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MIXED FINITE ELEMENT DISCRETIZATION OF SOME
VARIATIONAL INEQUALITIES ARISING IN ELASTICITY

PROBLEMS IN DOMAINS WITH CRACKS

ZAKARIA BELHACHMI, SOUAD TAHIR

Abstract. We consider some mixed variational formulations of elasticity sys-
tem in domains with cracks. Inequality type conditions are prescribed at the
crack faces which results in a model of unilateral contact. Relying in a new
variational formulation of these problems in the smooth domain, we study

and implement various mixed finite elements methods. We derive convergence
rates and optimal error estimates.

1. Introduction

The numerical approximation of solutions of partial differential equations in
non smooth domains is often a very difficult and challenging task. Among them,
unilateral contact crack problems in elasticity, arises some specific difficulties, both
in theoretical and approximation grounds. Such problems are characterized by
inequality type and nonlinear boundary conditions prescribed on non smooth part
of the boundary [15], describing the mutual non penetration between the crack
faces.

The variational formulations associated to these problems lead to solving varia-
tional inequalities arising in contact mechanics. We refer the reader to [10, 18, 17]
for mathematical foundations and [15] for crack problems. A new approach to crack
theory for linear elastic bodies proposed in [16] allows us to solve the problem in
the entire domain (including the cracks), reducing the difficulties which occur when
dealing with the numerical simulation of such problems. In the framework of this
formulation, the discretization with finite elements method leads to similar results,
from the accuracy point of view and for developing efficient algorithms, as for classi-
cal variational inequalities in unilateral contact problems [3]. For the discretization
of variational inequalities, we refer the reader to [7, 12, 13, 14, 17, 23], and for more
recent developments to [6, 9, 20, 4].

In [2, 3], the approach called smooth domain method is considered in the case
of an elastic membrane. Using a regularization technique, the discretization by
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various mixed finite element methods is considered, the numerical analysis of the
method is carried out and numerical simulations are performed.

We extend in this work the formulation in the smooth domain to the case of the
elasticity system. However, our discretization by finite elements method is based on
an augmented Lagrangian formulation [11] since this approach yields many efficient
numerical algorithms.

2. The continuous problem

Problem formulation. Let Ω be a bounded domain in R2 with smooth boundary
Γ, and Γc ⊂ Ω be a smooth curve without selfintersections. We assume that
Γc can be extended to a closed smooth curve Σ ⊂ Ω, with Σ of class C1,1, and
Ω = Ω1 ∪ Σ ∪ Ω2 divided into two sub-domains Ω1, Ω2. In this case, Σ = ∂Ω1 is
the boundary of Ω1 and Σ∪Γ = ∂Ω2 is the boundary of Ω2. Let Ωc be the domain
Ω \ Γc, then Γc is called a crack in the elastic body of the reference configuration
Ωc (see Figure 1).

The equilibrium problem for a linear elastic body occupying the domain Ωc with
the interior crack Γc can be formulated as follows: find u = (u1, u2), and σ = (σij),
i, j = 1, 2, such that

−divσ = f in Ωc, (2.1)

Cσ − ε(u) = 0 in Ωc, (2.2)

u = 0 on Γ, (2.3)

[u] ν ≥ 0, [σ ν] = 0, σν [u] = 0 on ΓC , (2.4)

σν ≤ 0, σt = 0 on Γ±C , . (2.5)

Here [u] = u+ − u− denotes the jump of the displacement field across Γc, and the
signs ± indicate the positive and negative directions of the normal ν. f = (f1, f2) ∈
L2(Ω)2 is a given external force acting on the body. We have used the following
standard notation:

σν = σijνjνi, σt = σ ν − σν ν =
{
σi

t

}2

i=1
, σν = {σijνj}2

i=1 ,

εij(u) =
1
2
(ui,j + uj,i), i, j = 1, 2, ε(u) = (εij)2i,j=1,

{Cσ}ij = cijk`σk`, cijk` = cjik` = ck`ij , cijk` ∈ L∞(Ω).

The tensor C satisfies the ellipticity condition

cijk`ξjiξk` ≥ c0|ξ|2, ∀ξji = ξij , c0 > 0. (2.6)

We use the summation convention over repeated indices.

