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A FINITE DIFFERENCE SCHEME FOR A DEGENERATED
DIFFUSION EQUATION ARISING IN MICROBIAL ECOLOGY

HERMANN J. EBERL, LAURENT DEMARET

Abstract. A finite difference scheme is presented for a density-dependent dif-

fusion equation that arises in the mathematical modelling of bacterial biofilms.
The peculiarity of the underlying model is that it shows degeneracy as the de-

pendent variable vanishes, as well as a singularity as the dependent variable

approaches its a priori known upper bound. The first property leads to a fi-
nite speed of interface propagation if the initial data have compact support,

while the second one introduces counter-acting super diffusion. This squeez-

ing property of this model leads to steep gradients at the interface. Moving
interface problems of this kind are known to be problematic for classical nu-

merical methods and introduce non-physical and non-mathematical solutions.

The proposed method is developed to address this observation. The central
idea is a non-local (in time) representation of the diffusion operator. It can be

shown that the proposed method is free of oscillations at the interface, that

the discrete interface satisfies a discrete version of the continuous interface
condition and that the effect of interface smearing is quantitatively small.

1. Introduction

1.1. Biological background. The mathematical model in the focus of this study
describes the formation and growth of bacterial biofilms. These are communities of
migroorganisms that live embedded in a self-produced layer of extracellular poly-
meric substances (EPS). The EPS offers protection to the bacteria in the biofilm,
which develop behavioral patterns that differ from those of planktonic bacteria [3],
[11]. As a consequence, harmful biofilm bacteria are more difficult to remove, me-
chanically or by antimicrobial agents, than suspended bacteria [22], [24]. Biofilms
occur naturally on surfaces and interfaces in aquatic systems wherever enough
nutrients are available to sustain microbial growth [11]. Harmful occurrences of
biofilms include bacterial infections, dental plaque and associated diseases, biocor-
rosion of drinking water pipes or industrial facilities, and food spoilage. On the
other hand, the sorption properties and enhanced mechanical stability of biofilms
are beneficially used by environmental engineers, e.g. in wastewater treatment, soil
remediation, and groundwater protection [23].
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While the term biofilm indicates a homogeneous film-like layer, biofilms on the
meso-scale (10µm ∼ 1mm, the actual biofilm scale) in reality can develop in struc-
turally highly complicated architectures. The morphology of a biofilm is triggered
by environmental conditions, such as the availability of required substrates like nu-
trients and, in the case of aerobic biofilms, oxygen [15], [16], [23], [26]. Well-known
are the so-called mushroom or pillar shaped biofilm morphologies. These are clus-
ters of biofilm colonies, trenched by water-filled pores and channels, cf. the confocal
laser scanning micrograph in Figure 1 and the schematic in Figure 2. Biofilm mor-
phologies of this type are observed in nutrient limited regimes. Initially, at low
population density, the bacterial population develops unhindered. As the popula-
tion grows, demand of food increases and inner-species competition for food sets in
when nutrients become depleted. Large colonies have an advantage allowing them
to grow faster towards the nutrient source and thus out-compete smaller colonies
that stay behind in their development. As these biofilms grow under nutrient lim-
itation they typically develop slowly. On the other hand, biofilms developing in a
nutrient rich, un-limited environment tend to grow quickly and form homogeneous,
compact, flat yet thick structures. In order to capture these features, spatially
resolving techniques are required for biofilm research. In addition to modern non-
invasive microscopy methods in experimental studies, mathematical models and
computer simulations for theoretical studies become more and more accepted [23],
[25].

Figure 1. Microscopy snapshot of a very young spatially het-
erogeneous biofilm of Listeria monocytogenes and Pseudomonas
putida developing in a cluster-and-channel morphology. The
CLSM figure was made available by Heidi Schraft, Lakehead Uni-
versity, Thunder Bay, On, Canada. The original colors were mod-
ified for better greyscale printing.

