\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small 2005-Oujda International Conference on Nonlinear Analysis. \newline {\em Electronic Journal of Differential Equations}, Conference 14, 2006, pp. 249--254.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \setcounter{page}{249} \begin{document} \title[\hfilneg EJDE/Conf/14 \hfil Positive solutions in the semi-positone case] {Existence of non-negative solutions for nonlinear equations in the semi-positone case} \author[N. Yebari, A. Zertiti \hfil EJDE/Conf/14 \hfilneg] {Naji Yebari, Abderrahim Zertiti} % in alphabetical order \address{Naji Yebari \newline D\'epartement de Math\'ematiques\\ Universit\'e Abdelmalek Essaadi\\ B. P. 2121, Tetouan, Maroc} \email{nyebari@hotmail.com, nyebari@fst.ac.ma} \address{Abderrahim Zertiti \newline D\'epartement de Math\'ematiques\\ Universit\'e Abdelmalek Essaadi\\ B. P. 2121, Tetouan, Maroc} \email{zertiti@fst.ac.ma} \date{} \thanks{Published September 20, 2006.} \subjclass[2000]{35J65, 35J25} \keywords{Superlinear semi-positone problems; variational methods; \hfill\break\indent fibring method} \begin{abstract} Using the fibring method we prove the existence of non-negative solution of the $p$-Laplacian boundary value problem $-\Delta_pu=\lambda f(u)$, for any $\lambda >0$ on any regular bounded domain of $\mathbb{R}^N$, in the special case $f(t)=t^q-1$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction and main results} In this paper we are interested in finding nonnegative solutions to the equation \begin{equation} \begin{gathered} -\Delta _pu=\lambda f(u) \quad\text{in }\Omega , \\ u=0 \quad\text{on } \partial \Omega , \end{gathered} \label{e1.1} \end{equation} for some specific $f$ in the non positone case ($f(0)<0$), under assumptions stated below. Here $\Omega $ is a connected and bounded subset of $\mathbb{R}^N$ with boundary $\partial \Omega $ in $C^{1,\alpha }$. We set \[ \Delta _pu=\mathop{\rm div}(| \nabla u| ^{p-2}\nabla u). \] When $p=2$, this type of problem in the nonpositone case can be studied via the shooting method. Existence of a radially symmetric nonnegative solution for $\lambda >0$ sufficiently small have been obtained in \cite{a1,b1} and nonexistence of such a solution for $\lambda >0$ large have been established in \cite{a1,c1}, in the framework of the semi positone case and $f$ is superlinear. Observe that, since $f(0)<0$, the constant $0$ is an upper solution of \eqref{e1.1} and as a consequence it is not possible, in general, to apply the usual techniques (for example: the method of upper and lower solutions, etc.) and we shall work in the framework of the so-called fibration method introduced by Pohozaev in \cite{p1}, and then developed in \cite{p2,p3,p4}. We shall assume that $f$ has the form \begin{equation} f(t)=t^q-1,\quad \text{with }q>p-1 \label{e1.2} \end{equation} To avoid the noncompactness problem we shall always assume that the problem is subcritical, in the sense of the critical exponent for $\Omega $, \begin{equation} p^{\star }=\begin{cases} \frac{Np}{N-p} & \text{if }10 \,. \label{e1.4} \end{equation} and \begin{equation} \begin{gathered} -\Delta _pu=u^q-\mu \quad\text{in } \Omega , \\ u>0 \quad\text{in }\Omega , \\ u=0 \quad\text{on } \partial \Omega \end{gathered} \label{e1.5} \end{equation} It can be seen that \eqref{e1.1}, \eqref{e1.2}, \eqref{e1.4} and \eqref{e1.5} are equivalent. Also let $p$ and $q$ satisfy \begin{equation} 00$. Moreover, $u\in C^{1,\alpha }(\overline{\Omega })$ for some $\alpha >0$. \end{theorem} \section{Proof of the main theorem} The proof is based on the fibering method and is divided into five stages. \noindent\textbf{Step 1:} We introduce the Euler functional associated with \eqref{e1.5} as follows \[ E(u)=-\frac 1p\int_\Omega | \nabla u| ^pdx+\frac 1{q+1}\int_\Omega | u| ^{q+1}dx-\mu \int_\Omega | u(x)| dx \] According to the fibering method, we set \begin{equation} u(x)=rv(x), \label{e2.1} \end{equation} where $r\in \mathbb{R}^{+}$ and $v\in W_0^{1,p}(\Omega )$. Then we obtain \begin{equation} \widetilde{E}(r,v)=E(r,v)=-\frac{| r| ^p} p\int_\Omega | \nabla v| ^pdx+\frac{| r| ^{q+1} }{q+1}\int_\Omega | v| ^{q+1}dx-\mu r\int_\Omega | v(x)| dx \label{e2.2} \end{equation} We introduce the fibering functional \begin{equation} \int_\Omega | \nabla v| ^pdx=1 \label{e2.3} \end{equation} Under condition \eqref{e2.3} the functional $\widetilde{E}$ takes the form \begin{equation} \widetilde{E}(r,v)=-\frac{r^p}p+\frac{r^{q+1}}{q+1}\int_\Omega | v| ^{q+1}dx-\mu r\int_\Omega | v(x)| dx \label{e2.4} \end{equation} The bifurcation equation is \begin{equation} 0=\frac{\partial \widetilde{E}}{\partial r}=-r^{p-1}+r^q\int_ \Omega | v| ^{q+1}dx-\mu \int_\Omega | v(x)| dx \label{e2.5} \end{equation} which gives \begin{equation} -r^p+r^{q+1}\int_\Omega | v| ^{q+1}dx-\mu r\int_\Omega | v(x)| dx=0 . \label{e2.6} \end{equation} Let set \begin{equation} \widetilde{E}(v)=E(r(v)v) \label{e2.7} \end{equation} \noindent\textbf{Step 2:} Let us consider the variational problem \begin{equation} M_0=\sup \big\{ \widetilde{E}(v);\;v\in W_0^{1,p}(\Omega )/\int_\Omega | \nabla v| ^pdx=1\big\}. \label{e2.8} \end{equation} It follows that \begin{equation} \label{e2.9} \widetilde{E}(v) = \min_{r\geq 0}\widetilde{E}(r,v)\\ =\min_{r\geq 0}\{-\frac{r^p}p +\frac{r^{q+1}}{q+1}\int_\Omega | v|^{q+1}dx-\mu r\int_\Omega | v(x)| dx\}<0, \end{equation} as a matter of fact, \eqref{e2.6} gives $$ -\frac{r^p(v)}p=-\frac{r^{q+1}(v)}p\int_\Omega | v| ^{q+1}dx+\mu \frac{r(v)}p\int_\Omega |v(x)| dx, $$ On the other hand, \begin{align*} \widetilde{E}(v) &= E(r(v)v)\\ &=-\frac{r^{q+1}(v)}p\int_\Omega | v| ^{q+1}dx +\mu \frac{r(v)}p\int_\Omega |v(x)| dx\\ &\quad +\frac{r^{q+1}(v)}p\int_\Omega | v| ^{q+1}dx -\mu r(v)\int_\Omega | v(x)| dx, \end{align*} which gives \begin{equation} \widetilde{E}(v)=\frac{(p-q-1)}{(q+1)p}r^{q+1}(v)\int_\Omega | v| ^{q+1}dx-\mu r(v)(1-\frac 1p)\int_\Omega | v(x)| dx \label{e2.10} \end{equation} By \eqref{e1.6}, $\widetilde{E}(v)<0$. Let us prove the following Lemma. \begin{lemma} \label{lem2.1} The sequence maximizing problem \eqref{e2.8} is bounded in $W_0^{1,p}(\Omega )$. \end{lemma} \begin{proof} Let $(v_n)$ be a maximizing sequence for \eqref{e2.8}. We set \begin{equation} v_n(x)=c_n+\overline{v}_n(x) \label{e2.11} \end{equation} with \begin{equation} \int_\Omega \overline{v}_n(x) dx=0\, . \label{e2.12} \end{equation} Since \begin{equation} \int_\Omega | \nabla