\documentclass[reqno]{amsart} \pdfoutput=1\relax\pdfpagewidth=8.26in\pdfpageheight=11.69in\pdfcompresslevel=9 \usepackage{hyperref} \AtBeginDocument{{\noindent\small 2004-Fez conference on Differential Equations and Mechanics \newline {\em Electronic Journal of Differential Equations}, Conference 11, 2004, pp. 11--22.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \setcounter{page}{11} \begin{document} \title[\hfilneg EJDE/Conf/11 \hfil Solvability of quasilinear elliptic problems] {On the solvability of degenerated quasilinear elliptic problems} \author[Y. Akdim, E. Azroul, M. Rhoudaf\hfil EJDE/Conf/11 \hfilneg] {Youssef Akdim, Elhoussine Azroul, Mohamed Rhoudaf} % in alphabetical order \address{D\'epartement de Math\'ematiques et Informatique\\ Facult\'e des Sciences Dhar-Mahraz\\ B.P. 1796 Atlas F\`es, Maroc} \email[Y. Akdim]{akdimyoussef@yahoo.fr} \email[E. Azroul]{azroul\_elhoussine@yahoo.fr} \email[M. Rhoudaf]{rhoudaf\_mohamed@yahoo.fr} \date{} \thanks{Published October 15, 2004.} \subjclass[2000]{35J20, 35J25, 35J70} \keywords{Weighted Sobolev spaces; variational calculus, Hardy inequality} \begin{abstract} In this article, we study the quasilinear elliptic problem \begin{gather*} Au = - \mathop{\rm div} (a(x,u,\nabla u)) = f(x,u,\nabla u) \quad\mbox{in } \mathcal{D}'(\Omega) \\ u = 0 \quad\mbox{on }\partial\Omega\,, \end{gather*} where $A$ is a Leray-Lions operator from $W_0^{1,p}(\Omega,w)$ to its dual $W^{-1,p'}(\Omega,w^*)$. We show that there exists a solution in $W_0^{1,p}(\Omega,w)$ provided that $$ |f(x,r, \xi)|\leq \sigma^{1/q} [ g(x)+|r|^\eta \sigma^{\eta/q} + \sum_{i=1}^N w_i^{\delta/p}(x)|\xi_i|^\delta], $$ where $g(x)$ is a positive function in $L^{q'}(\Omega)$ and $\sigma(x)$ is weight function and $0 \leq \eta < \min (p-1,q-1)$, $0 \leq \delta < (p-1)/q'$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} Let $\Omega$ be a bounded open set in $\mathbb{R}^N$, $N \geq 2$, and $p$ be a real number such that $10$. Moreover, the imbedding \begin{equation} W_0^{1,p}(\Omega,w) \hookrightarrow \hookrightarrow L^q(\Omega,\sigma), \label{e2.6} \end{equation} is compact. \end{itemize} Let $A$ be a nonlinear operator from $W_0^{1,p}(\Omega,w)$ into its dual $W^{-1,p'}(\Omega,w^*)$ defined by $$ A(u) = -{\mathop{\rm div}}(a(x,u,\nabla u)), $$ where $a(x,r,\xi) :\Omega \times\mathbb{R}\times \mathbb{R}^N \to \mathbb{R}^N $ is a Carath\'eodory vector-valued function that satisfies the following assumption: \begin{itemize} \item[(H2)] For $i=1,\dots ,N$, \begin{gather} |a_i(x,r, \xi)| \leq \beta w_i^{1/p}(x)[k(x)+ \sigma^{\frac{1}{p'}}|r|^{q/p'} + { \sum_{j=1}^N}w_j^{\frac{1}{p'}} |\xi_j|^{p-1}] \label{e2.7} \\ [a(x,r,\xi) - a(x,r,\eta)](\xi-\eta) > 0 \quad \mbox{for all } \xi \neq \eta \in \mathbb{R}^N; \label{e2.8} \\ a(x,r,\xi) \xi \geq \alpha { \sum_{i=1}^N}w_i |\xi_i|^p, \label{e2.9} \end{gather} where $k(x)$ is a positive function in $ L^{p'}(\Omega)$ and $\alpha $, $\beta$ are strictly positive constants. \end{itemize} Let $f(x,r, \xi)$ is a Carath\'eodory function satisfying the following assumptions: \begin{itemize} \item[(H3)] \begin{equation} |f(x,r, \xi)|\leq \sigma^{1/q} [ g(x)+|r|^\eta \sigma^{\frac{\eta}{q}} + { \sum_{i=1}^N}w_i^{\delta/p}(x)|\xi_i|^\delta], \label{e2.10} \end{equation} where $g(x)$ is a positive function in $L^{q'}(\Omega)$, and \begin{equation} 0 \leq \eta < \min(p-1,q-1),\quad 0 \leq \delta < \frac{p-1}{q'}. \label{e2.11} \end{equation} \end{itemize} \section{Main result} Consider the problem \begin{equation} \begin{gathered} - \mathop{\rm div} \ a(x,u,\nabla u) = f(x,u,\nabla u) \quad \mbox{in } D'(\Omega) \\ u = 0 \quad \mbox{on } \partial \Omega \,. \end{gathered}\label{e3.1} \end{equation} \begin{theorem} \label{thm3.1} Under hypotheses (H1)-(H3), there exist at least one solution to \eqref{e3.1}. \end{theorem} We first give some definition and some lemmas that will be used in the proof of this theorem. \noindent\textbf{Definition}\; Let $Y$ be a separable reflexive Banach space, the operator $B$ from $Y$ to its dual $Y^*$ is called of the calculus of variations type, if $B$ is bounded and is of the from, \begin{equation}B(u)=B(u,u), \label{e 3.2} \end{equation} where $(u,v) \to B(u,v)$ is an operator $Y \times Y$ into $Y^*$ satisfying the following properties: \begin{equation} \begin{aligned} &\hbox{For $u \in Y$, the mapping $v \mapsto B(u,v)$ is bounded and hemicontinuous}\\ &\mbox{from $Y$ to $Y^*$ and $(B(u,u)-B(u,v),u-v) \geq 0$;} \end{aligned} \label{e3.3} \end{equation} for $v \in Y$, the mapping $u \mapsto B(u,v)$ is bounded and hemicontinuous from $Y$ to $Y^*$; \begin{align} &\begin{aligned} &\mbox{If $u_n \rightharpoonup u$ weakly in $Y$ and if $(B(u_n,u_n)-B(u_n,u),u_n-u) \to 0$,} \\ &\mbox{then $B(u_n,v) \rightharpoonup B(u,v)$ weakly in $Y^*$, for all $v \in Y$;} \end{aligned} \label{e3.4} \\ &\begin{aligned} &\mbox{If $u_n \rightharpoonup u$ weakly in $Y$ and if $B(u_n,v) \rightharpoonup \psi$ weakly in $Y^*$,} \\ &\mbox{then $(B(u_n,v),u_n) \to (\psi,u)$.} \end{aligned} \label{e3.5} \end{align} \begin{lemma}[\cite{akazbe}] \label{lem3.1} Let $g \in L^q(\Omega,\gamma)$, $g_n \in L^q(\Omega,\gamma)$, and $\|g_n\|_{q,\gamma} \leq c$ $(1\eta$ and $p>\delta$, we conclude that $\frac{\langle Bv,v \rangle }{\|v\|} \to + \infty$. Finally, the proof of Theorem is complete thanks to the classical Theorem in \cite{li}. \end{proof} \section{Examples} Let us consider the Carath\'eodory functions $$ a_i(x,r,\xi) = w_i|\xi_i|^{p-1}\mathop{\rm sgn}(\xi_i) $$ Where $w_i(x) (i=1,\dots ,N) $ are a given weight functions strictly positive almost everywhere in $\Omega$. We shall assume that the weight function satisfies $w_i(x) = w(x)$, $x \in \Omega$ for $i=0,\dots ,N$. It is easy to show that the $a_i(x,s,\xi)$ are Carath\'eodory function satisfying the growth condition \eqref{e2.7} and the coercivity \eqref{e2.9}. On the other side, the monotonicity condition \eqref{e2.8} is verified. In fact, \begin{align*} &\sum_{i=1}^{N}(a_i(x,s,\xi)-a_i(x,s,\hat \xi))(\xi_i-\hat \xi_i)\\ &=w(x)\sum_{i=1}^{N-1}(|\xi_i|^{p-1} \mathop{\rm sgn}(\xi_i)-|\hat \xi_i|^{p-1} \mathop{\rm sgn}(\hat \xi_i))(\xi_i-\hat \xi_i) > 0 \end{align*} for almost all $x\in \Omega$ and for all $\xi, \hat \xi \in \mathbb{R}^N$ with $\xi \neq \hat \xi$, since $w > 0 $ a.e. in $\Omega$. We consider the Hardy inequality \eqref{e2.5} in the form $$ \Big({ \int_{\Omega}|u(x)|^q \sigma(x) \,dx}\Big)^{1/q} \leq