1.2. Mathematical models and numerical simulation. Traditional biofilm
models were formulated as one-dimensional free-boundary value problems, based on
the assumption that newly produced biomass is converted into new biofilm volume.
This leads to an increasing thickness of the biofilm and the speed of propagation of
the biofilm/liquid interface normal to the substratum can be calculated from the
production terms by integration over the biofilm thickness [23]. As this concept is
inherently one-dimensional, it cannot predict spatially heterogeneous biofilm mor-
phologies. To fill this gap, a variety of models for spatially heterogeneous biofilms
has been proposed in recent years, ranging from stochastic individual based models
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to cellular automata models to deterministic continuum models [20]. The underly-
ing mathematical principles of these models are quite different and, therefore, the
mathematical and computational challenges vary from model to model. Neverthe-
less, they all show the same qualitative behavior in predicting the development of
biofilm morphologies in response to substrate limitation, cf. [20] and the references
therein for a selection and overview.

The model for biofilm formation that we consider was introduced originally in
[5] and studied in a small series of papers analytically, numerically and in appli-
cations [4, 6, 7, 8, 9, 14]. It is a quasi-linear diffusion equation for the dependent
variable biomass density u, with two interacting causes of degeneracy. One is de-
generacy as in the porous medium equation, i.e. the density dependent diffusion
coefficient D(u) vanishes as the dependent variable vanishes, D(0) = 0; the other
one is a singularity in the density-dependent diffusion coefficient as the dependent
variable approaches its a priori known maximum density, u → 1. In the current
study we propose a numerical discretisation scheme that is able to handle these two
simultaneously occurring effects and to render important qualitative features of the
continuous model. The actual biofilm is the region in which the biomass density
is positive. The transition from the surrounding aqueous phase to the biofilm is
sharp, that is the biomass gradients are steep at the biofilm/liquid interface. Since
the biofilm grows, this interface is not stationary but its location changes over
time. The speed and direction of the interface propagation is not a priori known
but an implicit consequence of the solution of the equation; furthermore, as two
or more biofilm colonies merge into a bigger one the interfaces collide and become
dissolved. Interface problems of this type are known to pose difficulties for many
numerical methods, often leading to either un-physical and un-mathematical oscil-
lations in the solution or smearing of the sharp interface. The underlying reason is
that discretisation schemes often assume more regularity than the initial-boundary
value problem offers. This effect can be observed already in very simple examples
that possess classical smooth solutions, e.g. the heat equation with a discontinuous
interface in the initial data [13].

A variety of numerical methods were used in previous studies of the biofilm
model. In [5, 6, 7], based on a time-scale argument, the faster (in terms of char-
acteristic time scales) substrate equations were solved implicitly while the slower
biomass equation is solved with explicit schemes, e.g. the adaptive 4th/5th or-
der Runge-Kutta-Fehlberg method, cf[10]. The maximum feasible time-step in this
approach depends on the solution of the equation and becomes very small as the
biofilm grows and maximum biomass density u → 1 is approached somewhere. A
very different idea was followed in [4], where the degenerated equation was trans-
formed into new dependent variables such that the spatial operator becomes the
Laplacian and all non-linear effects appear in the time-derivative. A fully implicit
method for this equation was devised that has only a very mild time-step con-
straint. This method handles the diffusion singularity effect very well, but it was
found that in some cases it emphasises interface oscillations, i.e. is not able to
correctly deal with the porous medium degeneracy. In [14] the model equation was
re-formulated in a weak form in the moving frame and subsequently discretised
by a moving grid finite element method that explicitly tracks the biofilm/liquid
interface, following an idea that was originally developed in [2] for degenerate par-
abolic equations. This method describes the porous medium degeneracy very well.
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It is fully adaptive in time and space (with explicit time integration) and builds
its biofilm grid adaptively. However, re-meshing and grid-refinement is required as
new biomass is produced and the biofilm structure grows, in order to avoid finite
elements becoming too large. This requires interpolation and becomes inefficient in
higher dimensions.

In this paper we will present a numerical method for the biofilm model that is
based on a non-local (in time) representation of the nonlinear density dependent
diffusive biomass flux. This leads to a semi-linear method that inherits the mild
time-step constraint of the implicit method in [4] and the advantages of the explicit
method. In every time step the solution of only one linear algebraic system is
required. In particular the method deals well with the moving interface, preserves
the positivity of the solutions and is free of oscillations.

2. The continuous model

Figure 2. The domain Ω ⊂ R2 with liquid region Ω1(t) = {x ∈
Ω : u(t, x) = 0} and biofilm region Ω2(t) = {x ∈ Ω : u(t, x) > 0}.
As u changes with time, the interface between Ω1 and Ω2 starts
moving.

