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OSCILLATION AND ASYMPTOTIC STABILITY OF A DELAY
DIFFERENTIAL EQUATION WITH RICHARD’S

NONLINEARITY

LEONID BEREZANSKY, LEV IDELS

Abstract. We obtain sufficient conditions for oscillation of solutions, and for

asymptotical stability of the positive equilibrium, of the scalar nonlinear delay
differential equation

dN

dt
= r(t)N(t)

[
a−

( m∑
k=1

bkN(gk(t))
)γ]

,

where gk(t) ≤ t.

1. Introduction

Consider the following logistic differential equation which is widely used in Pop-
ulation Dynamics

dN

dt
= rN

(
1− N

K

)
.

Here N(t) is the size of a population, r ≥ 0 is an intrinsic growth rate, K is a
carrying capacity or a saturation level. A large variety of nonlinear differential
equations, besides the one above, has been developed for models of Mathematical
Biology; see for example [3, 9, 1].

To model processes in nature and engineering it is frequently required to know
system states from the past. Depending on the phenomena under study the after-
effects represent duration of some hidden processes. In general, delay differential
equations (DDE) exhibit much more complicated dynamics than ordinary differ-
ential equations (ODE) since a time lag can change a stable equilibrium into an
unstable one and make populations fluctuate, they provide a richer mathemati-
cal framework (compared with ordinary differential equations) for the analysis of
biosystems dynamics.

Models of Population Dynamics, based on nonlinear DDE’s, have attracted much
attention in recent years. The application of delay equations to biomodelling in
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many cases is associated with studies of dynamic phenomena like oscillations, bi-
furcations, and chaotic behavior. Time delays represent an additional level of com-
plexity that can be incorporated in a more detailed analysis of a particular system.

The delay logistic equation
dN

dt
= rN

(
1− Nτ

K

)
(1.1)

appeared in 1948 in Hutchinson’s paper [7], where Nτ = N(t− τ), τ > 0.
The autonomous equation (1.1) has been extensively investigated by numerous

authors. The first paper on the oscillation of a non-autonomous logistic delay dif-
ferential equation was published in [14]. Since this publication, the oscillation of the
logistic DDE as well as its generalizations were studied by many mathematicians.
Some of these results can be found in the monographs [6, 5, 4].

It is a well-known fact, that the traditional logistic model, in some cases, pro-
duces artificially complex dynamics. Therefore, it would be reasonable to get away
from the specific logistic form in studying population dynamics and use more gen-
eral classes of growth models.

For example, to drop an unnatural symmetry of the logistic curve, we consider
the modified logistic form by Pella and Tomlinson [13, 12] or the Richards’ growth
equation with delay

dN

dt
= rN

[
1−

(Nτ

K

)γ]
. (1.2)

According to [13], 0 < γ < 1 is used for invertebrate populations (examples of
invertebrates are insects, worms, starfish, sponges, squid, plankton, crustaceans,
and mollusks), and γ ≥ 1 is used for the vertebrate populations (these include
amphibians, birds, fish, mammals, and reptiles).

In [11] the authors considered (1.2) with several delays. They obtained conditions
for existence of positive solutions and studied so-called long time average stability.
In this paper we obtain oscillation and local stability results for non-autonomous
(1.2) with several delays.

2. Preliminaries

Our objective is to study the scalar nonlinear delay differential equation

Ṅ(t) = r(t)N(t)
[
a−

( m∑
k=1

bkN(gk(t))
)γ]

, t ≥ 0 (2.1)

under the following conditions:
(A1) r(t) is Lebesgue measurable essentially bounded on [0,∞) function, r(t) ≥

0.
(A2) gk : [0,∞) → R are Lebesgue measurable functions with gk(t) ≤ t and

limt→∞ gk(t) = ∞, k = 1, . . . ,m.
(A3) a > 0, bk > 0, γ > 0.

Together with (2.1), we consider for t0 ≥ 0, the initial-value problem

Ṅ(t) = r(t)N(t)
[
a−

( m∑
k=1

bkN(gk(t))
)γ]

, t ≥ t0, (2.2)

N(t) = ϕ(t), t < t0, N(t0) = N0 (2.3)

under the following conditions
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(A4) ϕ : (−∞, t0) → R is a Borel measurable bounded function, ϕ(t) ≥ 0,
N0 > 0.

Definition. A locally absolutely continuous function x : R → R is called a solution
of problem (2.2)–(2.3), if it satisfies (2.2) for almost all t ∈ [t0,∞) and (2.3) for
t ≤ t0.

Lemma 2.1 ([11]). Suppose Conditions (A1)–(A4) hold. Then problem (2.2)-(2.3)
has a unique positive solution N(t), t ≥ t0.

