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ON A NONLINEAR PROBLEM MODELLING STATES OF
THERMAL EQUILIBRIUM OF SUPERCONDUCTORS

MOHAMMED EL KHOMSSI

Abstract. Thermal equilibrium states of superconductors are governed by
the nonlinear problem

i=N∑
i=1

∂

∂xi

(
k(u)

∂u

∂xi

)
= λF (u) in Ω ,

with boundary condition u = 0. Here the domain Ω is an open subset of
RN with smooth boundary. The field u represents the thermal state, which
we assume is in H1

0 (Ω). The state u = 0 models the superconductor’s state

which is the unique physically meaningful solution. In previous works, the
superconductor domain is unidirectional while in this paper we consider a
domain with arbitrary geometry. We obtain the following results: A set of

criteria that leads to uniqueness of a superconductor state, a study of the
existence of normal states and the number of them, and optimal criteria when
the geometric dimension is 1.

1. Statement of the problem

General model. In the framework of superconductivity, the energy conservation
in a physical volume ΩS , having as boundary the closed surface ∂ΩS can be written
as

∂

∂t̃

∫∫∫
ΩS

E dv = −
∫∫∫

ΩS

div(−→q ) dv +
∫∫∫

ΩS

W dv +
∫∫∫

ΩS

P dv. (1.1)

Where the left hand side of the equation is made of the inner quantity of accu-
mulated energy inside ΩS during dt̃. The first member of the second hand side is
the heat flux going by conduction in the closed ∂ΩS , and P is a parasite volume
supply of heat of nature, responsible partly, of the thermal perturbation of the en-
vironment. The Fourier hypothesis relates the flux density, q̃ at temperature T by

q̃ = −K(X, T ) · gradT , (1.2)
where K is the tensor of thermal conductivity. Note at this stage that, it is well
known that the application of first Principle of Thermodynamics Theory to a con-
tinuous environment is reduced, without matter transfer to the heat equation. This
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later is simplified and established by assuming that the previous equation must be
valid for any volume ΩS that one considers and is written as

C(X, T )
∂T

∂t̃
= div(K(X, T ) · gradT ) + W (X, T ) + P (X, t̃), (1.3)

where C is the heat’s capacity of the solid. Note that, the characteristics of problem
(1.3), is

W = G−Q . (1.4)
Note that W represents the competition between G and Q, which depends, à priori,
of the thermal field, representing respectively the power consumed by volume unit
of the conductor and the power exchange between the conductor and the external
environment. One should note that equation (1.3) does not make any physical
meaning except for conditions well defined and applied to a domain space-time
well defined also. These conditions are the reason that specifies the evolution of
thermal field. Hence, it is necessary to know the initial distribution in any point of
the environment as well as the volume of the field on the boundary of the domain;
this, actually, states initial conditions, at t̃ = 0 and limit conditions as well. In
practice, T is given at any point of ∂ΩS ; hence limit conditions will be conditions
of Dirichlet’s type:

T (X, t̃) = Tb on ∂ΩS × R+ (1.5)
and the initial condition is

T (X, 0) = T0(X) on ΩS . (1.6)

The thermal field Tb is the cryogenic temperature. A dimensional analysis based
on the use of floating parameters, numerical characteristics of the environment see
for example [1, 2], as well as the isotropy and homogeneity of the environment [7]
allow us to rewrite problem (1.3)-(1.4)-(1.5) under a reduced form: Find u a field
modelling T defined on Ω× [0,+∞[ so that

c(u)
∂u

∂t
−

i=N∑
i=1

∂

∂xi
(k(u)

∂u

∂xi
) = λF (u) + ap(x, t) inΩ× R+ (1.7)

u(x, t) = 0 in ∂Ω× R+ (1.8)

u(x, 0) = u0(x) in Ω× {0} . (1.9)

The function F , containing all information on energy assessment in the domain Ω,
which is an open and bounded subset of RN containing zero. The term p is null in
the stationary case (no perturbation at initial instant). The thermal equilibrium
states of the superconductor are solutions in H1

0 (Ω) of

−
i=N∑
i=1

∂

∂xi
(k(u)

∂u

∂xi
) = λF (u) in Ω with u ∈ H1

0 (Ω) (1.10)

Hypotheses. The term F depends explicitly on the cooling process of the en-
vironment. This helps in defining conditions that are satisfied by the classes of
admissible functions. This is stated as the hypothesis
(HG) (1) F ∈ C2(R+), F (u) = 0 for u ≤ 0 and (dF

du )(0+) ≤ 0
(2) u1 is so that F (u1) = 0 and 0 < u1 < 1.

