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NONSTANDARD NUMERICAL METHODS FOR A CLASS OF
PREDATOR-PREY MODELS WITH PREDATOR

INTERFERENCE

DOBROMIR T. DIMITROV, HRISTO V. KOJOUHAROV

Abstract. We analyze a class of predator-prey models with Beddington-

DeAngelis type functional response. The models incorporate the mutual in-

terference between predators, which stabilizes predator-prey interactions even
when only a linear intrinsic growth rate of the prey population is considered.

Positive and elementary stable nonstandard (PESN) finite-difference methods,

having the same qualitative features as the corresponding continuous predator-
prey models, are formulated and analyzed. The proposed numerical techniques

are based on a nonlocal modelling of the growth-rate function and a nonstan-

dard discretization of the time derivative. This approach leads to significant
qualitative improvements in the behavior of the numerical solution. Applica-

tions of the PESN methods to specific Beddington-DeAngelis predator-prey

systems are also presented.

1. Introduction

The traditional mathematical model of predator-prey interactions consists of the
following system of two differential equations:

dx

dt
= P (x)− F (x, y); x(0) = x0 ≥ 0,

dy

dt
= eF (x, y)−D(y); y(0) = y0 ≥ 0,

(1.1)

where x and y represent the prey and predator population sizes, respectively, and
functions P (x), D(y) describe the intrinsic growth rate of the prey and the mor-
tality rate of the predator, respectively. The function D(y) is assumed to be lin-
ear (D(y) = dy), while the function P (x) has a linear (P (x) = ax) or logistic
(P (x) = ax(1− x

K )) expression. The function F (x, y) is called “functional response”
or “feeding rate” and represents the prey consumption per unit time. The model
assumes a linear correspondence between the prey consumption and the predator
production through the positive constant e. Among the most popular functional
responses used in the modelling of predator-prey systems are the Michaelis-Menten
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type F (x, y) = fxy
x+c and the ratio-dependent type F (x, y) = fxy

x+by . However, in
some situations they predict unrealistic population dynamics of the predator or the
prey. The Michaelis-Menten type does not account for the mutual competitions
among predators [15], while the ratio-dependent type allows unrealistic positive
growth rate of the predator at low densities [3, 13, 12]. The Beddington-DeAngelis
functional response F (x, y) = fxy

b+wx+y was introduced independently by Bedding-
ton [2] and DeAngelis [6] as a solution of the observed problems in the classical
predator-prey theory. It has an extra term in the denominator which models mu-
tual interference between predators and avoids the “low densities problem” of the
ratio-dependent type functional response.

The Beddington-DeAngelis predator-prey model with a linear intrinsic growth of
the prey population, analyzed completely in [7], has the following nondimensional
form:

dx

dt
= x− axy

1 + x + y
; x(0) = x0 ≥ 0,

dy

dt
=

exy

1 + x + y
− dy; y(0) = y0 ≥ 0,

(1.2)

where x and y represent the prey and predator population sizes, respectively, and
the positive constants a, e and d represent the generalized feeding rate, generalized
conversion efficiency and generalized mortality rate of the predator, respectively.

Numerical simulations of System (1.2) can be obtained by methods based on
finite difference approximations, such as Euler, Runge-Kutta, or Adams methods.
However, their use raises questions about the truncation errors, the stability re-
gions and, from a dynamical point of view, the accuracy at which the dynamics of
the continuous system are represented by the discrete system. The nonstandard
finite difference schemes, developed by Mickens [16], have laid the foundation for
designing methods that preserve the dynamical behavior of the approximated dif-
ferential system. The techniques are based on a nonlocal numerical treatment of the
right-hand side functions and more sophisticated discretizations of time derivatives.
Nonstandard numerical techniques, preserving the stability of equilibria, have been
applied to some specific dynamical systems by Lubuma and Roux [14] and Dimitrov
and Kojouharov [9, 10], among others. The resulting so-called elementary stable
nonstandard (ESN) methods solve the numerical stability problems locally for an
arbitrary time step-sizes. However, the ESN methods, as well as the standard nu-
merical methods, do not guarantee a positive discrete solution for all positive initial
values. The positivity condition is natural when interspecies interactions are mod-
eled and approximated numerically. Failing to satisfy it reflects negatively on the
accuracy and efficiency of the numerical methods. Several classes of positive and
elementary stable nonstandard (PESN) methods have been recently developed for
some phytoplankton-nutrient [8] models and for a Rosenzweig-MacArthur predator-
prey [11] model, in which a constant feeding rate per predator has been assumed.