We consider the biofilm as a continuum and study a density-dependent diffusion-
reaction equation that describes the development of a spatially structured bacterial
biofilm. The model is formulated as an evolution equation over the domain Ω ⊂ Rd,
d = 1, 2, 3, in terms of the biomass density u, normalised with respect to the
maximum biomass density. Under this ansatz, bacteria and EPS are considered
together in one fraction. This is the classical approach in biofilm modelling [23].

The region Ω1(t) := {x ∈ Ω : u(t, x) = 0} describes the surrounding aquatic
environment (bulk liquid, channels and pores of a biofilm) without biomass, while
Ω2(t) = {x ∈ Ω : u(t, x) > 0} is the actual biofilm (cf. Figure 2). The model under
consideration was introduced in [5]. In the notation used here it reads

ut = ∇x(D(u) · ∇xu) + ku (2.1)

where

D(u) = δ
ub

(1− u)a
, a, b ≥ 1 � δ > 0 (2.2)
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together with Dirichlet, Neumann, or mixed boundary conditions. In (2.1) the
quantity k describes the production rate. For our purpose it is sufficient to assume
that it is bounded. If k is a positive constant (2.1) corresponds to a biofilm system
in which nutrients are not limited. In this case we expect a homogeneous biofilm
morphology for large t. In the case of nutrient limitations, k(t, x) is a non-constant
function. We shall present simulations for both scenarios below.

Some analytical results about this model can be found in [4], [9]; biofilm appli-
cations of this type of equation and its generalisations were discussed in [5], [6], [7].
The long term behavior of the initial-boundary value problem associated with (2.1)
was studied in [9]. It was shown that for initial data u0 with

u0 ∈ L∞(Ω), F (u0) ∈ H1
0 (Ω), u0 ≥ 0, ‖u0‖L∞(Ω) < 1

where

F (u) =
∫ u

0

vα

(1− v)β
dv, 0 ≤ u < 1

there exists a unique solution u of (2.1) in the class of functions

u ∈ L∞(R+ × Ω) ∩ C([0,∞), L2(Ω)))

F (u) ∈ L∞(R+,H1(Ω) ∩ C([0,∞), L2(Ω))

0 ≤ u(t, x) ≤ 1 ‖u‖L∞(R+×Ω) < 1

If the boundary conditions are homogeneous Neumann conditions everywhere, then
the solution u reaches its maximum density 1 almost everywhere in finite time.
Physically this corresponds to the situation where the biofilm growths unlimited in
a closed vessel from where no biomass can escape. If Dirichlet conditions u = 0 are
specified somewhere on the boundary of Ω, then the solution will remain below the
maximum density for all t > 0 almost everywhere. Further results include the exis-
tence of a global attractor [9] and the construction of a Lyapunov functional [4]. An
essential property of the solutions of (2.1) is that initial data with compact support
imply solutions with compact support and that the solution is indeed bounded by
the maximum biomass density. The first effect is due to the porous medium degen-
eracy ub in (2.2), while the latter is due to the singularity (1−u)−a in (2.2). It is the
production term ku together with this second effect that drives the spatial spread-
ing of Ω2(t). This is counteracted by the degeneracy as u = 0 at the interface. As
a consequence, u squeezes in Ω2(t) and, in the absence of loss terms, approaches its
maximum value 1. Hence, the interaction of both non-linear diffusion effects with
the growth term in (2.1) is needed to describe spatial biomass spreading. It leads
to very steep gradients of u at the moving interface between Ω1(t) and Ω2(t). If
Ω2(t) is initially not connected but consists of several “sub-domains” (each of which
connected), these will eventually join if k is positive and large enough, due to the
expansion of each individual sub-domain. In biofilm applications this describes the
merging of two initially isolated bacterial colonies. Thus, if two Ω1-Ω2 interfaces
collide, they are dissolved and the sub-domains become connected.

In [4] a semi-discretisation in time was discussed that aimed at overcoming the
obvious numerical difficulties arising when u → 1. After transformation of the de-
pendent variable u 7→ v := F (u), the nonlinearities appear in the time-derivative,
while the spatial spreading effect is described by the linear diffusion operator. Back-
ward Euler discretisation leads to an elliptic boundary value problem in every time-
step. Convergence results showed that the time-step restriction of this model is not
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critical, i.e. the maximum time-step size permitted for convergence is larger than
the characteristic time-scale of the biofilm formation process, i.e. for given spatial
discretisation it behaves like O(1/k). However, it was found that the numerical dis-
cretisation of the spatial terms with standard Finite Element or Finite Difference
methods introduces oscillations with negative values at the biofilm/liquid interface.
Local grid refinement can postpone and dampen this effect but not avoid it. In
the current work we aim at a generally applicable numerical scheme for (2.1) and
model extensions that is free of this non-physical effect.