The smooth domain method. The smooth domain method is based on a mixed
variational formulation of problem (2.1)-(2.5). We consider the space

X =
{
σ = {σij} ∈ (L2(Ωc))4 : divσ ∈ (L2(Ωc))2

}
,

equipped with the norm

‖σ‖X =
(
‖σ‖2

(L2(Ωc))4
+ ‖divσ‖2

(L2(Ωc))2

)1/2

,

and we define the closed convex set

K =
{
σ ∈ X : [σ.ν] = 0, onΓc, σν ≤ 0, σt = 0 onΓ±c

}
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Figure 1. A crack in the reference configuration.

where [·] denotes the jump across Γc.

Remark 2.1. The contact condition on Γc is to be understood in the weak sense
of traces by using fractional Sobolev spaces H1/2

00 (Γc) and its dual space [19].

The mixed formulation for problem (2.1)-(2.5) reads: Find u = (u1, u2) ∈
(L2(Ωc))2, σ = {σij} ∈ K, such that

(Cσ, τ − σ)Ωc + (u,div τ − divσ)Ωc ≥ 0, ∀σ ∈ K,

divσ = −f, in Ωc.
(2.7)

The well-posedness of this problem follows from the Brezzi-Babuska theory [8]. A
proof based on a regularization argument is given in [16] (see also [22] and [20]);
we state only the result.

Proposition 2.2. There exists a unique solution to problem (2.7).

The formulation in the smooth domain consists of extending σ and u to the
whole domain Ω = Ωc ∪ Γc, and it results in the (close) formulation obtained by
replacing Ωc with Ω in (2.7), with the obvious modification of the spaces that we
denote also X(Ω) and K(Ω) (see. [16] for details). This formulation allows us to
solve the problem in the smooth geometric domain while the constraint at the crack
faces is included in the functional space.

The extended problem is also well-posed and it is readily checked that the re-
striction of the solution (u, σ) to Ωc is the solution of problem (2.7). The converse
is (trivially) true if additional smoothness holds for solutions of problem (2.7).

The Discretization of problem (2.7) by various finite elements of low order based
on affine finite elements and Raviart-Thomas elements, is considered in [22]. In
particular, the study of approximation properties as well as numerical simulations
of the discrete problem is performed. In what follows, we consider a new formulation
based on an augmented Lagrangian technique.

3. Augmented Langrangian formulation

Mixed variational formulation. The main advantage of the augmented La-
grangian method, compared to the method used in [3], is that it converges without
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imposing to the penalization parameter to be too small, so the numerical resolu-
tion is more stable and efficient. The new formulation is described by the following
problem: For r > 0, find u = (u1, u2) ∈ (L2(Ω))2, σ = {σij} ∈ K, such that for all
τ ∈ K,
(Cσ, τ − σ) + (u,div τ − divσ) + r(divσ,div τ − divσ) ≥ r (−f,div τ − divσ),

divσ = −f, in Ω.
(3.1)

Clearly, this problem is equivalent to the minimization over L2(Ω)2 × K of the
functional

L(v, τ) =
1
2
(Cτ, τ) + (v,div τ + f) +

r

2
‖div τ + f‖2

L2(Ω)2 .

The bilinear form
ar(σ, τ) = (Cσ, τ) + r(divσ,div τ),

is elliptic on K and the bilinear form b(., .) satisfies the usual Brezzi-Babuska condi-
tion ([8]). The well-posedness of problem (3.1) and the convergence of the solution
(σ(r),u(r)) to the solution (σ,u) of problem (2.7) (see [22]), follows from standard
elliptic variational inequalities [18, 12] by applying Stamppacchia’s theorem on the
cone K× L2(Ω). Thus, we have the following result.

Proposition 3.1. There exists a unique solution (σ(r),u(r)) to problem (3.1).
Moreover, (σ(r),u(r)) converges to (σ,u), the solution of (2.7) when r goes to
zero.

Mixed hybrid formulation. The algorithms used to solve the discrete problem
corresponding to (3.1) are the steepest descent methods. Another strategy for
solving the problem consists in solving a hybrid formulation where the constraint in
K is taken into account with a Lagrange multiplier. The resulting algorithm yields
to solve a quadratic programming problem of small size to compute the Lagrange
multiplier and then a Large linear system to compute the other unknowns. This
approach is based on the following mixed hybrid formulation. For the sake of
brevity, we will denote by M the space H1/2(Γc)2. We introduce also the following
closed convex cone

M+ =
{
µ ∈ H1/2(Γc); µ ≥ 0, a.e.

