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AGE OF INFECTION IN EPIDEMIOLOGY MODELS

FRED BRAUER

Abstract. Disease transmission models in which infectivity depends on the

time since infection are of importance in studying such diseases as HIV/AIDS.
They also provide a means of unifying models with exposed stages or tempo-
rary immunity. We formulate a general age of infection model and carry out a
partial analysis. There are open questions in the analysis of the characteristic
equation at an endemic equilibrium.

1. Introduction

The 1927 epidemic model of Kermack and McKendrick [4] is considerably more
general than what is usually called the Kermack-McKendrick epidemic model. The
general model described by Kermack and McKendrick included a dependence of
infectivity on the time since becoming infected (age of infection). The 1932 and
1933 models of Kermack and McKendrick [5, 6], which incorporated births and
deaths, did not include this dependence. Curiously, while age of infection models
have not played a role in studies of epidemics, they are very important in studies of
HIV/AIDS. Since HIV/AIDS acts on a very long time scale it is essential to include
demographic effects (recruitment into and departure from a population of sexually
active individuals). Also, the infectivity of HIV-positive people is high for a rela-
tively short time after becoming infected, then very low for a long period, possibly
several years, and then high shortly before developing into full-blown AIDS. Thus,
the age of infection for models described by Kermack and McKendrick for epidemics
but not for endemic situations, have become important in endemic situations.

We will describe a general age of infection model which includes demographic
effects and carry out a partial analysis. There are many unsolved problems in
the analysis, centered on the analysis of the characteristic equation at an endemic
equilibrium.

2. The Basic SI∗R Model

We let S(t) denote the number of suceptibles at time t and R(t) the number of
members recovered with immunity, as is standard in compartmental epidemiological
models. However, instead of using I(t) to denote the number of infective members
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at time t we let I∗(t) denote the number of infected (but not necessarily infective)
members and let φ(t) be the total infectivity at time t.

We make the following assumptions:
(1) The population has a birth rate Λ(N), and a natural death rate µ giving a

carrying capacity K such that Λ(K) = µK,Λ′(K) < µ.
(2) An average infected member makes C(N) contacts in unit time of which

S/N are with susceptible. We define β(N) = C(N)/N and it is reasonable
to assume that β′(N) ≤ 0, C ′(N) ≥ 0.

(3) B(τ) is the fraction of infected individuals remaining infective if alive
when infection age is τ and Bµ(τ) = e−µτB(τ) is the fraction of in-
fected ones remaining alive and infected when infection age is τ . Let
B̂µ(0) =

∫∞
0

Bµ(τ)dτ
(4) A fraction f of infected members recovers with immunity and a fraction

(1− f) dies of disease.
(5) π(τ) with 0 ≤ π(τ) ≤ 1 is the infectivity at infection age τ ; let A(τ) =

π(τ)B(τ), Aµ(τ) = π(τ)Bµ(τ), Âµ(0) =
∫∞
0

Aµ(τ)dτ .
We let i0(t) be the number of new infected individuals at time t, i(t, τ) be the

number of infected individuals at time t with infection age τ . Then

i(t, τ) = i0(t− τ)Bµ(τ), 0 ≤ τ ≤ t

i0(t) = Sβ(N)φ(t)

and

S′ = Λ(N)− µS − β(N)Sφ

I∗(t) =
∫ ∞

0

i(t, τ)dτ

=
∫ ∞

0

i0(t− τ)Bµ(τ)dτ

=
∫ ∞

0

β(N(t− τ))S(t− τ)φ(t− τ)Bµ(τ)dτ

φ(t) =
∫ ∞

0

i0(t− τ)Aµ(τ)dτ

=
∫ ∞

0

β(N(t− τ))S(t− τ)φ(t− τ)Aµ(τ)dτ

Differentiation of the equation for I∗ shows that the rate of recovery plus the
rate of disease death is

