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HOLOMORPHIC SOLUTIONS TO LINEAR FIRST-ORDER
FUNCTIONAL DIFFERENTIAL EQUATIONS

BRUCE VAN BRUNT, JONATHAN C. MARSHALL

Abstract. In this paper we study holomorphic solutions to linear first-order
functional differential equations that have a nonlinear functional argument.

We focus on the existence of local solutions at a fixed point of the functional
argument and the holomorphic continuation of these solutions. We show that
the Julia set for the functional argument dominates not only the conditions for

holomorphic continuation, but also the existence of local solutions. In partic-
ular, nonconstant holomorphic solutions in a neighbourhood of a repelling or
neutral fixed point are uncommon in that the functional argument must satisfy

conditions that force it to have an exceptional point in the former case, and a
Siegel fixed point in the latter case. In contrast, local holomorphic solutions
always exist near attracting fixed points. In this case a subset of the Julia set

forms a natural boundary for holomorphic continuation.

1. Introduction

We study initial-value problems of the form

y′(z)− by(z)− λy(g(z)) = 0 (1.1)

y(z0) = y0 , (1.2)

where b, λ 6= 0, and y0 6= 0 are constants, and z0 is a fixed point for the entire func-
tion g. The case g(z) = αz, where α is a constant, corresponds to the well-known
pantograph equation, which has been studied by numerous researchers including
Kato and McLeod [12], Iserles [10], Iserles and Liu [11], Fredrickson [7], Morris
et al. [15] and Derfel & Iserles [4]. A matrix version has been studied by Carr
and Dyson [3], and a second order version has been studied by van Brunt et al.
[21]. The pantograph equation has been used in models of current collection in an
electric train [17], and cell and tumour growth [9, 1, 2] among other applications.

The case where g is a nonlinear entire function has received much less attention.
Oberg [16] studied local solutions to a more general first order problem and made
the connection of the existence of local solutions with attracting and neutral fixed
points. Recently, Marshall et al. [13] and van Brunt et al. [22, 23, 24] looked at
global properties of solutions to second order versions of the initial-value problem.
Motivated by Oberg’s work, they exploited certain results from complex dynamics
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to show that the Julia set of the functional argument determined where solutions
can be holomorphically continued. This paper builds on this work, applying the
results to the first order case and merging the results of these papers to provide a
succinct summary.

The main results concerning holomorphic solutions to the initial-value problem
(1.1), (1.2) are given in Section 3. Section 2 is devoted to a summary of some
relevant terms and results from complex dynamics. The remainder of this section
is devoted to a few simple examples that motivate and illustrate the analysis and
results of Section 3.

Example 1.1. Suppose that g(z) = αz, where α is a complex constant, and that
z0 = 0. If y is a solution to the initial-value problem that is holmorphic at the
origin then y can be represented as a power series of the form y(z) =

∑∞
n=0 cnzn.

Substituting this expression into equation (1.1) gives

cn =
c0

n!

n−1∏
k=0

(b + λαk).

Since y0 6= 0, we have c0 6= 0. If λ = −b/αj for some non-negative integer j,
then it is clear that there is a polynomial solution to the initial-value problem. If
λ 6= −b/αj for any non-negative integer j. Then ck 6= 0 and∣∣∣cn+1

cn

∣∣∣ =
|b + λαn|

n + 1
;

hence, the power series defines an entire function for |α| ≤ 1. If |α| > 1, however,
then ∣∣cn+1

cn

∣∣ →∞

as n → ∞, so that the series converges only for z = 0. In this case there is
no solution holomorphic at the origin. The initial-value problem always has a
holomorphic solution if |α| ≤ 1, but if |α| > 1, the initial-value problem has a
holomorphic solution only for special values of λ.