3. Numerical Method

3.1. Finite Difference Scheme For The Continuous Problem. We introduce
a finite difference scheme for (2.1) on a regular grid based on a first order difference
approximation for the time derivative and the usual second order spatial difference
for self-adjoint diffusion operators, cf [19].

The key idea of the method is to represent the nonlinear diffusive flux D(u) ·∇xu
in (2.1) and the reaction term k · u non-local in time: The diffusion coefficient is
evaluated in time level t while the gradient is evaluated at the new time level t+∆t,
i.e. one has

D(u) · ∇xu ≈ D
(
u(t, ·)

)
· ∇xu(t + ∆t, ·)

and similarly for the reaction term

k · u ≈ k(t, ·) · u(t + ∆t, ·)
Finite difference methods for (ordinary or partial) differential equations utilising
such a non-local representation of non-linear terms are called non-standard finite
difference schemes [1]. Despite the low order convergence of the chosen deriva-
tive approximations, such a discretisation is known to be optimal among linear
finite difference schemes for certain problems under the aspect of positivity and
monotonicity (cf. [13] for details). In the context of non-standard finite difference
schemes this strategy of low order discretisation of derivatives is routinely used for
the construction of discretisation schemes and referred to as Rule 1 in [17].

In the sequel, we denote by un
j the numerical approximation of the exact solution

u(tn, xj) in the grid points xj ∈ Rd. Here j ∈ J can be a multi-index or a grid
ordering in the multi-dimensional case d > 1; then J is an appropriate index set.
The vector Un = (un

j )j∈J ∈ R|J| is the (ordered) vector, the coefficients of which are
the numerical approximations of the solution at time level n. Employing a regular
grid with spatial step size ∆x one obtains for the discretised diffusion operator

∇x (D(u)∇xu) =̇
1

2∆x2

∑
k∈Nj

(D(un
k ) + D(un

j ))(un+1
k − un+1

j ) (3.1)

where Nj ⊂ J is the index set pointing at the direct neighbors of xj on the grid. For
d = 1 it has two elements, for d = 2 there are four and for d = 3 there are six. The
non-standard finite difference scheme that is derived under the above assumptions
reads

Un+1 − Un = ∆tD(Un) · Un+1 + ∆tKUn+1 (3.2)
where K = diag(kn

j ) is the diagonal matrix the coefficients of which are the net
growth rates k(tn, xj). The matrix D(Un) is the banded matrix obtained by second
order standard finite difference discretisation of the diffusion operator evaluated at
the previous time-step tn, according to (3.1).
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System (3.2) can be re-written in matrix-vector form as

Un+1 = [I −∆tD(Un)−∆tK]−1
Un (3.3)

if the inverse matrix exists. This is the case if the time-step ∆t is chosen such that
1/∆t is not an eigenvalue of the matrix D(Un) +K. Then, the numerical solution
Un+1 is unique. Hence, a sufficient condition for the existence of a unique solutions
is the restriction of the time-step size tn → tn + ∆t =: tn+1 by

∆t ·max
i

kn
i < 1 (3.4)

This ensures that I −∆tK is diagonal with strictly positive entries. Then in (3.3)
the matrix I − ∆tD(Un) − ∆tK is diagonally dominant. Inequality (3.4) poses
a time-step restriction for the numerical method. From the application point of
view this is a weak restriction, as 1/k is the characteristic time scale of biomass
production. Accordingly, time-steps larger than 1/k would be at the expense of
inaccurate description of the growth process. The same time stepping condition
(3.4) was obtained for the transformation method in [4]. If k is not a constant,
(3.4) leads to a variable time-stepping strategy.

For a given Un with 0 ≤ Un < 1 (where all vector inequalities are understood
coefficient-wise), Un+1 according to (3.3) is a continuous function of ∆t. Hence,
for ∆t small enough Un < 1 implies Un+1 < 1. A more quantitative statement will
be presented in the next section.