−
∫ ∞

0

β(N(t− τ))S(t− τ)φ(t− τ)e−µτB′(τ)dτ

Thus the SI∗R model is
S′ = Λ(N)− µS − β(N)Sφ

φ(t) =
∫ ∞

0

β(N(t− τ))S(t− τ)φ(t− τ)Aµ(τ)dτ

N ′(t) = Λ(N)− µN + (1− f)
∫ ∞

0

β(N(t− τ))S(t− τ)φ(t− τ)e−µτB′(τ)dτ

(2.1)
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Since I∗ is determined when S, φ, N are known we have dropped the equation for
I∗ from the model, but it will be convenient to recall

I∗(t) =
∫ ∞

0

β(N(t− τ))S(t− τ)φ(t− τ)Bµ(τ)dτ

If f = 1 then N(t) approaches the limit K, the model is asymptotically autonomous
and its dimension may be reduced to 2, replacing N by the constant K. We note,
for future use, that

B̂µ(0) =
∫ ∞

0

e−µτB(τ)dτ ≤
∫ ∞

0

e−µτdτ = 1/µ,

so that 0 ≤ 1− µB̂µ(0) ≤ 1.
We define M = (1− f)(1− µB̂µ(0), and 0 ≤ M ≤ 1. We note, however, that if

f = 1 then M = 0. We also have, using integration by parts,

−
∫ ∞

0

e−µτB′(τ)dτ = 1− µB̂µ(0) ≥ 0

If a single infective is introduced into a wholly susceptible population, making
Kβ(K) contacts in unit time, the fraction still infective at infection age τ is Bµ(τ)
and the infectivity at infection age τ is Aµ(τ). Thus R0, the total number of
secondary infections caused, is∫ ∞

0

Kβ(K)Aµ(τ)dτ = Kβ(K)Âµ(0) .

3. Exposed periods

One common example of an infection age model is a model with an exposed
period, during which individuals have been infected but are not yet infective. Thus
we may think of infected susceptible individuals going into an exposed class (E),
proceeding from the exposed class to the infective class (I) at rate κE and out of
the infective class at rate αI. Exposed members have infectivity 0 and infective
members have infectivity 1. Thus I∗ = E + I and φ = I.

We let u(τ) be the fraction of infected members with infection age τ who are not
yet infective if alive and v(τ) the fraction of infected members who are infective if
alive. Then the fraction becoming infective at infection age τ if alive is κu(τ), and
we have

u′(τ) = −κu(τ), u(0) = 1

v′(τ) = κu(τ)− αv(τ) v(0) = 0 .
(3.1)

The solution of the first of the equations of (3.1) is u(τ) = e−κτ and substitution
of this into the second equation gives

v′(τ) = κe−κτ − αv(τ)

When we multiply this equation by the integrating factor eατ and integrate, we
obtain the solution

v(τ) =
κ

κ− α
[e−ατ − e−κτ ]
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and this is the term Aµ(τ) in the general model. The term B(τ) is u(τ) + v(τ).
Thus we have

A(τ) =
κ

κ− α
[e−ατ − e−κτ ]

B(τ) =
κ

κ− α
e−ατ − α

κ− α
e−κτ

e−µτB′(τ) = − ακ

κ− α
[e−(µ+α)τ − e−(µ+κ)τ ]

With these choices and the identifications I = φ, E = I∗ − φ, we may verify that
the system (2.1) reduces to

S′ = Λ(N)− β(N)SI − µS

E′ = β(N)SI − κE

I ′ = κE − (µ + α)I

N ′ = Λ(N)− (1− f)αI − µN,

which is a standard SEIR model.
For some diseases there is an asymptomatic period during which individuals have

some infectivity rather than an exposed period. If the infectivity during this period
is reduced by a factor ε, then the model can be described by the system

S′ = Λ(N)− β(N)S(I + εE)− µS

E′ = β(N)S(I + εE)− κE

I ′ = κE − (µ + α)I

N ′ = Λ(N)− (1− f)αI − µN,

This may be considered as an age of infection model with the same identifications
of the variables and the same choice of u(τ), v(τ) but with A(τ) = εu(τ) + v(τ).

