system.

(H.1) The functions P,Q,R are differentiable in their variables. Moreover, there
exist positive constants C, d and a continuous function Φ such that

Q(v) ≥ d > 0, (2.3)
P (u, v) ≥ d > 0, (2.4)
|R(u, v)| ≤ Φ(v)u. (2.5)

Moreover, their partial derivatives with respect to u, v can be majorized
by some powers of u, v.

We will be interested only in nonnegative solutions, which are relevant in many
applications. Therefore, we will assume that the solution u, v stay nonnegative
if the initial data u0, v0 are nonnegative functions. Conditions on f, g guarantee
such positive invariance can be found in [18]. Moreover, we will impose the
following assumption on the reaction terms.

(H.2) There exists a nonnegative continuous function C(v) such that

|f(u, v)| ≤ C(v)(1 + u), g(u, v)up ≤ C(v)(1 + up+1), (2.6)

for all u, v ≥ 0 and p > 0. In addition, the functions r0, r are nonnegative
Hölder continuous functions on ∂Ω.

Our main result is the following.

Theorem 2.2 Assume (H.1) and (H.2). Let (u, v) be a nonnegative solution
to (1.3) with its maximal existence interval I. If ‖v(·, t)‖∞ and ‖u(·, t)‖n are in
P then there exists ν > 1 such that

‖v(·, t)‖Cν(Ω), ‖u(·, t)‖Cν(Ω) ∈ P. (2.7)

Remark 2.3 The assumption ‖v(·, t)‖∞ ∈ P can be weakened by assuming
only that ‖v(·, t)‖r ∈ P for some r sufficiently large such that ‖f(u, v)(·, t)‖q ∈ P
for some q > n/2. This is due to the results of [19, 12] which assert that the
weaker assumption implies the stronger one. We also remark that the assump-
tion on g in (2.6) could be relaxed to g(u, v)up ≤ C(v)(1 + up+1+λ) for some
appropriate λ > 0. A simple use of Sobolev imbedding inequality in the proof
of Lemma 2.6 will cover this case.
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To simplify the presentation, instead of (1.4), we will consider the homoge-
neous Neumann boundary condition

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω, (2.8)

Our results continue to hold for (1.3) with the boundary condition (1.4) as we
will briefly indicate in Remark 2.11.

In the proof we will use ω(t), ω1(t), . . . to denote various continuous functions
in the class P. The proof of Theorem 2.2 will be based on several lemmas. We
first state some standard facts from the theory of parabolic equations.

For any t > τ ≥ 0, we denote Qt = Ω × [0, t] and Qτ,t = Ω × [τ, t]. For
r ∈ (1,∞) and Q as one of the cylinders Qt, Qτ,t, let W 2,1

r (Q) be the Banach
space of functions u ∈ Lr(Q) having generalized derivatives ut, ∂xu, ∂xxu with
finite Lr(Q) norms (see [19, page 5]). For s ≥ 0 and r ∈ (1,∞), we also make use
of the fractional order Sobolev spaces W s

r (Ω) (see, e.g., [1, 19] for the definition).
Let us consider the parabolic equation

∂v

∂t
= A(t)v + f0(x, t), x ∈ Ω, t > 0,

∂v

∂n
(x, t) = 0 x ∈ ∂Ω, t > 0,

v(x, 0) = v0(x) x ∈ Ω

(2.9)

where A(t) is a uniformly regular elliptic operator of divergence form, with
domain of definition W 2

r (Ω). If the coefficients of the operator A(t) are uniformly
Hölder continuous in a cylinder Qτ,t and (λI + A(s))−1 exists for all λ ≥ 0 and
s ∈ [τ, t] then it is well known that (see, e.g., [15, Sections II.16-17]) there exists
an evolution operator U(t, s) for (2.9) such that the abstract integral version of
(2.9) in Lr is

v(t) = U(t, τ)v(τ) +
∫ t

τ

U(t, s)F (s) ds, (2.10)

where F (s)(x) = f0(x, t). Moreover, for each t > 0, r > 1 and any β ≥ 0, the
fractional power Aβ(t), with its domain of definition D(Aβ

r (t)) in Lr(Ω), of A(t)
is well defined ([15]). We recall the following imbeddings (see [17]).