3. Oscillation Criteria

Definition. We say that a function y(t) is non-oscillatory about a number K if
y(t)−K is eventually positive or eventually negative. Otherwise y(t) is oscillatory
about K.

Note that (2.1) has a positive equilibrium,

N∗ = a1/γ/
m∑

k=1

bk.

In this section we study oscillation of solutions of (2.1) about the value N∗.
We will present here some lemmas which will be used in this section. Consider

the linear delay differential equation

ẋ(t) +
l∑

k=1

rk(t)x(hk(t)) = 0, t ≥ 0, (3.1)

and the differential inequalities

ẋ(t) +
l∑

k=1

rk(t)x(hk(t)) ≤ 0, t ≥ 0, (3.2)

ẋ(t) +
l∑

k=1

rk(t)x(hk(t)) ≥ 0, t ≥ 0. (3.3)

Lemma 3.1 ([6]). Let (A1)–(A2) hold for the parameters of (3.1). Then the
following three statements are equivalent:

(1) There exists a non-oscillatory solution of equation (3.1).
(2) There exists an eventually positive solution of the inequality (3.2).
(3) There exists an eventually negative solution of the inequality (3.3).

Lemma 3.2 ([6]). Let (A1)–(A2) hold for the parameters of (3.1). If

lim inf
t→∞

∫ t

maxk hk(t)

l∑
i=1

ri(s)ds > 1/e, (3.4)

then all solutions of (3.1) are oscillatory.

Theorem 3.3. Suppose (A1)-(A4) hold and∫ ∞

0

r(s)ds = ∞. (3.5)

Then for every non-oscillatory solution N(t) of (2.1) we have

lim
t→∞

N(t) = N∗. (3.6)
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Proof. After the substitution N(t) = N∗(1 + x(t)), Equation (2.1) reduced to

ẋ(t) = −ar(t)(1 + x(t))
[( m∑

k=1

Bk(1 + x(gk(t)))
)γ

− 1
]
, t ≥ 0, (3.7)

where

Bk = bk/
m∑

i=1

bi. (3.8)

Condition (A3) implies Bk > 0 and
∑m

k=1 Bk = 1.
The zero solution is an equilibrium of (3.7), which corresponds to the equilibrium

N∗ of (2.1).
By Lemma 2.1 any solution of (2.1) is positive. Then for any solution of (3.7)

we have 1 + x(t) > 0. To prove the theorem we have to show that for every
non-oscillatory about zero solution of (3.7) we have

lim
t→∞

x(t) = 0. (3.9)

Suppose x(t) is a non-oscillatory solution of (3.7). Without loss of generality we
can assume x(t) > 0, t ≥ 0. Hence( m∑

k=1

Bk(1 + x(gk(t)))
)γ

− 1 ≥
( m∑

k=1

Bk

)γ

− 1 = 0.

Then ẋ(t) ≤ 0 and hence there exists limt→∞ x(t) = l. Suppose l > 0. Equality
(3.7) implies

x(t) = x(0)− a

∫ t

0

r(s)(1 + x(s))
[( m∑

k=1

Bk(1 + x(gk(s)))
)γ

− 1
]
ds. (3.10)

If t →∞ then the right hand side of (3.10) tends to −∞, the left hand side has a
finite limit. This contradiction proves the theorem. �

Theorem 3.4. Suppose conditions (A1)–(A4) and (3.5) hold, γ > 1 and there
exists ε > 0 such that all solutions of the linear differential equation

ẏ(t) = −aγr(t)(1− ε)
m∑

k=1

Bky(gk(t)) (3.11)

are oscillatory, were Bk are denoted by (3.8). Then all solutions of (2.1) are
oscillatory about N∗.

Proof. It is sufficient to prove, that all solutions of (3.7) are oscillatory about zero.
Suppose there exists a non-oscillatory solution x of (3.7). Without loss of generality
we can assume, that x(t) > 0, t ≥ 0. Theorem 3.3 implies, that for some t0 > 0 and
for t ≥ t0 we have 0 < x(t) < ε.

Consider the function

f(u1, . . . , um) =
( m∑

k=1

Bk(1 + uk)
)γ

− 1− γ
m∑

k=1

Bkuk.
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Then we have

∂f

∂uk
= γ

( m∑
k=1

Bk(1 + uk)
)γ−1

Bk − γBk,

∂2f

∂ui∂uj
= γ(γ − 1)

( m∑
k=1

Bk(1 + uk)
)γ−2

BiBj .

Hence

f(0, . . . , 0) = 0,
∂f

∂uk
(0, . . . , 0) = 0,

∂2f

∂ui∂uj
(0, . . . , 0) = γ(γ − 1)BiBj .