4. Equilibria and the characteristic equation

There is a disease-free equilibrium S = N = K, φ = 0 of (2.1). Endemic equilib-
ria are given by

Sβ(N)Âµ(0) = 1

Λ(N) = µN + (1− f)(1− µB̂µ(0))Sβ(N)φ

Λ(N) = µS + Sφβ(N)

If f = 1 the third condition gives

φ =
µ(K − β(K)

Âµ(0)

and there is always an endemic equilibrium. If f < 1 the second of the equilibrium
conditions gives

φ =
Âµ(0)

M
[Λ(N)− µN ]

Now substitution of the first two equilibrium conditions into the third gives an
equilibrium condition for N , namely

(1−M)Λ(N) = µN − µM

β(N)Âµ(0)
(4.1)
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If R0 < 1,
C(N)Âµ(0) ≤ C(K)Âµ(0) = R0 < 1

so that

1− M

C(N)Âµ(0)
< 1−M

Then we must have Λ(N) < µN at equilibrium. However, this would contradict
the demographic condition Λ(N) > µN, 0 < N < K. This shows that if R0 < 1
there is no endemic equilibrium.

If R0 > 1 for N = 0 the left side of (4.1) is non-negative while the right side is
negative. For N = K the left side of (4.1) is µK(1−M) while the right side is

µK − MµK

R0
> µK(1−M)

This shows that there is an endemic equilibrium solution for N .
The linearization of (2.1) at an equilibrium (S, N, φ) is

x′ = −[µ + φβ(N)]x + [Λ′(N)− Sφβ′(N)]y − Sβ(N)z

y′ = [Λ′(N)− µ]y + (1− f)
∫ ∞

0

e−µτB(τ)[φβ(N)x(t− τ)

+ Sφβ′(N)y(t− τ) + Sβ(N)z(t− τ)]dτ

z(t) =
∫ ∞

0

Aµ(τ)[φβ(N)x(t− τ) + Sφβ′(N)y(t− τ) + Sβ(N)z(t− τ)]dτ

The condition that this linearization have solutions which are constant multiples
of e−λτ is that λ satisfies a characteristic equation. The characteristic equation at
an equilibrium (S, φ,N) is

det

−[λ + µ + φβ(N)] [Λ′(N)− Sφβ′(N)] Sβ(N)
−φβ(N)Q(λ) −[λ− Λ′(N) + µ]− Sφβ′(N)Q(λ) −Sφβ(N)Q(λ)
φβ(N)Âµ(λ) Sφβ′(N)Âµ(λ) Sβ(N)Âµ(λ)− 1


= 0 ,

where

Âµ(λ) =
∫ ∞

0

e−λτAµ(τ)dτ , B̂µ(λ) =
∫ ∞

0

e−λτBµ(τ)dτ ,

Q(λ) = (1− f)[1− (λ + µ)B̂µ(λ)] .

This reduces to

Sβ(N)Âµ(λ) + (1− f)φSβ′(N)B̂µ(λ)

= 1 +
fφβ(N)
λ + µ

+
(1− f)φP

λ + µ− Λ′(N)
· [1− Λ′(N)B̂µ(λ)]

(4.2)

where P = β(N) + Sβ′(N) ≥ 0.
The characteristic equation for a model consisting of a system of ordinary differ-

ential equations is a polynomial equation. Now we have a transcendental charac-
teristic equation, but there is a basic theorem that if all roots of the characteristic
equation at an equilibrium have negative real part (that is, if <λ < 0, where <
denotes the real part, for every root λ of the characteristic equation) then the
equilibrium is asymptotically stable [9].
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At the disease-free equilibrium S = N = K, φ = 0 the characteristic equation is

Kβ(K)Âµ(λ) = 1 .

Since the absolute value of the left side of this equation is no greater than Kβ(K)Âµ(0)
if <λ ≥ 0 the disease-free equilibrium is asymptotically stable if and only if

R0 = Kβ(K)Âµ(0) < 1 .

5. The Endemic Equilibrium

In the analysis of the characteristic equation (4.2) it is helpful to make use of
the following elementary result:

If |P (λ)| ≤ 1, <g(λ) > 0 for <λ ≥ 0, then all roots of the charac-
teristic equation P (λ) = 1 + g(λ) satisfies <λ < 0.