D(Aβ
r (t)) ⊂ Cµ(Ω), for 2β > µ + n/r (2.11)

and
D(Aβ

r (t)) ⊂ W 1,p(Ω), if 2β ≥ 1− n/p + n/r. (2.12)

Next, we collect some well known facts about (2.9).

Lemma 2.4 Let r ∈ (1,∞). For any solution v of (2.9) we have

i) For t > τ ≥ 0, assume that the coefficients of A(t) are bounded and
continuous and f ∈ Lr(Qτ,t) for some r > 3. We have

‖v‖W 2,1
r (Qτ,t)

≤ C(t− τ)
(
‖f0‖Lr(Qτ,t) + ‖v(·, τ)‖

W
2−2/r
r (Ω)

)
(2.13)
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where the constant C(t−τ) remain bounded if the length t−τ of the cylinder
Qτ,t is bounded and the coefficients of A(t) are uniformly bounded in Qτ,t.

ii) Let r > 1 and f(·, t) ∈ Lr(Ω). Assume that the coefficients of the operator
A(t) are Hölder continuous. Moreover, there exists δ0 > 0 such that (λI +
A(t))−1 exists for all λ ≥ −δ0 and all t > 0. For some fixed t0 > 0 and
any β ∈ [0, 1], we have

‖Aβ(t0)v(t)‖r ≤ Cβt−βe−δt‖v0‖r + Cβ

∫ t

0

(t− s)−βe−δ(t−s)‖f0(·, s)‖rds

(2.14)
for some constants δ, Cβ > 0.

Proof The proof of i) can be found in [19, Theorem 9.1, chapter IV] where
Dirichlet boundary condition was considered but the result holds as well for
Neumann boundary condition (see [19, page 351]). For ii), we apply Aγ(t) to
both sides of (2.10), take the Lr norm and then make use the inequality [15,
(16.38)]. �

Going back to the solutions of Theorem 2.2, we first have the following
estimates for the component v and its spatial derivative.

Lemma 2.5 The followings hold for v

i) For some α > 0, v ∈ Cα,α/2(Ω× (0,∞)) with uniformly bounded norm.

ii) For some ω0, ω ∈ P and δ > 0, r > 1, β ∈ (0, 1) such that 2β > µ + n/r,
we have

‖v(·, t)‖Cµ(Ω) ≤ ω0(t) +
∫ t

0

(t− s)−βe−δ(t−s)ω(s)‖u(·, s)‖rds. (2.15)

Proof Since we assume that ‖v(·, t)‖∞ ∈ P and (2.6) holds, we see that
f(u, v) ∈ Lp(Ω) for p = n > n/2. Moreover, ‖f(u(·, t), v(·, t)‖p ∈ P. The
regularity theory for quasilinear parabolic equations (see [19, 9]) asserts i).

Setting A(t) = ∇ · (Q(v)∇v) − kv and f̂0(x, t) = f(u, v) + kv for k > 0
sufficiently large, we see that v satisfies (2.9). Since v satisfies a parabolic
equation with Hölder continuous coefficients (by i) above), we find that the
conditions in ii) of Lemma 2.4 are verified. Since ‖v(·, t)‖∞ ∈ P, we have
‖f̂0‖r ≤ ω(t)(1 + ‖u(·, s)‖r), for some function ω(t) ∈ P. Hence, (2.14) of
Lemma 2.4 gives

‖Aβ
0v(t)‖r ≤ Cβt−βe−δt‖v0‖r + Cβ

∫ t

0

(t− s)−βe−δ(t−s)ω(s)(1 + ‖u(·, s)‖r)ds

for any fixed t0 > 0. From the imbedding (2.11), (2.15) now follows. �
Next, we will show that the Lp norm of u is in the class P for any p ≥ 1. In

fact, this is the crucial step in proving Theorem 2.2.
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Lemma 2.6 For any finite p ≥ 1, there exists a function ωp ∈ P such that

‖u(·, t)‖p ≤ ωp(t). (2.16)

The idea of the proof is to derive certain differential inequalities for the Lp

norm of u. To this end, we have to control the norm of ∇v that occurs in
the equation of u by using the equation for v . This then leads us to certain
functional differential inequalities which we will study next.