The predator-dependent Beddington-DeAngelis functional response F (x, y) leads
to richer dynamics of System (1.2), which makes the design and analysis of the
PESN numerical methods more challenging that in earlier cases. The PESN meth-
ods, developed here, preserve both the positivity of the solutions and the stability
of the equilibria of System (1.2). In addition, the designed numerical schemes allow
for the discrete systems to be solved explicitly, which increases the efficiency of the
methods.
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The paper is organized as follows. Section 2 provides some definitions and prelim-
inary results. Results from the mathematical analysis of the Beddington-DeAngelis
predator-prey system followed by the development of the corresponding PESN nu-
merical methods are presented in Section 3. In the last two sections we illustrate our
theoretical results by a set of numerical examples and outline some future research
directions.

2. Definitions and Preliminaries

A general n-dimensional autonomous system has the following form:
dx̄

dt
= f(x̄); x̄(t0) = x̄0, (2.1)

where x̄ = [x1, x2, . . . , xn]T : [t0, T ) → Rn, the function f = [f1, f2, . . . , fn]T :
Rn 7→ Rn is differentiable and x̄0 ∈ Rn. The equilibrium points of System (2.1) are
defined as the solutions of f(x̄) = 0.

Definition 2.1. Let x̄∗ be an equilibrium of System (2.1), J(x̄∗) be the Jacobian
of System (2.1) at x̄∗ and σ(J(x̄∗)) denotes the spectrum of J(x̄∗). An equilibrium
x̄∗ of System (2.1) is called linearly stable if Re(λ) < 0 for all λ ∈ σ(J(x̄∗)) and
linearly unstable if Re(λ) > 0 for at least one λ ∈ σ(J(x̄∗)).

A numerical scheme with a step size h, that approximates the solution x̄(tk) of
System (2.1) can be written in the form

Dh(x̄k) = Fh(f ; x̄k), (2.2)

where Dh(x̄k) ≈ dx̄
dt

∣∣
t=tk

, x̄k ≈ x̄(tk), Fh(f ; x̄k) approximates the right-hand side
of System (2.1) and tk = t0 + kh. Throughout this article, we assume that System
(2.1) has a finite number of hyperbolic equilibria, i.e., Re(λ) 6= 0 for all λ ∈ Ω,
where Ω = ∪x̄∗∈Γσ(J(x̄∗)) and Γ represents the set of all equilibria of System (2.1).

Definition 2.2. Let x̄∗ be a fixed point of the scheme (2.2) and the equation of
the perturbed solution x̄k = x̄∗ + ε̄k, where ε̄k is small, be linearly approximated
by

Dhε̄k = Jhε̄k. (2.3)
Here the right-hand side of Equation (2.3) represents the linear term in ε̄k of the
Taylor expansion of Fh(f ; x̄∗ + ε̄k) around x̄∗. The fixed point x̄∗ is called stable if
‖ε̄k‖ → 0 as k → ∞, and unstable otherwise, where ε̄k is the solution of Equation
(2.3).

Let System (2.2) be expressed in the following explicit way:

x̄k+1 = G(x̄k), (2.4)

where the function G = [G1, G2, . . . , Gn]T : Rn 7→ Rn is differentiable. If x̄∗ is a
fixed point of System (2.4) then the equation for the perturbed solution ε̄k, around
x̄∗, has the form:

ε̄k+1 = J(x̄∗)ε̄k,

where J(x̄∗) denotes the Jacobian
(∂Gi(x̄∗)

∂xj

)
1≤i,j≤n

. The solution ‖ε̄k‖ → 0 when
k →∞ if and only if all eigenvalues of J(x̄∗) are less than one in absolute values.