To prove this result, we observe that if <λ ≥ 0 the left side of the characteristic
equation has absolute value at most 1 while the right side has absolute value greater
than 1.

If f = 1, the characteristic equation reduces to

Sβ(N)Âµ(λ) = 1 +
φβ(N)
λ + µ

.

The term
fφβ(N)
λ + µ

in (4.2) has positive real part if <λ ≥ 0. It follows from the lemma that all roots
satisfy <λ < 0, so that the endemic equilibrium is asymptotically stable. Thus
all roots of the characteristic equation (4.2) have negative real part if f = 1. The
analysis if f < 1 is more difficult.

The roots of the characteristic equation depend continuously on the parameters
of the equation. In order to have a root with <λ ≥ 0 there must be parameter
values for which either there is a root at ”infinity”, or there is a root λ = 0 or
there is a pair of pure imaginary roots λ = ± iy, y > 0. Since the left side of (4.2)
approaches 0 while the right side approaches 1 as λ →∞,<λ ≥ 0, it is not possible
for a root to appear at “infinity”. For λ = 0, since Sβ(N)Âµ(0) = 1 and β′(N) ≤ 0
the left side of (4.2) is less than 1 at λ = 0, while the right side is greater than 1
since

1− Λ′(N)B̂µ(0) > 1− Λ′(N)/µ > 0
if Λ′(N) < µ. This shows that λ = 0 is not a root of (4.2), and therefore that all
roots satisfy <λ < 0 unless there is a pair of roots λ = ± iy, y > 0. According to
the Hopf bifurcation theorem [3] a pair of roots λ = ± iy, y > 0 indicates that the
system (2.1) has an asymptotically stable periodic solution and there are sustained
oscillations of the system.

A somewhat complicated calculation using the fact that since Bµ(τ) is monotone
non-increasing, ∫ ∞

0

Bµ(τ) sin yτdy ≥ 0

for 0 ≤ y < ∞ shows that the term

(1− f)φP

λ + µ− Λ′(N)
· [1− Λ′(N)B̂µ(λ)]
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in (4.2) has positive real part at least if −µ ≤ Λ′(N) ≤ µ. Therefore, if −µ ≤
Λ′(N) ≤ µ, instability of the endemic equilibrium is possible only if the term

(1− f)φSβ′(N)B̂µ(iy)

in (4.2) has negative real part for some y > 0. This is not possible with bilinear
incidence, since β′(N) = 0; thus with bilinear incidence the endemic equilibrium of
(2.1) is always asymptotically stable. Since β′(N) ≤ 0, instability requires

<B̂µ(iy) =
∫ ∞

0

Bµ(τ) cos yτdτ < 0

for some y > 0. If the function B(τ) is non-increasing and convex, that is, if
B′(τ) ≤ 0, B′′(τ) ≥ 0, then it is easy to show using integration by parts that∫ ∞

0

Bµ(τ) cos yτdτ ≥ 0

for 0 < y < ∞. Thus if B(τ) is convex, which is satisfied for example, by the choice

B(τ) = e−ατ

the endemic equilibrium of (2.1) is asymptotically stable if −µ ≤ Λ′(N) ≤ µ.
There are certainly less restrictive conditions which guarantee asymptotic stabil-

ity. However, examples have been given of instability, even with f = 0,Λ′(N) = 0,
where constant infectivity would have produced asymptotic stability [1, 7, 8]. These
results indicate that concentration of infectivity early in the infected period is con-
ducive to such instability. In these examples, the instability arises because a root of
the characteristic equation crosses the imaginary axis as parameters of the model
change, giving a pure imaginary root of the characteristic equation. This translates
into oscillatory solutions of the model. Thus infectivity which depends on infection
age can cause instability and sustained oscillations.