}
.

and we define the new functional L̃ over V ×X×M×M+

L̃(v, τ, µt, µn) = L(v, τ) + 〈〈τt, µt〉〉1/2,Γc
+ 〈τν , µn〉1/2,Γc

.

where 〈·, ·〉1/2,Γc
denotes the duality product between (H1/2(Γc)) and its dual space.

〈〈·, ·〉〉1/2,Γc
is the duality product defined by

〈〈τt, φ〉〉1/2,Γc
= 〈τt1, φ1〉1/2,Γc

+ 〈τt2, φ2〉1/2,Γc
, ∀φ = (φ1, φ2) ∈ M, φiνi = 0.

Therefore, problem (3.1) can be written as: Find (u, σ, λt, λn) ∈ V×X×M×M+,
λtiνi = 0, such that

ar(σ, τ) + b(u, τ) + 〈〈τt, λt〉〉1/2,Γc
+ 〈τν , λn〉1/2,Γc

= −r(f,div τ), ∀τ ∈ X,

b(v, σ) = −(f,v), ∀v ∈ V,

〈〈σt, µt〉〉1/2,Γc
= 0, ∀µt = (µ1, µ2) ∈ M, µiνi = 0,

〈σν , µn − λn〉1/2,Γc
≤ 0, ∀µ ∈M+.

(3.2)
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It is readily checked that solution (u, σ, λt, λn) of problem (3.2) is a saddle-point of
the Lagrangian L̃.

4. Discrete mixed hybrid problem

We denote by Th a triangulation of Ω made of elements which are triangles (or
quadrilateres) with a maximum size h satisfying the usual admissibility assumption,
i.e. the intersection of two different elements is either empty, a vertex, or a whole
edge. In addition, Th is assumed regular, i.e. the ratio of the diameter of any
element T ∈ Th to the diameter of its largest inscribed ball is bounded by a constant
σ independent of T and h. We will assume that the endpoints of Γc are vertices of
the triangulation. The set of nodes on Γc are denoted by c1 = x0, x1, . . . , xI−1, xI =
c2 and we set ti =]xi−1, xi[.

In [22] we study various discretizations based on the finite elements method for
both problem (3.1) and problem (3.2). In particular, we perform the complete
analysis and the numerical simulations with the (lower order) PEERS element and
the BDMS (Brezzi-Douglas-Marini and Steinberg) elements. The use of the above
elements is based on a formulation obtained by modifying the Hellinger-Reissner
principle. In this approach, the symmetry of the stress tensor σ is relaxed and only
imposed by means of the Lagrange multiplier.

We present here another example of finite elements also studied in [22] due to
Arnold and Winther [1], based on the unaltered Hellinger-Reissner principle.

For any T ∈ Th, and for any Banach space E, we denote by Pk(T,E) the space
of polynomial functions over T with values in E, of degree less than k. As usual we
denote by Pk(T ) the space Pk(T,R). We define the associated local space ΣT as

ΣT = P2(T,R2×2
sym) +

{
τ ∈ P3(T,R2×2

sym); div τ = 0
}

=
{
τ ∈ P3(T,R2×2

sym); div τ ∈ P1(T )2
}
.

We introduce the following discrete spaces: For h > 0,

Xh =
{
σh ∈ X;σh|T ∈ ΣT , ∀T ∈ Th

}
,

Vh =
{
vh ∈ (C(Ω))2; vh|T ∈ (P1(T ))2, ∀T ∈ Th

}
.

Concerning the approximation of Lagrange multipliers, we introduce the space

W 1
h (Γc) =

{
µh ∈ C(Γc), µh|ti

∈ P1(ti), 0 ≤ i ≤ I − 1
}
.

We also denote by W1
h(Γc) the space (W 1

h (Γc))2.
Therefore, we can define various version of the discrete space Mh and the discrete

convex cone Mh+. An example of such choices consists to take [22]

Mh = W1
h(Γc)

Mh+ =
{
µh ∈W 1

h (Γc),
∫

Γc

µhψh dΓ ≥ 0, ∀ψh ∈W 1
h , ψh ≥ 0

}
.