v_n| ^pdx=\int_\Omega | \nabla \overline{v}_n| ^pdx=1 \label{e2.13} \end{equation} and by the Sobolev embedding theorems (the Poincare-Wirtinger inequality), the sequence $(\overline{v}_n)$ is bounded in $W^{1,p}(\Omega )$. From the bifurcation equation \eqref{e2.5}, we obtain \begin{equation} r_n^p=r_n^{q+1}\int_\Omega | c_n+\overline{v}_n| ^{q+1}dx-\mu r_n\int_\Omega | c_n+\overline{v}_n| dx. \label{e2.14} \end{equation} Let us assume that \begin{equation} c_n\to +\infty , \quad \text{as }n\to +\infty\,. \label{e2.15} \end{equation} Then \begin{equation} \int_\Omega | 1+\frac{\overline{v}_n}{c_n}| ^{q+1}dx=\frac 1{c_n^{q+1}r_n^{q-p+1}}+\frac \mu {c_n^qr_n^q}\int_\Omega | 1+\frac{\overline{v}_n}{c_n} | dx\,. \label{e2.16} \end{equation} By embedding results, there exists $C>0$ such that \[ \| \overline{v}_n\| _{W^{1,p}(\Omega )}\leq C, \quad\forall n\in \mathbb{N} \] Using \eqref{e2.15} and since by assumption \eqref{e1.6} the space $W^{1,p}(\Omega )$ is compactly embedded in $L^{q+1}(\Omega )$. We may assume that $(\overline{v}_n)$ converges strongly in latter space. Then from \eqref{e2.16} we have \begin{equation} \int_\Omega | 1+\frac{\overline{v}_n}{c_n}| ^{q+1}dx\to | \Omega | >0,\quad \text{as }n\to +\infty. \label{e2.18} \end{equation} The proof is complete. \end{proof} Hence, we can assume that the sequence $(v_n)$ converges weakly in $W_0^{1,p}(\Omega )$. By assumption \eqref{e1.6}, it follows that $v_n\to \overline{v}$ in $L^{q+1}(\Omega )$. This implies that \[ \| \nabla v_0\| _p\leq \liminf_{n\to +\infty}\| \nabla v_n\| _p\,. \] Since \[ \| \nabla v_n\| _p^p=\int_\Omega | \nabla v_n| ^pdx=1, \] we obtain \begin{equation} 0\leq \| \nabla v_0\| _p^p=\int_\Omega | \nabla v_0| ^pdx\leq 1. \label{e2.19} \end{equation} Now we shall prove the equality \begin{equation} \int_\Omega | \nabla v_0| ^pdx=1. \label{e2.20} \end{equation} We assume the contrary; i.e, that \begin{equation} \int_\Omega | \nabla v_0| ^pdx<1. \label{e2.21} \end{equation} Note that \begin{equation} 0<\int_\Omega | \nabla v_0| ^pdx \,. \label{e2.22} \end{equation} Otherwise, if $\int_\Omega | \nabla v_0| ^pdx=0$, $v_0=c_0$ is a constant, and from \eqref{e2.8}, we have for all $\epsilon >0$ there exist $n_0\in \mathbb{N}$ such that for all $n\geq n_0$ we have \[ M_0-\epsilon < \widetilde{E}(v_n)1$ (i.e., $\theta ^p=1/\int_\Omega | \nabla v_0(x)| ^pdx>1)$ such that $v_{*}=\theta v_0$ satisfies \[ \int_\Omega | \nabla v_{*}(x)| ^pdx=1 \] and \begin{align*} \widetilde{E}(v_{*}) &=\widetilde{E}(\theta v_0)=\min _{r\geq 0}\big\{ -\frac{r^p}p+\frac{r^{q+1}}{q+1}\theta ^{q+1}\int_\Omega | v_0| ^{q+1}dx-\mu r\theta \int_\Omega |v_0(x)| dx\big\} \\ &= \min_{\rho \geq 0}\big\{ -\frac{\rho ^p}{ p\theta ^p}+\frac{\rho ^{q+1}}{q+1}\int_\Omega | v_0| ^{q+1}dx-\mu \rho \int_\Omega | v_0(x)| dx\big\} \\ &> \min_{\rho \geq 0}\big\{ -\frac{\rho ^p}p+\frac{\rho ^{q+1}}{q+1} \int_\Omega | v_0| ^{q+1}dx-\mu \rho \int_\Omega | v_0(x)| dx\big\}. \end{align*} Thus, \[ \widetilde{E}(v_{*})>\;\widetilde{E}(v_0). \] This inequality contradicts the definition of \eqref{e2.8}. Thus, we have obtained a solution to the variational problem. \smallskip \noindent\textbf{Step 3:} \[ \widetilde{E}(v_0)=\sup \big\{ \widetilde{E}(v);\;v\in W_0^{1,p}(\Omega )/\int_\Omega | \nabla v| ^pdx=1\big\} \] The fibering method implies $r=r_0=r(v_0)$ where $r_0>0$ and \begin{align*} &-\frac{r_0^p}p+\frac{r_0^{q+1}}{q+1}\int_\Omega | v_0| ^{q+1}dx-\mu r_0\int_\Omega | v_0(x)|\, dx \\ &=\min_{r\geq 0}\big\{ -\frac{r^p}p+\frac{r^{q+1}}{q+1}\int_\Omega | v| ^{q+1}dx-\mu r\int_\Omega | v(x)| dx\big\} \end{align*} To complete the proof, we must show that the equation \eqref{e1.5} is verified. We can assume that $v_0$ is nonnegative by replacing $v_n$ by $| v_n| $. Moreover, there exists a Lagrange multiplier $\sigma $ such that \begin{equation} \widetilde{E}'(v_0).h=\sigma \Big(\int_\Omega | \nabla (.)| ^pdx\Big)'(v_0).h\quad \forall h\in W_0^{1,p}(\Omega ). \label{e2.24} \end{equation} From the above equation, and by taking $v_0$ as test function, we have \[ r_0\big\{ \int_\Omega ((r_0v_0)^q-\mu )v_0dx\big\} =p\sigma \int_\Omega | \nabla (v_0)| ^pdx=p\sigma \,. \] By \eqref{e2.6} we obtain $\sigma =\frac{r_0^p}p>0$. Then we can write \[ \widetilde{E}'(v_0)=p\sigma (-\Delta _pv_0) \] which is equivalent to \[ -\Delta _p(r_0v_0)=\;(r_0v_0)^q-\mu \,. \] Then if we set $u=r_0v_0\geq 0$, we can see that $u$ is a solution of problem \eqref{e1.5}. \smallskip \noindent \textbf{Step 4:} For $u\geq 0$, we have $\widetilde{E}(v_0)<0$, thus the solution $u\geq 0$ is non trivial. \noindent\textbf{Step 5:} We have obtained the nonnegative nontrivial solution $u $ to problem \eqref{e1.5}. A standard bootstrap argument (see Drabek \cite{d1}) shows that $u\in L^\infty (\Omega )$. Then the asserted regularity of $u\in C_{\rm Loc}^{1,\alpha }(\Omega )$ follows by Tolksdorf \cite{t1}. Thus the theorem is proved. \begin{thebibliography}{0} \bibitem{a1} D. Arcoya and A. Zertiti, \emph{Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in a annulus}, Rendiconti di Matematica, Serie VII, Vol. 14, Roma (1994), 625-646. \bibitem{b1} K. J. Brown, A. Castro and R. Shivaji, \emph{Nonexistence of radially symmetric solutions for a class of semipositone problems}, Differential and Integral Eqns., 2(4) (1989) pp. 541-545. \bibitem{c1} A. Castro and R. Shivaji, \emph{Nonnegative solutions for a class of nonpositone problems}, Proc. Roy. Soc. Edin., 108(A)(1988), pp. 291-302. \bibitem{d1} P. Drabek, \emph{Strongly nonlinear degenerate and singular elliptic problems,} in Nonlinear Partial Differential Equations (Fes, 1994), Pitman Res. Notes Maths. Ser.343, Longman, Harlow, UK, 1996, pp. 112-146. \bibitem{p1} S. I. Pohozaev, \emph{On eigenfunctions of quasilinear elliptic problems,} Mat. Sb. 82, 192-212 (1970). \bibitem{p2} S. I. Pohozaev, \emph{On one approach to nonlinear equations,} Dokl. Akad. Nauk. 247, 1327-1331(in Russian)(1979). \bibitem{p3} S. I. Pohozaev, \emph{On a constructive method in the calculus of variations,} Dokl. AKad. Nauk. 288, 1330-1333 (in Russian)(1988). \bibitem{p4} S. I. Pohozaev, \emph{On fibering method for the solution of nonlinear boundary value problems,} Trudy Mat.Inst. Steklov 192, 140-163 (1997). \bibitem{t1} P. Tolksdorf, \emph{Regularity for a more general class of quasilinear elliptic equations,} J. Differential Equations, 51 (1984), pp. 126-150. \end{thebibliography} \end{document}