6. An SI∗S Model

To formulate an SI∗S age of infection model we need only take the SI∗R age of
infection model (2.1) and move the recovery term from the equation for R (which
was not listed explicitly in the model) to the equation for S. We obtain the model

S′ = Λ(N)− µS − β(N)Sφ−

= f

∫ ∞

0

β(N(t− τ))S(t− τ)φ(t− τ)e−µτB′(τ)dτ

φ(t) =
∫ ∞

0

β(N(t− τ))S(t− τ)φ(t− τ)Aµ(τ)dτ

N ′(t) = Λ(N)− µN + (1− f)
∫ ∞

0

β(N(t− τ))S(t− τ)φ(t− τ)e−µτB′(τ)dτ

(6.1)
Although we will not carry out any analysis of this model, we state that it may

be attacked using the same approach as that used for (2.1). It may be shown that
if R0 = Kβ(K)Âµ(0) < 1 the disease-free equilibrium is asymptotically stable. If
R0 > 1 there is an endemic equilibrium and the characteristic equation at this
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equilibrium is

Sβ(N)Âµ(λ) + (1− f)φSβ′(N)B̂µ(λ)

= 1 + fφβ(N)B̂µ(λ) +
(1− f)φP

λ + µ− Λ′(N)
· [1− Λ′(N)B̂µ(λ)] ,

(6.2)

where P = β(N) + Sβ′(N) ≥ 0.
Many diseases, including most strains of influenza, impart only temporary im-

munity against reinfection on recovery. Such disease may be described by SI∗S age
of infection models, thinking of the infected class I∗ as comprised of the infective
class I together with the recovered and immune class R. In this way, members
of R neither spread or acquire infection. We assume that immunity is lost at a
proportional rate κ.

We let u(τ) be the fraction of infected members with infection age τ who are
infective if alive and v(τ) the fraction of infected members who are not recovered
and still immune if alive. Then the fraction becoming immune at infection age τ if
alive is αu(τ), and we have

u′(τ) = −αu(τ), u(0) = 1

v′(τ) = αu(τ)− κv(τ) v(0) = 0
(6.3)

These equations are the same as (3.1) obtained in formulating the SEIR model
with α and κ interchanged. Thus we may solve to obtain

u(τ) = e−ατ

v(τ) =
α

κ− α
[e−ατ − e−κτ ]

We take B(τ) = u(τ) + v(τ), A(τ) = u(τ). Then if we define I = φ,R = I∗ − φ,
the model (6.1) is equivalent to the system

S′ = Λ(N)− β(N)SI − µS + κR

I ′ = β(N)SI − (µ + α)I

R′ = fαE − (µ + κ)R

N ′ = Λ(N)− (1− f)αI − µN,

which is a standard SIRS model.
If we assume that, instead of an exponentially distributed immune period, that

there is an immune period of fixed length ω we would again obtain u(τ) = e−ατ ,
but now we may calculate that

v(τ) = 1− e−ατ , (τ ≤ ω), v(τ) = e−ατ (eαω − 1), (τ > ω).

To obtain this, we note that

v′(τ) = αu(τ), 0 ≤ ω, v′(τ) = αu(τ)− αu(τ − ω), τ > ω

From these we may calculate A(τ), B(τ) for an SI∗S model. Since it is known
that the endemic equilibrium for an SIRS model with a fixed removed period can
be unstable [2], this shows that (6.2) may have roots with non-negative real part
and the endemic equilibrium of an SI∗S age of infection model is not necessarily
asymptotically stable.



EJDE/CONF/12 AGE OF INFECTION 37

7. Discussion

We have formulated some general age of infection epidemiological models and
set up their equilibrium analysis. Compartmental models which include exposed
periods, temporary immunity, and other compartments, can be formulated as age
of infection models.

The SI∗R age of infection model is actually a special case of the SI∗S age of
infection model. We may view the class R as still infected but having no infectivity,
so that v(τ) = 0. The underlying idea is that in infection age models we divide
the population into members who may become infected and members who can
not become infected, either because they are already infected or because they are
immune. Thus, we may view the SI∗S model as general. If we could carry out a
complete analysis of the corresponding characteristic equation we could use it as
the basis of a general theory. However, since the characteristic equation analysis
is not yet complete there are many open questions whose answers would provide
useful insights into general model behaviour.
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