For a function y : R+ → R, let us consider the inequality

y′(t) ≤ F(t, y), y(0) = y0, t ∈ (0,∞), (2.17)

where F is a functional from R+ × C(R+, R) into R. The following lemma is
standard and gives a global estimate for y but the estimate is still dependent
on the initial data. Consider the assumptions:

F.1 Suppose that there is a function F (y, Y ) : R2 → R such that F(t, y) ≤
F (y(t), Y ) if y(s) ≤ Y for all s ∈ [0, t].

F.2 There exists a real M such that F (Y, Y ) < 0 if Y ≥ M .

Lemma 2.7 Assume (2.17), F.1, and F.2 Then there exists finite M0 such that
y(t) ≤ M0 for all t ≥ 0.

The proof of this lemma is elementary, and therefore will be omitted.

Remark 2.8 In (F.1), the inequality F(t, y) ≤ F (y(t), Y ) is not pointwise. It
requires that y(s) ≤ Y on the interval s ∈ [0, t] not just that y(t) ≤ Y . Such
situation usually happens when f(t, y) contains integrals of y(t) over [0, t].

The above constant M0 still depends on the initial data y0. Moreover, the
function F may depend on y0 too. Next, we consider conditions which guarantee
uniform estimates for y(t).

Consider the following assumptions:

(G.1) There exists a continuous function G(y, Y ) : R2 → R such that for τ
sufficiently large, if t > τ and y(s) ≤ Y for every s ∈ [τ, t] then there
exists τ ′ ≥ τ such that

F(t, y) ≤ G(y(t), Y ) if t ≥ τ ′ ≥ τ . (2.18)

(G.2) The set {z : G(z, z) = 0} is not empty and z∗ = sup{z : G(z, z) = 0} < ∞.
Moreover, G(M,M) < 0 for all M > z∗.

(G.3) For y, Y ≥ z∗, G(y, Y ) is increasing in Y and decreasing in y.

Proposition 2.9 Assume (2.17), (G.1), (G.2), and (G.3). If lim supt→∞ y(t) <
∞ then

lim sup
t→∞

y(t) ≤ z∗. (2.19)
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Proof If M0 = lim supt→∞ y(t) ≤ z∗ then there is nothing to prove. So, let
us assume that M0 > z∗.

First, let M > z∗. Since G(z∗, z∗) = 0 we have G(z∗,M) > 0 (because
G(z∗, ·) is increasing, by (G.3)). This and the fact that G(M,M) < 0 implies
the existence of a number z ∈ (z∗,M) such that G(z,M) = 0. Let z(M) be the
largest of such z in (z∗,M). By (G.3), we have

G(z(M),M) = 0 and G(y, M) < 0, ∀y ∈ (z(M),M). (2.20)

Now, for t large, says t ≥ T , we have that y(t) ≤ M for some M > z∗. By
(G.1), we can find T0 ≥ T such that

y′(t) ≤ G(y(t),M), t ≥ T0, y(T0) ≤ M.

Comparing y(t) with the solution of Y ′(t) = G(Y (t),M), t > T0 and Y (T0) =
M , we conclude that y(t) ≤ Y (t) for all t ≥ T0. ¿From (2.20), Y ′ < 0. We
see that Y (t) → z(M), the steady state, as t → ∞. Thus, for any given
ε > 0, there exist T1 > T0 and ε1 ∈ (0, ε) such that z(M) + ε1 < M and
y(t) ≤ Y (t) ≤ z(M) + ε1 for all t > T1.

Since z(M) > z∗, the above argument can be repeated with z(M) + ε1 in
place of M to show that there exist sequences of positive numbers {Tj}, {εj}
and {kj} such that k0 = M , limj→∞ εj = 0, limj→∞ Tj = ∞ and

kj+1 = z(kj) + εj < kj , y(t) ≤ kj , ∀t ≥ Tj .

Since kj is decreasing and bounded from below by z∗, kj converges to some
z ≥ z∗ satisfying G(z, z) = 0 (because G(kj+1 − εj , kj) = 0 for all j and
εj → 0). Since z∗ is the largest of such solutions, we must have z = z∗. Thus,
lim supt→∞ y(t) ≤ z∗. �

Remark 2.10 Condition (G.3) is only used to guarantee the existence of z(M)
that has the property (2.20). One can see that the proof works as well for
functions satisfying (2.20) for any given M > z∗.

We are now ready to give the proof of Lemma 2.6.