Additional hypotheses are stated as follows:
(H1) F (u) ≤ 1 for all u ≥ u1
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(H2) There is u2 > 1 satisfying F (u2) = 0 and (dF
du )(u) ≤ 0 for all u ≥ u2.

(H3) There is γ0 > 0 so that limu→+∞(F (u)
u ) ≤ γ0 and limu→+∞ F (u) = +∞.

Denote by U1
ad the set of functions F satisfying (HG) and (H1); U2

ad the set of
functions satisfying (HG) and (H2); and U3

ad the set of functions satisfying (HG)
and (H3). Also set UG

ad =
⋃m=3

m=1 Um
ad .

Canonical transform and consequences. A large part of the thermal stability
analysis is based on the nature and the number of the possible stationary solutions.
It seems interesting to transform the differentiable operator of (1.10) so as k(u) does
not appear. This is possible due to the following Kirchhoff’s transform, related to
a function k, and defined by

y = Y (u) =
∫ u

0

k(ω)dω . (1.11)

The function k is continuous and strictly positive, this implies Y is strictly
increasing sequence of positive numbers; so it is invertible. It is possible to clear
out k(u) with the introduction of the following transformation

We remark that k(u)∂iu = ∂iy and the equation of problem (1.10) has a new
form:

−∆y = λF̃ (y) = λF ◦ Y −1(y) ∀x ∈ Ω and y = 0 on Γ . (1.12)

The stationary problem (1.10) is transformed in a more simple one (1.12). It not
difficult to check that

Proposition 1.1 ([2]). Let F ∈ UG
ad. Then F ∈ Um

ad if and only if F̃ ∈ Um
ad

Remark 1.2. The case, F (u) ≤ 0, is an optimal physical case since it shows the
domination of Joule’s effect by the cryogenic system (G(u) ≤ Q(u)). Hence, the
conductor stays always in the superconductor state. This situation is known as
Stekly criterion; see [3].

Classes Um
ad model physical reality; noticing that U1

ad represents a cooling system
based an Helium II.

Furthermore, Proposition 1.1 shows that y and u have the same property (due
to the properties of Y ).

Definition. A fundamental state or a superconductor state is a state in which
y ≡ 0.
Definition. We say that a state is normal if every state y which is not null is a
solution in H1

0 (Ω) of the problem (1.12).

2. Analysis of the equilibrium problem

Uniqueness criterion of an equilibrium state. Recall that the only interesting
physical state is when y ≡ 0. Hence, we will be looking for possibilities to avoid
any equilibrium solution that is not zero.

Theorem 2.1. Let F̃ be an element of Uad such that

F̃ (y) ≤ λ1

λ
y ∀y ≥ 0. (2.1)

Then, problem (1.12) has y ≡ 0 as a unique solution in H1
0 (Ω).
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Proof. Let the domain Ω be a bounded open subset in RN , F ∈ UG
ad satisfy (HG)

and only one of the hypothesis (H1), (H2), (H3). Hence, by Proposition 1.1, F ∈
UG

ad, problem (1.10) and problem (1.12) are equivalent. The operator Ay = −∆y
is an elliptic self-adjoint operator.

Next, we recall that the first eigenvalue of Ay = −∆y is characterized by

λ1 = inf
{ ∫

Ω

|∇v|2 dx : v ∈ H2
0 (Ω) and ‖v‖2L(Ω) = 1

}
(2.2)

Next consider the energy function associated with equation (1.12),

Φ(y) =
∫

Ω

|∇y|2 dx− λ

∫
Ω

∫ y

0

F̃ (s)ds dx . (2.3)

It is known that solutions of problem (1.10) are the critical points of Φ. Hence,
problem (1.10) has a critical solution obtained as a minimal point of Φ. So, by
hypothesis (1.8), we have

Φ(y) ≥ 1
2
(‖∇y‖2L(Ω) − λ1‖y‖2L(Ω)). (2.4)

Since Ω is bounded and y ∈ H2
1 (Ω)

Now, the Poincaré inequality applied to (2.4) allows us to derive Φ(y) ≥ 0 for all
y ∈ H1