The non-standard finite difference scheme (3.3) is a system of explicit non-linear
difference equations, i.e. it can be understood as a discrete dynamic system. In
the numerical simulation the solution of one coupled linear system is required in
every time-step. The matrix is sparse, banded and diagonally dominant. In two-
and three-dimensional simulations, the system can be solved iteratively, e.g. by the
stabilised bi-conjugate gradient method, which is described in [21]; due to diagonal
dominance, pre-conditioning is not required for convergence. In the one-dimensional
case the system is tridiagonal and the Thomas algorithm (e.g. [10]) can be used.
These are the methods that we employ in the simulations below.

In the next section we will show that the numerical solution according to (3.3)
inherits the following important qualitative properties of the continuous model:

• positivity
• boundedness Un < 1 of the solution
• finite speed of propagation of the discrete liquid/biofilm interface
• the solution of (3.3) satisfies a discrete interface condition that corresponds

to the interface condition for the continuous model (2.1).
• the numerical interface is sharp, i.e. only weak interface smearing takes

place
• the solution is monotonous at the interface and merging of two colonies is

well-posed

3.2. Properties Of The Scheme.

Lemma 3.1 (Positivity). Let (3.4) be always satisfied. If 0 ≤ U0 < 1 then Un ≥ 0

Proof. We use an argument from the theory of M -matrices (cf. [12]) and math-
ematical induction: If ∆t is chosen according to (3.4) then the matrix in (3.3) is
diagonally dominant with positive diagonal elements and non-positive off-diagonals.
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Hence, its inverse is positive and, thus, positivity of Un implies positivity of Un+1

according to iteration (3.3). �

Remark 3.2. An alternate proof can be derived based on the following observation:
In the time step tn → tn+1 method (3.2) can be understood as an implicit Euler
method for the linear system of ordinary differential equations

v̇ = (D(Un) +K) v, v(tn) = Un, t ∈ [tn, tn+1] (3.5)

where v is a time-continuous vector valued function. Thus, method (3.2) is a
piecewise linear problem and in every time-step linear theory applies, which can be
found e.g. in [13]. Thus in every time-step positivity is ensured if the matrix in
(3.5) has only non-negative off-diagonal entries and if the diagonal is bounded from
below, i.e. if there is an αn > 0 such that (D(Un) +K)jj > −αn. That this is the
case follows from a recursive argument: It is easily verified that these conditions are
satisfied for n = 0. If they hold for one n then it follows from a simple calculation
that it also holds for n+1, due to the assumption that ∆t is small enough to warrant
Un < 1 and the definition of D(U). Note that both methods of proof for Lemma
3.1 use the same property of the system matrix in (3.3), and thus are essentially
equivalent.

The M-matrix property is also used to derive the following sufficient (but not
necessary) time-step condition for boundedness of the solution.

Lemma 3.3 (Boundedness). The choice of a time-step ∆t such that (3.4) holds
and

∆t < min
i

1− un
i∑

j [D(Un) +K]ij
guarantees that the numerical solution obeys the upper bound, i.e. Un+1 ≤ 1 if
Un < 1.

Proof. We introduce Wn := e − Un where e := (1, . . . , 1)T . Hence, Un ≤ 1 is
equivalent to Wn ≥ 0. Then (3.3) gives

[I −∆tD(Un)−∆tK] (e−Wn+1) = (e−Wn) (3.6)

and, therefore,

[I −∆tD(Un)−∆tK]Wn+1 = Wn −∆t [D(Un) +K] e (3.7)

If Wn > 0, positivity of Wn+1 is ensured if ∆t is chosen such that the right hand
side of (3.6) is non-negative. This is certainly the case if

∆t < min
i

1− un
i∑

j [D(Un) +K]ij
(3.8)

�

It is easy to verify that criterion (3.8) can be more strict than (3.4). It can be
relaxed by the observation that it is sufficient but not necessary. Indeed, in the
numerical simulations conducted below, this time-step criterion was implemented
as an emergency strategy to guarantee the upper bound if other time-step control
mechanisms fail, but never activated. Note that if in one coefficient Un reaches
1, (3.4) implies the termination of the simulation. This is in accordance with the
continuous problem (2.1), since it was shown in [9] that the solution of (2.1) can
reach 1 in finite time in dependence of boundary conditions and reaction rates.
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To formulate the next result we introduce the following concept.
Definition. We denote by Ωn