Proof The proof is by induction on p. We suppose that (2.16) holds for some
p ≥ 1. Let us denote U = up. We multiply the equation for u by u2p−1 and
integrate over Ω. Using integration by parts and the boundary condition of u,
we see that

d

dt

∫
Ω

U2dx +
∫

Ω

P (u, v)|∇U |2 dx

≤ Cp

∫
Ω

(−R(u, v)∇(u2p−1)∇v + g(u, v)u2p−1) dx.

Using the conditions (2.4), (2.5) and (2.6), we derive

d

dt

∫
Ω

U2 dx + d

∫
Ω

|∇U |2 dx ≤ Cp

∫
Ω

(|U∇U |Φ(v)|∇v|+ U2) dx. (2.21)
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Set y(t) =
∫
Ω

U2(x, t) dx. By [8, Lemma 2.4], for any ε > 0, we have that∫
Ω

U2dx ≤ ε
{ ∫

Ω

|∇U |2dx + ‖U‖21
}

+ Cε−n/2‖U‖21 (2.22)

for some positive constants C. We use the above inequality with ε = d/(2Cp)
in the integrals of U2 on the right hand side of (2.21). Recalling the induction
assumption ‖U(·, t)‖1 ∈ P, we obtain

y′(t) +
d

2

∫
Ω

|∇U |2dx ≤ Cp

∫
Ω

|U∇U |Φ(v)|∇v|dx + ω0(t), (2.23)

for some ω0 ∈ P. We next estimate the integral of |U∇U |Φ(v)|∇v|. By our
assumption on L∞ norm of v, Φ(v) ≤ ω1(t) for some ω1 ∈ P. Using the Young
inequality, we have

Cp

∫
Ω

|U∇U |Φ(v)|∇v| dx ≤ d

8

∫
Ω

|∇U |2dx + C(d)ω1(t)
∫

Ω

U2|∇v|2dx

≤ d

8

∫
Ω

|∇U |2dx + C(d)ω1(t)‖∇v‖2∞
∫

Ω

U2dx.

(2.24)
We now use (2.22) with ε = d/(8C(d)ω1(t)‖∇v‖2∞) to get

C(d)ω1(t)‖∇v‖2∞
∫

Ω

U2dx

≤ d

8

∫
Ω

(|∇U |2 + U2) dx + C(d)ω2(t)‖∇v‖n
∞‖U‖21

≤ d

8

∫
Ω

|∇U |2dx + C(d)ω3(t)‖∇v‖n
∞.

Since p ≥ n, we can choose β ∈ (0, 1) and r ∈ (p, 2p) such that 2β > 1 + n/r.
Using (2.15), we get

‖∇v(·, t)‖∞ ≤ ω4(t) + C

∫ t

0

(t− s)−βe−δ(t−s)ω4(s)‖u(·, s)‖rds (2.25)

for some ω4 ∈ P. By Hölder inequality,

‖u‖r = ‖U‖1/p
r/p ≤ ‖U‖1/p−θ

1 ‖U‖θ
2, θ =

1/p− 1/r

1− 1/2
.

Observe that θ can be arbitrarily small if r is close to p. ¿From now on, we will
choose r > p such that nθ < 1. Using the above in (2.25) we obtain

‖∇v(·, t)‖∞ ≤ ω4(t) +
∫ t

0

(t− s)−βe−δ(t−s)ω4(s)yθ(s)ds.

Applying this and (2.24) in (2.23), we see that

y′(t) +
d

4

∫
Ω

|∇U |2dx ≤ ω6(t) + ω6(t)Kn(t), (2.26)
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where K(t) =
∫ t

0
(t − s)−βe−δ(t−s)ω4(s)yθ(s)ds and ω6 ∈ P. By (2.22) and

the induction assumption,
∫
Ω

U2dx ≤ d
4

∫
Ω
|∇U |2dx + ω7(t) for some function

ω7 ∈ P. We thus deduce the following integro-differential inequality

y′(t) ≤ −y(t) + ω8(t) + ω8(t)Kn(t). (2.27)

We will show that Lemma 2.7 and Proposition 2.9 can be used here to
assert that y is globally bounded and, more importantly, ultimately uniformly
bounded. This implies that ‖u‖2p ∈ P and completes the proof by induction.
We define the functional

F(t, y) = −y(t) + ω8(t) + ω8(t)Kn(t). (2.28)

Since ω8 ∈ P, we can find positive constants Cω, which may still depend on the
initial data, such that ω8(t) ≤ Cω for all t > 0. Let

C1 := sup
t>0

∫ t

0

(t− s)−βe−δ(t−s)ds ≤
∫ ∞

0

s−βe−δsds < ∞,

because β ∈ (0, 1) and δ > 0. We then set

F (y, Y ) = −y + Cω + Cω(C1Y
θ)n.