Taylor’s Formula implies

f(u1, . . . , um) = γ(γ − 1)
m∑

i=1

m∑
j=1

BiBjuiuj + o(∆u),

where

∆u =
( m∑

k=1

u2
k

)1/2

, lim
t→0

o(t)
t

= 0.

Then for uk ≥ 0, k = 1, . . . ,m and ∆u sufficiently small f(u1, . . . , um) ≥ 0. Hence
for ε small enough we have

ẋ(t) ≤ −aγr(t)(1− ε)
m∑

k=1

Bkx(gk(s)), t ≥ 0.

Lemma 3.1 implies that (3.11)) has a non-oscillatory solution. We have a contra-
diction with our assumption. The theorem is proven. �

Corollary 3.5. Suppose conditions (A1)–(A4) and (3.5) hold, γ > 1,

lim inf
t→∞

aγ

∫ t

maxk gk(t)

r(s)ds > 1/e. (3.12)

Then all solutions of (2.1) are oscillatory about N∗.

Proof. Inequality (3.12) implies, that for some ε > 0,

lim inf
t→∞

aγ(1− ε)
∫ t

maxk gk(t)

m∑
i=1

Bir(s)ds > 1/e.

Lemma 3.2 and Theorem 3.4 imply this corollary. �

4. Asymptotic Stability

Consider a general nonlinear delay differential equation

ẋ(t) = f(t, x(t), x(g1(t)), . . . , x(gm(t))), t ≥ 0, (4.1)

with the initial function and the initial value

x(t) = ϕ(t), t < 0, x(0) = x0, (4.2)

under the following conditions:
(B1) f(t, u0, u1, . . . , um) satisfies Caratheodory conditions: Lebesgue measurable

in the first argument and continuous in other arguments, f(t, 0, . . . , 0) = K
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(B2) gk(t) are Lebesgue measurable functions,

gk(t) ≤ t, sup
t≥0

[t− gk(t)] < ∞;

(B3) ϕ : (−∞, 0) → R is a Borel measurable bounded function.
We will assume that the initial-value problem (4.1)–(4.2) has a unique global solu-
tion x(t), t ≥ 0.
Definition. We will say that the equilibrium K of (4.1) is (locally) stable, if for
any ε > 0 there exists δ > 0 such that for every initial conditions |x(0)| < δ0,
|ϕ(t)| < δ0, δ0 ≤ δ, for the solution x(t) of (4.1)–(4.2) we have |x(t)−K| < ε, t ≥ 0.

If, in addition, limt→∞(x(t)−K) = 0, then the equilibrium K of (4.1) is (locally)
asymptotically stable.

Suppose there exist M > 0, γ > 0 such that

|x(t)−K| ≤ M exp{−γt}(|x(0)|+ sup
t<0

|ϕ(t)|)

for all x(0) and ϕ(t) such that |x(0)| + supt<0 |ϕ(t)| is sufficiently small. Then we
will say that the equilibrium K of (4.1) is exponentially stable.

Lemma 4.1 ([10]). Suppose (A1), (B2), (B3) hold for the linear equation (3.1)
and

lim sup
t→∞

l∑
k=1

rk(t)(t− hk(t)) < 1.

Then (3.1) is exponentially stable.

Lemma 4.2 ([2], [8]). Suppose that (b1)-(b3) hold, and that for sufficiently small
u if |uk| ≤ u, k = 0, . . . ,m then

|f(t, u0, . . . , um)−
m∑

k=0

∂F

∂uk
(t,K, . . . , K)uk| = o(u),

where limu→0 o(u)/u = 0. If the linear equation

ẏ(t) =
m∑

k=0

∂F

∂uk
(t, 0, . . . , 0) y(gk(t))

is exponentially stable, then the equilibrium K of (4.1) is locally asymptotically
stable.

Theorem 4.3. Suppose that for equation (2.1) Conditions (A1), (A3), (B2), (B3)
hold and

lim sup
t→∞

aγr(t)
m∑

k=1

Bk(t− gk(t)) < 1, (4.3)

were Bk are denoted by (3.8). Then the equilibrium N∗ of (2.1) is asymptotically
stable.

Proof. The substitution N(t) = N∗(1 + x(t)) implies that the equilibrium N∗ of
(2.1) is asymptotically stable if and only if the zero solution of (3.7) is asymptoti-
cally stable. Lemma 4.1 and inequality (4.3) imply that the linear equation

ẋ(t) = −aγr(t)
m∑

k=1

Bkx(gk(t))
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is exponentially stable. Lemma 4.2 implies now that the zero solution of (3.7) is
asymptotically stable. �
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