Example 1.2. Consider the initial-value problem

y′(z) = −y(z2) (1.3)

y(0) = 1 . (1.4)

Substituting a power series of the form
∑∞

n=0 cnzn into equation (1.3) yields

y(z) = 1 +
∞∑

k=1

(−1)kz2k−1∏k
m=1(2m − 1)

,

which defines a holomorphic function for |z| < 1. Note that the series defining y has
large gaps: the coefficient cn is nonzero only if n = 2k − 1 for some k = 0, 1, 2, . . . .
The sequence {2k − 1} meets the conditions of the Hadamard Gap Theorem (cf.
[19]), viz., there is a number ν > 0 such that nk+1 > (1 + ν)nk for all k. Since
the radius of convergence for the power series is R = 1 we thus see that the circle
|z| = 1 forms a natural boundary for the holomorphic continuation of y.
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Example 1.3. The function g(z) = z2 also has a fixed point at z = 1. In contrast
with the previous example, this fixed point is repelling, i.e., |g′(1)| > 1. Consider
the initial-value problem that consists of equation (1.3) and the initial condition

y(1) = 1.

Evidently, this problem has a solution

y(z) =
1
z
,

which is holomorphic at z = 1.

2. Fixed Points and the Julia Set

The existence of a holomorphic local solution to the initial-value problem (1.1),
(1.2) depends crucially on the nature of the fixed point. Let g be a function holo-
morphic at z0 and let z0 be a fixed point for g. The point z0 is called attracting if
there exists a neighbourhood U of z0 such that

|g(z)− z0| < |z − z0|

for all z ∈ U −{z0}. Similarly, z0 is called repelling if there exists a neighbourhood
U of z0 such that

|g(z)− z0| > |z − z0|
for all z ∈ U − {z0}. If z0 is neither attracting nor repelling, then z0 is called
neutral. Since g is holomorphic at z0, fixed points can be characterized as follows:

(1) z0 is attracting if and only if |g′(z0)| < 1;
(2) z0 is repelling if and only if |g′(z0)| > 1.

Let z0 be an attracting fixed point of g. The basin of attraction is defined as

Az0 = {z : lim
n→∞

gn(z) = z0}.

The set Az0 need not be connected. The definition of an attracting fixed point,
however, indicates that there is some neighbourhood U of z0 that is in Az0 , so that
there is a non-empty connected open subset of Az0 that contains z0. We define the
immediate basin of attraction A0

z0
as the connected component of Az0 containing

the point z0. The boundary of A0
z0

is denoted by ∂A0
z0

.
Let gn denote the nth composition of g, e.g., g2(z) = g(g(z)). A point z0 ∈ C

such that gn(z0) = z0, and gk(z0) 6= z0 for k = 1, 2, . . . n − 1 is called a periodic
point of period n. Evidently, a fixed point is a periodic point of period 1. Let
z0 be a periodic point of period n. We say that z0 is repelling if there exists a
neighbourhood U of z0 such that

|gn(z)− z0| > |z − z0|

for all z ∈ U − {z0}.
We define the Julia set J(g) of a holomorphic function g as the closure of the set

of repelling periodic points of g. This is not the classical definition of the Julia set,
which is in terms of normal families. Nonetheless, the definitions are equivalent.
The next theorem gives an important property of Julia sets in connection with
holomorphic continuation [5, 13].
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Theorem 2.1. Let z ∈ J(g), U be a neighbourhood of z, and gn(U) = {gn(z) : z ∈
U}. Then the set G defined by

G =
∞⋃

n=1

gn(U)

omits at most one point in C.

Theorem 2.1 shows that there is at most one point σ ∈ C such that σ /∈ G. This
point is called an exceptional point. The characterization of the exceptional point
is particularly simple for polynomials (cf. [5]).

Theorem 2.2. Let g be a polynomial. Suppose that there is a point σ ∈ J(g) and
a neighbourhood U of z such that

∞⋃
n=1

gn(U) = C− {σ}

for some σ ∈ C. Then g(z) = σ +κ(z−σ)k for some κ ∈ C−{0} and some k ∈ N.

It is clear from the above result that if there is an exceptional point σ for a
nonlinear polynomial g it must be a fixed point for g. If k ≥ 2, then |g′(σ)| = 0, so
that the fixed point must be attracting. Suppose that z0 is another fixed point for
g. Then g(z0) = z0, so that

κ(z − σ)k−1 = 1;
hence, g′(z0) = k ≥ 2. We thus see that if g has an exceptional point, then any
other fixed points must be repelling.

3. Holomorphic Solutions

The space of functions holomorphic in a set Ω ⊆ C is denoted by H(Ω) and the
disc of radius R centred at z0 is denoted by D(z0;R). The closed disc is denoted
by D̄(z0;R).