It is easy to check that F , F satisfy the conditions (F.1), (F.2) if nθ < 1. Hence,
Lemma 2.7 applies and gives

y(t) ≤ C0(v0, u0), ∀t > 0. (2.29)

For some constant C0(v0, u0) which may still depend on the initial data since
F does. We have shown that y(t) is globally bounded.

We now seek for uniform estimates. By Definition 2.1, we can find τ1 > 0
such that ω(s) ≤ C̄∞ = C∞ + 1 if s > τ1. We emphasize the fact that C̄∞ is
independent of the initial data. Let t > τ ≥ τ1 and assume that y(s) ≤ Y for
all s ∈ [τ, t]. Let us write

K(t) =
∫ τ

0

(t−s)−βe−δ(t−s)ω4(s)yθ(s)ds+
∫ t

τ

(t−s)−βe−δ(t−s)ω4(s)yθ(s)ds = J1+J2.

By (2.29), there exists some constant C(v0, u0) such that ω4(s)yθ(s) ≤ C(v0, u0)
for every s. Hence, we can find τ ′ > τ such that J1 ≤ 1 if t > τ ′. Hence,

K(t) ≤ 1 + C̄∞C∗Y
θ, where C∗ = sup

t>τ,τ>0

∫ t

τ

(t− s)−βe−δ(t−s)ds < ∞.

Therefore, for t > τ ′ we have f(t, y) ≤ G(y(t), Y ) with

G(y(t), Y ) = −y(t) + C̄∞ + C̄∞(1 + C̄∞C∗Y
θ)n. (2.30)

We see that G is independent of the initial data and satisfies (G.1)-(G.3) if
nθ < 1. Finally, Proposition 2.9 applies here to give (2.16). �

Having shown that (2.16) holds for any p large we now go further in proving
that the Cν norm of u, for some ν > 1, is ultimately uniformly bounded.
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Proof of Theorem 2.2: We first apply i) of Lemma 2.4 to the equation for
v in (1.3). Since ‖u(·, t)‖p ∈ P for any p large, we see that f(u, v) ∈ Lq(Qτ,t)
for any q > 1. In fact, with τ = t− 1, ‖f(u, v)‖Lq(Qτ,t), as a function in t, is in
the class P. Hence,

‖v‖W 2,1
q (Qτ,t)

≤ C
(
‖f(u, v)‖Lq(Qτ,t) + ‖v(·, τ)‖

W
2−2/q
q (Ω)

)
. (2.31)

Choosing β ∈ (0, 1) (close to 1) and r sufficiently large such that 2β > 2 −
1/q + n/r, Lemma 2.5 states that the norm of v(·, t) in C2−1/q(Ω), and there-
fore W

2−2/q
q (Ω), is in the class P for any q > 1. We then conclude that

‖v‖W 2,1
q (Qτ,t)

∈ P for any q > 1. So,∫ t

t−1

∫
Ω

(
|∂v

∂t
(x, s)|q + |∆v(x, s)|q

)
dx ds ≤ ω(t), ∀t ∈ I (2.32)

for some ω ∈ P. We now write the equation for u as follows

∂u

∂t
= div(A(x, t)∇u) + B(x, t)∇u + F̂ (x, t),

where A(x, t) = P (u, v), B = Ru∇v and F̂ (x, t) = g(u, v)R(u, v)∆v + Rv|∇v|2.
Using (2.32), we easily see that b(x, t) and F̂ (x, t) belong to Lq,q for any q large.
Standard regularity theories for quasilinear parabolic equations (see [9]) can be
applied here to conclude that u(x, t) is in class Cα,α/2 for some α > 0.

Set U = P̂ (u, v) where P̂ (u, v) =
∫ u

0
P (s, v)ds. Because ∇u = (∇U −

P̂v∇v)/P (u, v), the ellipticity condition (2.4) and the Hölder regularity of u, v,∇v
show that Hölder continuity of ∇U implies that of ∇u. Therefore, we will study
the regularity of U .