We introduce the next two definitions based on definitions given by Anguelov
and Lubuma in [1].
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Definition 2.3. The finite difference method (2.2) is called elementary stable, if,
for any value of the step size h, its only fixed points x̄∗ are those of the differential
system (2.1), the linear stability properties of each x̄∗ being the same for both the
differential system and the discrete method.

Definition 2.4. The one-step method (2.2) is called a nonstandard finite-difference
method if at least one of the following conditions is satisfied:

• Dh(x̄k) = x̄k+1−x̄k

ϕ(h) , where ϕ(h) = h +O(h2) is a nonnegative function;
• Fh(f ; x̄k) = g(x̄k, x̄k+1, h), where g(x̄k, x̄k+1, h) is a nonlocal approximation

of the right-hand side of System (2.1).

The form of predator-prey systems (1.2) guarantees that any solution with posi-
tive initial conditions remains positive in time. The corresponding requirement for
numerical methods is formulated in the following definition.

Definition 2.5. The finite difference method (2.2) is called positive, if, for any
value of the step size h > 0, and x̄0 ∈ Rn

+ its solution remains positive, i.e., x̄k ∈ Rn
+

for k = 1, 2, 3, . . .

The following theorem deals with the properties of the general nonstandard
schemes based on standard finite-difference methods [1]:

Theorem 2.6. If the numerical method (2.2) represents a standard finite-difference
scheme that is consistent and zero-stable, then any corresponding nonstandard finite-
difference scheme in Definition 2.4 is necessarily consistent. Furthermore, if the
nonstandard scheme is constructed according to the first bullet of Definition 2.4,
then this scheme is zero-stable provided that the operator Fh satisfies, for some
M > 0 independent of h and for any bounded sequences {x̄k} and {x̃k} in Rn, the
Lipschitz condition

sup
k
‖Fh(x̄k)− Fh(x̃k)‖ ≤ M sup

k
‖x̄k − x̃k‖.

3. PESN Methods for Predator-Prey Models with
Beddington-DeAngelis Functional Response

Depending on the values of the parameters in System (1.2) the following equi-
libria exist:

(1) E0 = (0, 0);
(2) E∗ = (x∗, y∗) =

(
ad

ae−e−ad , e
ae−e−ad

)
. The equilibrium E∗ exists if and only

if ae− e− ad > 0.
According to the mathematical analysis of System (1.2) in [7], the following

statements about the stability of the equilibria are true:
(1) The equilibrium E0 is always linearly unstable;
(2) The equilibrium E∗ is linearly stable if a < e and linearly unstable if a > e;

The dynamics of System (1.2) are summarized in the following theorem [7].

Theorem 3.1. For the global dynamics of System (1.2) the following holds:
(1) If ae − e − ad ≤ 0 then all trajectories are unbounded. In addition, e > d

yields that limt→∞ x(t) = ∞ and limt→∞ y(t) = ∞ while e ≤ d yields that
limt→∞ x(t) = ∞ and limt→∞ y(t) = 0.

(2) If ae − e − ad > 0 and a < e then the interior equilibrium E∗ is globally
asymptotically stable.
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(3) If ae − e − ad > 0 and a > e then the interior equilibrium E∗ is unstable.
If, in addition, e ≥ d + 1 then every trajectory circles indefinitely and
counterclockwise around E∗ moving away from it. If e < d + 1 then for
every trajectory is true that limt→∞ x(t) = limt→∞ y(t) = ∞.

(4) If ae−e−ad > 0 and a = e then the interior equilibrium E∗ is a global cen-
ter, which means that all trajectories (except E∗ itself) are periodic orbits
containing E∗ in their interior.