The Julia set of g arises naturally in the holomorphic continuation of solutions
to equation (1.1). Suppose, for example, that y ∈ H(D(z0; δ)) is a solution to
equation (1.1) for some δ > 0. Then equation (1.1) shows that y ∈ H(g(D(z0; δ))),
and since y is holomorphically continued into g(D(z0; δ)),

y′(g(z))− by(g(z)) = λy(g2(z)),

for all z ∈ D(z0; δ). The above argument can be applied any number of times so
that

y′(gn(z))− by(gn(z)) = λy(gn+1(z)),
for n = 0, 1, 2, . . . and z ∈ D(z0; δ). We thus have that y can be holomorphically
continued to the set G =

⋃∞
n=1 gn(D(z0; δ)). Now, it is possible that G ⊆ D(z0; δ),

so that the continuation process is trivial, but if D(z0; δ) contains a point of the
Julia set, then Theorem 2.1 shows that G covers the complex plane with at most
one exception. We thus have the following result.

Theorem 3.1. Suppose that y is a solution to equation (1.1) that is holomorphic
at a point z1 ∈ J(g). Then y can be holomorphically continued to all points of the
complex plane with at most one exception.
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Evidently, if g does not have an exceptional point and y is holomorphic at a
point in J(g) then y must be an entire function. If g is nonlinear, however, the
maximum modulus theorem places severe restrictions on y.

Theorem 3.2. Let g ∈ H(C) be nonlinear and suppose that y ∈ H(C) is a solution
to equation (1.1). Then y is a constant.

Proof. For any f ∈ H(C) let

Mf (R) = sup
|z|=R

|f(z)|.

Polya [18] showed that for any entire functions y and g such that g(0) = 0 there is
a constant c, 0 < c < 1, such that

My◦g(R) ≥ My(cMg(
R

2
)), (3.1)

for all R > 0. We prove the theorem for the case g(0) = 0 and note the proof can
be extended the more general case by use of a transformation [8].

Suppose that y is a nonconstant solution to equation (1.1) and let h be the
function defined by

h(z) =

{
y(z)−y(0)

z , if z 6= 0,

y′(0), if z = 0 .

Since y is entire and nonconstant h is an entire function. The above definition of h
provides the inequalities

My ≤ RMh(R) + |y0| , (3.2)

RMh(R) ≤ My(R) + |y0|, (3.3)

for all R > 0.
The Cauchy integral formula gives

y′(z) =
1

2πi

∫
γ

y(ξ)
(ξ − z)2

d ξ,

where γ is any simple closed contour oriented anticlockwise that encloses z. Since
y is entire, we can use contours of the form γδ = {ξ : |ξ − z| = δ}, where δ is any
positive number; thus, for δ > 0,

|y′(z)| ≤ My′(R) ≤ 1
δ
My(R + δ).

Equation (1.1), the Maximum Modulus Theorem and the Polya inequality (3.1)
imply

My(R + δ)
(1
δ

+ |b|
)
≥ |λ|My◦g(R) ≥ |λ|My(cMg(

R

2
)). (3.4)

Inequalities (3.2) - (3.4) thus yield(
(R + δ)Mh(R + δ) + |y0|

)(1
δ

+ |b|
)
≥ |λ|

(
cMg(

R

2
)Mh(cMg(

R

2
))− |y0|

)
,

and since Mh(R) 6= 0 and Mg(R/2) 6= 0 for any R > 0, the above inequality can be
recast as

Mh(R + δ)L(R) ≥ Mh(cMg(
R

2
)),
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where

L(R) =
{ 1
|λ|

(
R + δ +

|y0|
Mh(R + δ)

)(1
δ

+ |b|
)

+
|y0|

Mh(R + δ)
} 1

cMg(R
2 )

.

Now, g is nonlinear and hence R/Mg(R/2) → 0 as R →∞. Consequently there is
an R̂ > 0 such that

cMg(
R

2
) > R + δ and L(R) < 1

for all R ≥ R̂. For such R we thus have

Mh(R + δ) > Mh(cMg(
R

2
)),

which contradicts the Maximum Modulus Theorem. We thus conclude that y must
be constant. �

Theorems 3.1 and 3.2 can be combined to give the following result.