0 (Ω). Hence, y ≡ 0 is the only critical point of Φ and since y ≡ 0 is a trivial
solution, the proof is complete. �

Corollary 2.2. Let F ∈ UG
ad and assume one of the following conditions holds:

(1) F̃ ∈ U2
ad and

∫ y2

0
F̃ (ω)dω ≤ 0 with y2 =

∫ u2

0
k(ω)dω

(2) F̃ ∈ U1
ad and λ ≤ λ1

sup(1,F̃m)
with F̃m = supy≥0 F̃ (y)

(3) F̃ ∈ U3
ad and λ ≤ λ1 sup( 1

γ0
, 1

γ3
) with γ3 = supy3≥y≥y1

F̃ (y)

Where y3 is the value so that F̃ (y) ≤ γ0y for all y ≥ y3. Then, problem (1.10) has
only one solution which is the fundamental state.

Proof. If (1) is satisfied, it would be enough to look at two possibilities: maxx∈Ω y(x) ≤
y2 or maxx∈Ω y(x) ≥ y2. For these two cases,

ΦF̃ (y) = λ

∫
Ω

∫ y

0

F̃ (s)ds dx ≤ ΦF̃ (y1) + λ

∫
Ω

∫ y

y1

F̃ (s)ds dx .

Hence, by the previous theorem the proof is complete in this case.
If condition (2) (or 3) holds, we note that this a restatement of the hypothesis

F̃ (y) ≤ λ1
λ y for all y ≥ 0 for U1

ad (respectively for U3
ad). Hence, the proof of the

corollary is complete. �

The existence of a condition of normal states. Let rmax be the maximal
radius of a ball of center 0 included in Ω, let Ψ(r) the function defined on D =]0, N

√
2[

by

Ψ(r) =
(1 + r

r

)2( (1 + r)N − 1
2− (1 + r)N

)
(2.5)

Lemma 2.3. There is a unique r0 ∈ D, satisfying Ψ(r0) = minr∈D Ψ(r) and
limr→0 Ψ(r) = limr→ N√2−1 Ψ(r) = +∞.

To justify this lemma, it is enough to study the sign of dΨ
dr and of d2Ψ

dr2 .
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Lemma 2.4. Let F̃ ∈ Uad be such that there exists ω0 > 0 satisfying∫ ω0

0

F̃ (s)ds ≥ ω0(rmax

√
2)−1Ψ(r0) . (2.6)

Then, there is ỹ ∈ H1
0 (Ω) so that Φ(ỹ) < 0.

Proof. Set

ya(x) =
l=3∑
l=1

αlΣl(x) , (2.7)

so that α1 = ω0, α2 = ω0[1− 1+a
armax

(‖x‖ − rmax
1+a )] (‖x‖ is a norm RN ) and α3 = 0.

On the other hand Σl are defined as follows:

Σ1(x) =

{
1 if ‖x‖ ≤ rmax

1+a

0 if ‖x‖ > rmax
1+a ,

Σ2(x) =

{
1 if rmax

1+a < ‖x‖ ≤ rmax

0 otherwise,

Σ3(x) =

{
1 if x ∈ Ω−B(0, rmax)
0 if x ∈ B(0, rmax).

By construction, the function ya is in H1
0 (Ω) and satisfies ya(x) ≤ ω0. Next,

condition (2.6) implies

Φ(ya) ≤ 1
2
‖∇ya‖2L2(Ω) −

( ω0

armax
)2Ψ(r0) . (2.8)

Also, calculating the norm of ∇ya in RN allows us to write

‖∇ya‖ = (
ω0(1 + a)

a rmax
)2‖x‖2Σ4(x) (2.9)

with Σ4(x) = 1 if r1 = rmax
1+a ≤ x ≤ r2 = rmax and Σ4(x) = 0 To finish the proof, it

suffices to compute the primitive of (ω0(1+a)
a rmax

)2‖x‖2Σ4(x) and to choose the constant
a = a0 so that

‖∇ya0‖2L2(Ω) < (
ω0

a0rmax
)2Ψ(r0) .

�

Theorem 2.5. Assume the following two hypothesis
(1) There exist ω0 > 0 such that∫ ω0

0

F̃ (s)ds ≥ ω0(rmax

√
2)−1Ψ(r0) (2.10)

(2) There exists ω1 > 0 such that

F̃ (s) ≤ γ0y ∀y ≥ ω1 . (2.11)

Then the problem (1.12) has two equilibrium states y and ỹ.