We will denote for brevity Mh the convex cone Mh × Mh+ and λh = (λht =
(λht1, λht2), λhn), λhtiνi = 0. The discrete problem is now the same as problem
(3.2) when replacing the unknowns and spaces by the finite dimensional analogues.

The following result is proved in [22].

Proposition 4.1. Assume that the set Mh and Mh+ are given as above. Then,
the discrete problem corresponding to (3.2) admits a unique solution.
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The error analysis and the study of convergence rates is based on uniform inf-sup
condition (with respect to h) (see [3]) we only states the main error estimate when
the multiplier spaces are chosen as in Proposition 4.1 (see [22] for details). Let us
define

Z =
{
σ = {σij} ∈ (H1(Ω))4 : divσ ∈ (H1(Ω))2

}
,

and denotes by Z(Ω`), ` = 1, 2 the space of the restrictions of functions of Z to Ω`.
We have the following result.

Theorem 4.2. Let (u, σ, λ = (λt1, λt2, λn)) be the solution of problem (3.2). Sup-
pose that u|Ω1 ∈ H2(Ω1), u|Ω2 ∈ H2(Ω2) and also σ|Ω1 ∈ Z(Ω1), σ|Ω2 ∈ Z(Ω2).
Let (Uh, λh = (λht1, λht2, λhn)) be the solution of the discrete problem associated
to (3.2) with the specified choice of Mh and Mh+ given above. Then the following
estimate holds

‖u− uh‖V + ‖σ − σh‖X + ‖λt − λht‖(H1/2(Γc))2 + ‖λn − λhn‖H1/2(Γc)

≤ C(r, u, σ, λ)h3/4 .
(4.1)

The constant C(r,u, σ, λ) depends linearly on ‖u|Ω`‖H2(Ω`), ‖σ|Ω`‖H1(Ω`)4 , and
‖div σ|Ω`‖H1(Ω`)2 , ` = 1, 2.

Remark 4.3. More technical arguments allow us to avoid the regularity assump-
tion divσ ∈ (H1(Ω`))2. In this case σ is estimated in the L2-norm.

5. Implementation details

To perform the computations for the mixed hybrid problem, the matrix formu-
lation of discrete problem (3.2) is derived. Let V, U denote the vectors with the
entries given by the nodal values of the functions (vh, τh) and (uh, σh), respectively.
Let M and Λ be the vectors with the entries given by the nodal values of µh and
λh, respectively, for the various choices of the space Mh and the convex set Mh+.
Therefore, the saddle-point problem for the Lagrangian can be rewritten in finite
dimensional setting:
Find U = (uh, σh) and Λ, defined by the following max-min condition

max
SM≥0

(
min
V

1
2

tVKV − tVF + (tVL)SM
)
, (5.1)

where K denotes the stiffness matrix, F is the vector corresponding to the external
loading and the matrix S expresses the sign conditions for the multipliers.

The solution (U,Λ) of (5.1) satisfies the saddle-point conditions and we have

U = K−1(F− LSΛ). (5.2)

Therefore, for Φ = SΛ, the saddle-point problem (5.1) can be rewritten as a qua-
dratic programming problem

min
Φ≥0

(1
2

tΦtLK−1LΦ− tΦtLK−1F +
1
2

tFK−1F
)
. (5.3)

If Φ is the solution of (5.3) then Λ = S−1Φ. The solution U is obtained by solving
(5.2).

Several numerical simulations and experiments are performed in [22] for this
augmented Lagrangian method applied to the new formulation of crack problems
in the smooth domain. The computations with various mixed finite element dis-
cretizations, for both unsymmetric stress tensor formulation (PEERS, BDMS) and
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the symmetric one considered in this article, give satisfactory results confirming
the theoretical estimates. The use of the augmented Lagrangian formulation (i.e.
r 6= 0) is unnecessary for practical computations when compatible pairs of finite
elements for the displacements and stresses are chosen, however it allows using
efficient algorithms to solve the discrete problem.

References

[1] D. N. Arnold, R. Winther; Mixed finite elements for elasticity, Numer. Math., 92 (2002),
401-419.

[2] Z. Belhachmi, J. M. Sac-Epée, J. Sokolowski; Approximation par la méthode des éléments
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