The new PESN methods for solving Beddington-DeAngelis predator-prey sys-
tems with linear intrinsic growth of the prey population can be designed, based on
the following theorem:

Theorem 3.2. Let φ be a real-valued function on R that satisfies the property:

φ(h) = h + O(h2) and 0 < φ(h) < 1 for all h > 0. (3.1)

Then the following scheme for solving System (1.2) represents a PESN method:
xk+1 − xk

ϕ(h)
= xk −

axk+1yk

1 + xk + yk
;

yk+1 − yk

ϕ(h)
=

exkyk

1 + xk + yk
− dyk+1;

(3.2)

where ϕ(h) belongs to the following class of functions:
(1) If ae − e − ad ≤ 0 then ϕ(h) = φ(hq)/q for all q ≥ 0, with ϕ(h) = h for

q = 0.
(2) If ae− e− ad > 0 and a 6= e then ϕ(h) = φ(hq)/q for q > e|a−2|

|e−a| .

Proof. The explicit expression of the nonstandard scheme (3.2) has the form:

xk+1 =
(1 + ϕ(h))xk

1 + aϕ(h)yk

1+xk+yk

yk+1 =

(
1 + eϕ(h)xk

1+xk+yk

)
yk

1 + ϕ(h)d
.

(3.3)

Since the constants a, e and d are positive then the scheme (3.3) is unconditionally
positive and its fixed points are exactly the equilibria E0 and E∗ of System (1.2).

The analysis of the Jacobian J(E0) of Scheme 3.3 at the equilibrium E0 shows
that E0 is always an unstable fixed point of System (3.2).

The Jacobian of the Scheme (3.3) at the equilibrium E∗ has the following form:

J(E∗) =

(
1 + ϕ(h)d

(1+ϕ(h))e −ϕ(h)d(a−1)
(ϕ(h)+1)e

ϕ(h)(e−d)
a(1+ϕ(h)d) 1− ϕ(h)d

a(1+ϕ(h)d)

)
The eigenvalues λ1 and λ2 of the Jacobian J(E∗) are roots of the quadratic equation:

λ2 − (A + 2)λ + (A + B + 1) = 0,

where

A =
ϕ(h)d

(1 + ϕ(h))e
− ϕ(h)d

a(1 + ϕ(h)d)
, B =

ϕ(h)2d(ae− ad− e)
(1 + ϕ(h))(1 + ϕ(h)d)ae

.

For a quadratic equation of the form λ2 + αλ + β = 0 both roots satisfy |λi| <
1, i = 1, 2 if and only if the following three conditions are met: (a) 1 + α + β > 0;
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(b) 1− α + β > 0; and (c) β < 1 [4, p.82]. Using this fact, we obtain that E∗ is a
stable fixed point of Scheme (3.2) if and only if the following is true:

(a) B > 0;
(b) 4 + 2A + B > 0; and
(c) A + B < 0;

and that E∗ is an unstable fixed point if at least one of the above conditions fails.
The equilibrium E∗ exists when ae− ad − e > 0, which implies that a > 1 and

e > d. Therefore B > 0 and the condition (a) is always true. Simple calculations
yield that A > −1, which implies that the condition (b) is also true. The condition
(c) is equivalent to the following inequality:

ϕ(h)e(a− 2) < e− a. (3.4)

Assume that E∗ is a stable equilibrium of System (1.2). Therefore e−a > 0 and
Inequality (3.4) is true for a ≤ 2. Let a > 2 and ϕ(h) = φ(hq)/q, where q > e|a−2|

|e−a| .
Since 0 < ϕ(h) < 1

q then ϕ(h) < e−a
e(a−2) for all h > 0. Therefore the condition (c) is

satisfied and the interior equilibrium E∗ is a stable fixed point of the Scheme (3.2)
with ϕ(h) = φ(hq)/q.