Proof. The proof of this theorem uses col’s theorem (Mountain Pass theorem, A.
Ambrossett) , which in turn uses Palais Smalle condition, results given in [8, 9] and
[10, Corollary 2.16]. As a consequence of these works Φ has the following properties

(1) Φ has a unique minimum in a non null point of H1
0 (Ω).
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(2) Φ is convex and lim‖y‖
H1

0(Ω)→+∞
Φ(y) = +∞.

Note that this result implies that there exists ỹ ∈ H1
0 (Ω) such that

min
y∈H1

0 (Ω)
Φ(y) ≤ Φ(ỹ) < 0

Then the continuity of Φ gives the existence of two critical points, which completes
the proof. �

3. One-dimensional case

Assume a superconductor as a piece of length for which we can assume that the
thermal control. The space variables are reduced to curvilinear coordinates. This
will allow us to obtain a one dimensional problem by integrating on a line section
that is constant and of of diameter very small with respect to the length. Thus,
problem (1.10) and hence (1.12) become the differential equation

yxx + λF̃ (y) = 0 in ]0, 1[ with y(0) = y(1) = 0 . (3.1)

Starting from the integral problem, we show that the existence and the number of
solutions of this differential equation depend on the minimum of the function

E(η) = η

√
2
λ

∫ 1

0

(√∫ η

ηt

F̃ (s)ds
)−1

dt, η ∈ DF̃ . (3.2)

where η ∈ DF̃ =]η0, η∞[, η0 is the unique solution of
∫ η

0
F (s)ds = 0, and

η∞ =

{
y2 if F̃ ∈ U2

ad

+∞ if F̃ ∈ U1
ad ∪ U3

ad.

Critical value and number of possible normal states.

Lemma 3.1. If DF̃ 6= ∅, then the function E(η) has a unique minimum and
ηmin ∈ DF̃ .

Theorem 3.2. Set λ∗c = E(ηmin). Then for every F̃ ∈ U1
ad ∪ U2

ad we have

(1) A necessary and sufficient condition for (3.1) to have at least one non-null
solution is that

λ∗c ≤ 1 (3.3)

(2) If λ∗c = 1, then (2.11) has a non-null solution ymin with maxx∈]0,1[ ymin(x) =
ηmin

(3) If λ∗c < 1, then (2.11) has 2 solutions ya and yb so that

max
x∈]0,1[

ya(x) = ηa and max
x∈]0,1[

yb(x) = ηb

with ηa and ηb solutions to λ∗c = E(η)

(4) For all F̃ ∈ U3
ad, there is η∗ > η0 with F̃ (η∗) >

√
F̃max then we have the

same results as in 1, 2 and 3 above; otherwise there is at most a non-null
solution.
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Optimal criterion of unconditional stability.

Theorem 3.3 ([2, 4]). Let F ∈ UG
ad. A necessary and sufficient condition for the

equilibrium problem (3.1) to have only the fundamental state y ≡ 0 as a solution is

λ∗c > sup
(
1, π

√
γ−1
0

)
(3.4)

The proof of this theorem and hence of the optimal criterion is very technical.
Indeed, one can start by looking at zeros of a differential function or try to study
its convexity. By noticing the complexity of d2E

dη2 , one can use instead a technic de-
veloped by Smoller and Wasserman [11]. To solve a non linear differential equation
with F̃ having a polynomial function of degree three. We justify the existence of at
least one extremum ηe of E(η). After computing dE

dη and d2E
dη2 , we look at the sum

Λ(η) = a(η)
dE

dη
+ b(η)

d2E

dη2
,

where a(η) and b(η) are real functions à priori. Now, we may choose to simplify
the expression of Λ(η), in some extremum ηe which is a zero of E(η). Hence, we
get a simplified expression of dE

dη and d2E
dη2 . By studying this sign one may conclude

the convexity of E(η).

Concluding Remark. In the theory of partial differential equations there is a
very strong relationship between dynamic solutions and equilibrium solutions. The
study of the equilibrium problem (1.10) is a fundamental step towards the analysis
and the study of evolution problem. As application of these results, we can mention
the application of the Invariance Principle of Lassalle [5]. Then show, under some
regular conditions, that the dynamic solution converges in H1

0 (Ω) after some time
t ≥ t0, toward a superconductor state. Hence, we have its stability.
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