It is easy to see that U satisfies the equation

Ut = a(x, t)∆U + b(x, t)∇U − kU + f̂(x, t),

where a(x, t) = P (u, v), b(x, t) = (Ru − P̂u,v)∇v, k is a positive constant and

f̂(x, t) =P (R− P̂v)∆v + |∇v|2(−P̂vRu + P̂vP̂u,v + PRv − PP̂v,v)

+ Pg(u, v) + P̂vvt + kU.

From the regularity of u, v and ∇v we see that a(x, t) and b(x, t) are Hölder con-
tinuous with ultimately uniformly bounded norms. Hence, the above equation
is regular with Hölder coefficients whose Hölder norms, as functions of t, are in
the class P. Let Â(t) be the operator corresponding to the above equation. By
choosing k sufficiently large, we see that Â(t) is a regular elliptic operator with
Hölder continuous coefficient and satisfies the conditions of ii) of Lemma 2.4.
Moreover, U satisfies the Neumann boundary condition as u, v do. Therefore,
for any fixed t0 > 0 and τ = t− 1 > 0

‖Âβ(t0)u(t)‖r ≤ C‖u(τ)‖r + Cβ

∫ t

τ

(t− s)−βe−δ(t−s)‖f̂(·, s)‖rds (2.33)
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for some fixed constants C, δ, Cβ > 0. By Hölder inequality we can estimate the
second term as follows:∫ t

τ

(t− s)−βe−δ(t−s)‖f̂(·, s)‖rds ≤
(∫ t

τ

(t− s)−qβe−qδ(t−s)ds
)1/q

‖f̂‖Lr(Qτ,t),

(2.34)
where 1/q + 1/r = 1. From the definition of f̂ and the facts that ‖v(·, t)‖∞,
‖∇v(·, t)‖∞ are functions in the class P, ‖u(·, t)‖p ∈ P for any p, and (2.32)
holds for any q, we see that f̂ ∈ Lr(Qτ,t) and ‖f̂‖Lr(Qτ,t) ∈ P for any r large.
Therefore, given any β ∈ (0, 1), if we choose r large enough such that q =
r/(r − 1) sufficiently close to 1 then it is easy to see that the integral on the
right hand side of (2.34) is finite. Moreover, the quantity on the right hand side
is in the class P. Using this in (2.33), we have shown that, for Y = D(Âβ

r (t0)),
‖U(t)‖Y ∈ P for any β ∈ (0, 1) and r > 1. Using the imbedding (2.11) with
ν = 2β − n/r > 0 and β, r chosen such that ν > 1, we obtain estimate for the
Hölder norm of ∇U and prove (2.7). �

Remark 2.11 We briefly indicate here that Theorem 2.2 continues to hold if
the boundary conditions are now of the form (1.4). Indeed, Lemma 2.4 and
Lemma 2.5 are still in force if one makes a change of variables to reduce the
homogeneous Robin condition for v into a homogeneous Neumann one. The
proof of our main technical lemma, Lemma 2.6, continues to hold if one drops
the nonpositive boundary integrals result in the integrations by parts. Finally,
the proof of Theorem 2.2 remains as ii) of Lemma 2.4 continues to hold for
equations with Robin boundary condition and sufficiently regular parameters.
Such regularity of parameters is granted as we have shown that v(·, t) ∈ C1,γ(Ω)
for any γ ∈ (0, 1).

3 The 2-dimensional case

In this section we will show that the assumption on Ln boundedness of Theorem
2.2 is verified for (1.3) if the dimension n = 2 and the reaction terms are of
Lotka-Volterra type

f(u, v) = v(c1 − c11v − c12u), g(u, v) = u(c2 − c21v − c22u), (3.1)

where cij are given constants. Furthermore, since it will not complicate much
the presentation, we shall consider here the nonlinear boundary condition (1.4).

For any given p > 2, let

X =
{
(u, v) ∈ W 1,p(Ω)×W 1,p(Ω) : u(x), v(x) ≥ 0, ∀x ∈ Ω

}
.

For given nonnegative initial data u0, v0 ∈ X, it is standard to show that the
solution stays nonnegative (see [18]). We consider the dynamical system asso-
ciated with (1.3),(1.4) on X (see [4]).