If the equilibrium E∗ is unstable then e− a < 0 and Inequality (3.4) is not true
for a ≥ 2. This implies that the condition (c) fails and E∗ is an unstable fixed point
of Scheme (3.2). If a < 2 and ϕ(h) = φ(hq)/q, where q > e|a−2|

|e−a| , then the condition
(c) is not satisfied and the interior equilibrium E∗ is an unstable fixed point of the
Scheme (3.2) with ϕ(h) = φ(hq)/q. �

The designed nonstandard methods (3.2) require that the dynamical system
(1.2) has only hyperbolic equilibria and also that the parameter q is selected above
a specific threshold value. In that case, the PESN methods replicate the properties
(1), (2), and (3) of System (1.2) stated in Theorem 3.1, i.e., the methods guarantee
that the stabilities of the equilibria E0 and E∗ of the differential system are the
same as the stabilities of E0 and E∗ as fixed points of the numerical method for an
arbitrary step-size h.

4. Numerical Simulations

To illustrate the performance of the designed new PESN finite-difference meth-
ods, we consider the Beddington-DeAngelis system (1.2) with a = 3.0, d = 2.25
and e = 4.0. Mathematical analysis of the predator-prey system shows that the
equilibrium E0 = (0, 0) is unstable, while the equilibrium E∗ = ( 27

5 , 16
5 ) is globally

asymptotically stable in the interior of the first quadrant [7].
The first set of simulations (Fig. 1 (a)-(c)) compares the performance of the

PESN method (3.2), the explicit Euler method, and the ESN Euler method with
θ = 0 [10]. For the above choice of system parameters the ESN method is elemen-
tary stable for q

ESN
> 1.25 [10, Theorem 1] and the PESN method is elementary

stable for q
P ESN

> 4 (see Theorem 3.2), so we use q
ESN

= 1.3 and q
P ESN

= 4.5,
respectively, in our set of numerical experiments. Numerical approximations of
the solution of System (1.2) with initial conditions x0 = 5.0 and y0 = 3.5 show
that for a relatively small step-size (Fig. 1 (a)) all three methods follow the cor-
rect dynamics of the original system, but an increase of the step-size (Fig. 1 (b))
causes the solution of the explicit Euler method, which is not elementary stable,
to evolve away from the stable equilibrium E∗. Moving the initial condition closer
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Figure 1. Numerical approximations of solutions to System (1.2).

to the x-axis, e.g. x0 = 0.5 and y0 = 6.5, causes the numerical solution of the
non positivity-preserving ESN Euler method, after an initial jump of the solution’s
trajectory outside of the first quadrant (Fig. 1 (c)), to evolve away from the equi-
librium E∗. The next simulation compares the approximations of the solution,
originating at (x0, y0) = (7.5, 5.0), obtained by the PESN method (3.2) and the
Patankar Euler method [5]. Even though the Patankar Euler method is positive,
its numerical solution leads to a machine blowup for a variety of step-sizes (e.g.
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h = 0.4 in Fig. 1 (d)), because the method is not elementary stable. The last two
simulations compare the PESN method with the second- and fourth-order Runge-
Kutta methods. In the selected numerical examples the two Runge-Kutta methods,
which are not elementary stable, fail to preserve the correct asymptotic behavior
of System (1.2) for a variety of step-sizes (e.g. h = 1.27 and h = 2.56 in Fig. 1 (e)
and (f), respectively).

Conclusions

The designed new PESN methods preserve two of the most important dynamical
characteristics of predator-prey system with Beddington-DeAngelis functional re-
sponse (1.2), namely the stability of all equilibria and the positivity of all solutions
with positive initial conditions. In all of the numerical experiments (Fig. 1) the
PESN solution converges toward the asymptotically stable interior equilibrium for
arbitrary time-steps, while all of the other numerical methods fail to preserve either
the stability of the equilibrium or the positivity of the trajectories for a variety of
step-sizes. The solution of the PESN method follows the predicted by the math-
ematical analysis (Theorem 3.1) asymptotic behavior. It also preserves the local
stability of the equilibria and the positivity of the solutions of System (1.2) for any
step-size. The explicit form of the PESN methods makes them a computationally
effective tool in the numerical simulations of predator-prey systems.

Future research directions include the design and analysis of PESN methods for
the general predator-prey system (1.1) and the construction of similar nonstandard
schemes for biological systems with non-hyperbolic equilibria.
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