Theorem 3.3. Suppose that g is a nonlinear entire function without an exceptional
point and that y is a solution to equation (1.1) that is holomorphic at some point
in J(g). Then λ = b, and y is a constant.

Loosely speaking, the above theorem indicates that, generically, linear functional
differential equations do not have solutions that are holomorphic at points in the
Julia set of the functional argument. Nonconstant solutions that are holomorphic
at points in the Julia set exist only if the nonlinear function g has an exceptional
point, and Theorem 2.2 makes this a tractable condition for polynomials.

Since any repelling fixed points of g must be in the Julia set of g, Theorem 3.3
yields immediately the following corollary.

Corollary 3.4. Let g be a nonlinear entire function with a repelling fixed point z0.
If there exists a nonconstant solution to initial-value problem (1.1), (1.2) that is
holomorphic at z0 then g must have an exceptional point.

Example 1.3 illustrates that nonconstant holomorphic solutions can occur in the
presence of an exceptional point, in this case z = 0. Corollary 3.4, however, indi-
cates that, in general, initial-value problems of the form (1.1), (1.2) do not have
holomorphic solutions if z0 is a repelling fixed point. In contrast, if z0 is an attract-
ing fixed point then the initial-value problem always has a solution holomorphic in
a neighbourhood of z0. Specifically, we have the following result, a proof of which
can be found in [13, Theorem 2.2], and is a special case of a more general result
(cf. [20]).

Theorem 3.5. Let z0 be an attracting fixed point of g. Then there exists a local
solution to the initial-value problem (1.1), (1.2) that is unique among functions
holomorphic at z0.

The Julia set, however, still plays a rôle in the holomorphic continuation of the
local solution guaranteed by Theorem 3.5.

Theorem 3.6. Let g be a nonlinear polynomial and z0 be an attracting fixed point
of g. Then the solution to initial-value problem (1.1), (1.2) has ∂Az0 as a natural
boundary, unless the solution is a constant.
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Proof. Let y be the local solution to the initial-value problem holomorphic at z0.
We show first that y ∈ H(Az0) and then that a nonconstant solution y cannot be
holomorphic at any point on ∂Az0 .

Suppose that y cannot be holomorphically continued to Az0 . Then there is a
z ∈ Az0 at which y is singular, and equation (1.1) shows that y must also be singular
at g(z). The same argument can be invoked any number of times and hence y has
a sequence of singularities {gn(z)}. The point z0, however, is an attracting fixed
point and z ∈ Az0 ; consequently, gn(z) → z0 as n → ∞. Hence we arrive at the
contradiction that there is no neighbourhood of z0 where y is holomorphic. We
thus conclude that y ∈ H(Az0).

Suppose that y is a nonconstant solution. Now, ∂Az0 ⊆ J(g), so that Theorem
3.3 precludes a solution that is holomorphic at any point on ∂Az0 , unless g has an
exceptional point. But g is a nonlinear polynomial, so that if g has an exceptional
point it must be the attracting fixed point z0. We know that y is holomorphic at
this point. We thus conclude that the solution cannot be holomorphically continued
through any point of ∂Az0 . �

A few remarks are in order for the case where z0 is a neutral fixed point for the
nonlinear polynomial g. The results for this case are considered in detail in van
Brunt et al. [23]. Briefly, if z0 ∈ F (g) = C \ J(g) (the Fatou set), then it can be
shown that the initial-value problem (1.1), (1.2) has a local solution holomorphic
at z0. The condition that z0 ∈ F (g) corresponds to the condition that g be locally
linearizable near z0, and hence that z0 is a Siegel point. The holomorphic solution
can be continued into the Siegel disc corresponding to z0, and the boundary of
this disc forms a natural boundary for holomorphic continuation of nonconstant
solutions.

Since z0 is a neutral fixed point for the nonlinear polynomial g, we see that
g cannot have an exceptional point. If z0 ∈ J(g) then Theorem 3.3 shows that
holomorphic solutions are restricted to constant functions and the special case λ =
b. If z0 corresponds to a rational rotation, then z0 ∈ J(g); if z0 corresponds to an
irrational rotation, then Cremer’s result (cf. Milnor [14]) indicates that generically
z0 ∈ J(g), so that in this sense nonconstant holomorphic solutions are rare. Milnor
(op. cit.), Chapter 11 describes the paucity of Siegel points in more detail.
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