The main result of this section is the following.
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Theorem 3.1 Assume (H.1) and that c11, c12, c22 > 0. The system (1.3), (1.4)
with (3.1) possesses a global attractor with finite Hausdorff dimension in X.

Clearly, the functions f, g satisfy the condition (H.2). Thus, the above the-
orem is a consequence of Theorem 2.2 and the well known theory of dissipative
dynamical systems (see [16]) if we can show that the norms ‖v‖∞, ‖u‖2 are in
the class P.

First of all, since c11, c12 > 0, using invariant principle for scalar parabolic
equation or test the equation of v by (v − k)+ for some k large we easily derive

Lemma 3.2 ‖v(·, t)‖∞ ∈ P.

The fact that ‖u(·, t)‖2 is in P is more difficult to prove and this will be done
in several steps. We start with the following simple lemma.

Lemma 3.3 For the component u we have

‖u(·, t)‖1 ∈ P, (3.2)∫ t+1

t

∫
Ω

u2dx ∈ P. (3.3)

Proof Integrating the equation for u over Ω. Using the boundary condition
(1.4) and the fact that u, v ≥ 0 we can drop the boundary integrals result in
the integration by parts to obtain

d

dt

∫
Ω

udx =
∫

Ω

g(u, v) dx ≤ c2

∫
Ω

u dx− c22

∫
Ω

u2 dx (3.4)

this implies
d

dt

∫
Ω

u dx ≤ c2

∫
Ω

u dx− c22(
∫

Ω

u dx)2 (3.5)

It is easy to see that (3.5) gives (3.2) (see also Proposition 2.9). Integrating
(3.4) from t to t + 1 and using (3.2), we get (3.3). �

Next, by multiplying the equation of u by u, we have

d

dt

∫
Ω

u2 dx +
∫

Ω

P (u, v)|∇u|2dx = −
∫

Ω

R(u, v)∇v∇u dx +
∫

Ω

g(u, v)u dx

Using (2.3), (2.5) and (3.1) we get

d

dt

∫
Ω

u2dx + d

∫
Ω

|∇u|2dx ≤ ω(t)
∫

Ω

|u∇v∇u| dx + ω(t)
∫

Ω

u2dx, (3.6)

for some ω ∈ P. Hereafter, ω(t) or C will denote a function in P or a generic
positive constant which can be different from line to line but they depend on the
previously obtained estimates. By (3.2) and the Gagliardo-Nirenberg inequality
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we can absorb the last term in the above inequality into the left hand side.
Hence,

d

dt

∫
Ω

u2dx +
d

2

∫
Ω

|∇u|2dx ≤ ω(t)
∫

Ω

|u∇v∇u|dx + ω(t). (3.7)

We need to investigate the first integral on the right. For any ε > 0, there is
Cε > 0 such that∫

Ω

|u∇v∇u|dx ≤ ε

∫
Ω

|∇u|2dx + Cε

∫
Ω

u2|∇v|2dx. (3.8)

Next, since n = 2, we have the interpolation inequality

‖u‖4 ≤ ‖u‖1/2
2 ‖u‖1/2

H1 = ‖u‖1/2
2 (‖∇u‖2 + ‖u‖2)1/2. (3.9)

Therefore, by Young inequality, we have∫
Ω

u2|∇v|2dx ≤ ‖u‖24‖∇v‖24

≤ ‖u‖2(‖∇u‖2 + ‖u‖2)‖∇v‖24
≤ ε‖∇u‖22 + Cε‖u‖22(‖∇v‖44 + 1).

Hence, (3.7) and Poincaré inequality imply

d

dt

∫
Ω

u2dx +
d

4

∫
Ω

u2dx ≤ C‖u‖22(‖∇v‖44 + 1) + ω(t). (3.10)

We will show that ∫ t+1

t

∫
Ω

|∇v(x, s)|4dx ds ∈ P. (3.11)

With (3.11) and (3.3), we can use the uniform Gronwall inequality (see [25,
Lemma 1.1, Chap.3]) to assert from (3.10) that ‖u(·, t)‖2 ∈ P and conclude our
proof. �

To prove (3.11) we need to estimate the norms of ∇v and vt.