c\Big({\int_{\Omega}|\nabla u(x)|^p w(x)\,dx}\Big)^{1/p}, $$ where $\sigma $ and $ q $ are defined in \eqref{e2.5}. In particular, let us use a special weight functions $w$ and $\sigma$ expressed in terms of the distance to the bounded $\partial \Omega$. Denote $d(x)=\mathop{\rm dist}(x,\partial \Omega)$ and set $$ w(x)=d^\lambda(x), \quad \sigma(x)=d^\mu(x). $$ In this case, the Hardy inequality reads $$ \Big({ \int_{\Omega}|u(x)|^q d^\mu(x) \,dx}\Big)^{1/q} \leq c\Big({\int_{\Omega}|\nabla u(x)|^p d^\lambda(x)\,dx}\Big)^{1/p}. $$ The corresponding imbedding is compact if: \begin{itemize} \item[(i)] For, $1

0. \label{e5.1} \end{equation} \item[(ii)] For $1 \leq q 0. \label{e5.2} \end{equation} \end{itemize} \noindent\textbf{Remarks.}\; 1. Condition \eqref{e5.1} or Condition \eqref{e5.2} is sufficient for the compact imbedding \eqref{e2.6} to hold; see for example \cite[example 1]{drkumu}, \cite[example 1.5]{drkuni}, and \cite[Theorems 19.17, 19.22]{Ku}. Let us consider the Carath\'eodory function $$ f(x,r,\xi)= d^{\frac{\mu}{q}}(x) \Big(d^{\frac{\mu \delta}{q}}(x)|r|^\eta + { \sum_{i=1}^N} d^{\frac{\lambda \delta}{p}}(x)|\xi_i|^\delta + g(x) \Big), $$ with $g \in L^{q'}(\Omega)$, $\sigma(x)$ is weight function and $0 \leq \eta < \min (p-1,q-1)$, $0 \leq \delta < \frac{p-1}{q'}$. Because of its definition, $ f(x,r,\xi)$ satisfies the growth condition \eqref{e2.10}. Also the hypotheses of Theorem \ref{thm3.1} are satisfied. Therefore, the problem \begin{align*} &\sum_{i=1}^N \int_\Omega \Big(d^\lambda (x)|\frac{\partial u}{\partial x_i}|^{p-2} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i}\Big)\,dx\\ &= \int_\Omega d^{\mu/q}(x) \Big(d^{\mu \delta/q}(x)|u|^\eta + { \sum_{i=1}^N} d^{\lambda \delta/p} (x)|\xi_i|^\delta + g(x) \Big)v \,dx\,, \end{align*} for all $v\in W_0^{1,p}(\Omega,w)$, has at last one solution. \begin{thebibliography}{00} \bibitem{akazbe} Y. Akdim, E. Azroul, and A. Benkirane, {\em Existence of Solution for Quasilinear Degenerated Elliptic Equations,} Electronic J. Diff. Equ., Vol. 2001 No. 71, (2001) pp 1-19. \bibitem{bomupu88} L. Boccardo, F. Murat, and J. P. Puel, {\em Existence of bounded solutions for nonlinear elliptic unilateral problems,} Ann. Math. Pur. Appl. 152 (1988) 183-196. \bibitem{bomupu} L. Boccardo, F. Murat, and J. P. Puel, {\em R\'esultats d'existences pour certains probl\`emes elliptiques quasilin\'eaires}, Ann. Scuola. Norm. Sup. Pisa 11 (1984) 213-235. \bibitem{drkumu} P. Drabek, A. Kufner, and V. Mustonen, {\em Pseudo-monotonicity and degenerated or singular elliptic operators}, Bull. Austral. Math. Soc. Vol. 58 (1998), 213-221. \bibitem{drkuni} P. Drabek, A. Kufner, and F. Nicolosi, {\em Non linear elliptic equations, singular and degenerate cases,} University of West Bohemia, (1996). \bibitem{Ku} A. Kufner, {\em Weighted Sobolev Spaces}, John Wiley and Sons, (1985). \bibitem{li} J. Lions, {\em Quelques m\'ethodes de r\'esolution des probl\`emes aux limites non lin\'enaires,} Dunod, Paris (1969). \bibitem{tsch} T. Kuo and C. Tsai, {\em On the solvability of solution to some quasilinear elliptic problems,} Taiwanese Journal of Mathematics Vol. 1, No. 4, pp 547-553, (1997). \end{thebibliography} \end {document}