Lemma 3.4 We assert that

‖∇v(·, t)‖2 ∈ P, (3.12)∫ t+1

t

∫
Ω

v2
t (x, s)dx ds ∈ P. (3.13)

Proof First of all, using the boundary condition for v, we notice that∫
Ω

∇(Q∇v)Qvt dx = −
∫

Ω

Q∇v(Qv∇vvt + Q∇(vt))dx +
∫

∂Ω

Q
∂v

∂n
Qvt dσ

= −1
2

∫
Ω

d

dt
(Q2|∇v|2)dx−

∫
∂Ω

r0(x)Qvvt dσ.
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Therefore, by multiplying the equation for v by Qvt, we get∫
Ω

Qv2
t dx +

1
2

d

dt

∫
Ω

Q2|∇v|2dx ≤
∫

Ω

f(u, v)Qvt dx− d

dt

∫
∂Ω

r0(x)Q̂(v) dσ,

where Q̂(v) =
∫ v

0
Q(s)s ds. The above then gives∫

Ω

Qv2
t dx +

d

dt

∫
Ω

Q2|∇v|2dx ≤
∫

Ω

f2(u, v)Qdx− d

dt

∫
∂Ω

r0(x)Q̂(v) dσ. (3.14)

On the other hand, let Q̄(v) =
∫ v

0
Q(s)ds and multiply the equation for v by

Q̄(v) to obtain∫
Ω

Q̄vtdx = −
∫

Ω

Q2|∇v|2dx−
∫

∂Ω

r0vQ̄ dσ +
∫

Ω

f(u, v)Q̄(v) dx.

But ∫
Ω

Qv2
t dx ≥ −2

∫
Ω

Q̄vt dx−
∫

Ω

Q̄2

Q
dx

by Young inequality. We now set

y(t) =
∫

Ω

Q2|∇v|2dx +
∫

∂Ω

r0(x)Q̂(v) dσ

and add 2
∫

∂Ω
r0Q̂ dσ to both sides of (3.14). Using the above inequalities, we

easily obtain

y′(t) + 2y(t) ≤
∫

Ω

[f2Q +
Q̄2

Q
+ 2fQ̄]dx− 2

∫
∂Ω

r0vQ̄ dσ + 2
∫

∂Ω

r0Q̂ dσ.

From the assumption f(u, v) ≤ C(v)(1 + u) and (3.3) we see that the above
implies y(t) ∈ P. But v, and therefore

∫
∂Ω

r0Q̂ dσ and
∫

∂Ω
r0vQ̄ dσ, belongs to

P. We conclude that
∫
Ω

Q2|∇v|2dx ∈ P. This and (2.3) give (3.12).
Finally, we can integrate (3.14) and use (3.12), (2.3) to obtain (3.13). �
Let us go back to (3.11). Using (3.9), we note that

‖∇v‖44 ≤ ‖∇v‖22‖∇v‖2H1 = ‖∇v‖22(‖∆v‖22 + ‖∇v‖22).

Taking into account (3.12), in order to prove (3.11) and conclude our proof , we
need only to estimate

∫ t+1

t
‖∆v‖22. From the equation for v, we have

‖∇(Q∇v)‖22 ≤ ‖vt‖22 + ‖u‖22 + ω(t). (3.15)

By (3.13) and (3.3) we conclude that∫ t+1

t

‖∇(Q∇v)‖22 dt ∈ P. (3.16)

Since ∇(Q∇v) = Q∆v + Qv|∇v|2 and (2.3) we have

|∆v|2 ≤ C(|∇(Q∇v)|2 + |∇v|4).
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Thus, ‖∆v‖2 ≤ C(‖∇(Q∇v‖2 + ‖∇v‖24). But

‖∇v‖24 ≤ C‖Q∇v‖24 ≤ C‖Q∇v‖2(‖∇(Q∇v)‖2 + ‖Q∇v‖2).

Hence, by (3.12) we have

‖∆v‖2 ≤ C‖∇(Q∇v‖2(1 + ‖∇v‖2) + C‖∇v‖22 ≤ Cω(t)(‖∇(Q∇v)‖2 + 1).

Integrating the above from t to t + 1 we obtain∫ t+1

t

‖∆v‖22dt ≤ ω(t)
( ∫ t+1

t

‖∇(Q∇v‖22dt + 1
)
.

This and (3.16) give (3.11). Our proof is then complete.
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