1 a discrete grid analogy of Ω1(tn) as

Ωn
1 = {xj : un

j = 0}
An interior point of Ωn

1 is a point in Ωn
1 whose direct neighbors are in Ωn

1 as well,
i.e. a point xj ∈ Ωn

1 such that xi ∈ Ωn
1 for all i ∈ Nj . Similar definitions can be

made for the biofilm region Ω2

Note that this definition is based on the numerical solution un
j . Thus it does not

imply that Ωn
1 is contained in Ω1(tn) or vice versa. For now, the discrete interface

at time level tn is defined by grid points of Ωn
1 with a direct neighbor in Ωn

2 . The
following result states that the discrete interface travels at most with finite speed.
In particular it states that in one time-step it moves across at most one grid cell.

Lemma 3.4 (Finite speed of propagation). Let (3.4) hold. If xj is an interior
point of Ωn

1 then xj ∈ Ωn+1
1 .

Proof. If xj ∈ Ωn
1 is interior then the corresponding jth row of the matrix D(Un)

contains only zeros. Thus one has from (3.3)

(1−∆tkn
j )un+1

j = un
j = 0

with (3.4) it follows that un+1
j = 0 and thus xj ∈ Ωn+1

1 . �

In the one-dimensional case d = 1 an explicit expression can be derived for the
speed of interface propagation in the continuous model (2.1). An interface between
Ω1(t) and Ω2(t) can be parameterised locally by a curve x∗(t). The speed of the
interface is ẋ∗(t). Due to continuity and u(x∗(t), t) = 0 we obtain from (2.1)

ẋ∗(t) = −[ut/ux]x∗(t) (3.9)

where the right hand side is to be understood in the sense of a limit of the quotient
of the one-sided derivatives as one approaches the interface. The theory developed
in [9] implies that this is finite. We show that the numerical solution satisfies a
corresponding discrete interface condition if the derivatives in (3.9) are replaced by
the usual difference quotients. Without loss of generality, we restrict ourselves to
the case of an expanding biofilm (i.e. Ω2 increases) with an interface with positive
speed. We define the location xj∗,n of a discrete interface at time tn as follows:
xj∗,n−1 ∈ Ωn

2 , xj∗,n ∈ Ωn
2 , xj∗,n+1 ∈ Ωn

1 and xj∗,n+2 an interior point of Ωn
1 . That

is, j∗,n is the index of the last biofilm point before the liquid/biofilm interface at
time tn.

Lemma 3.5 (Moving interface condition). The following discrete interface condi-
tion holds

xj∗,n+1 − xj∗,n

∆x
= −

un+1
j∗,n+1 − un

j∗,n+1

un+1
j∗,n+1+1 − un+1

j∗,n+1

(3.10)

Proof. For brevity of the notation let i := j∗,n. We obtain from the (i + 1)th
coefficient of (3.3) and the hypothesis on the position of the interface

−∆t

2
D(un

i )un+1
i +

(
1 +

∆t

2
D(un

i )−∆tkn
i+1

)
un+1

i+1 = 0 (3.11)

and thus un+1
i+1 > 0. With the previous Lemma we have that j∗,n+1 = i+1 = j∗,n+1.

Thus un
j∗,n+1 = 0. Furthermore we have by hypothesis un+1

j∗,n+1+1 = 0. The assertion
follows by substituting these observations into (3.10). �
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Note that (3.10) is a discrete version of (3.9) after multiplying with ∆x/∆t.
The proof showed that it could have been formulated in a stronger version that
essentially states that the speed of propagation of the discrete interface is ∆x/∆t.
This is a consequence of the smearing around the interface that is introduced by
the spatial discretisation of the diffusion operator. However, from (3.11) it follows

∆t

2
D(un

i )
[
un+1

i+1 − un+1
i

]
+

[
1−∆tkn

i+1

]
un+1

i+1 = 0

and thus with (3.4) and the positivity of (3.3) we obtain 0 < un+1
i+1 < un+1

i . More-
over, after re-arranging terms we have

un+1
i+1 = O

(
(un

i )bun+1
i

)
with the definition (2.2), since un

i small at the interface implies (1 − un
i ) � 0. In

biofilm applications one has b in the range 2 through 6. Thus we may expect the
interface smearing effect to be quantitatively small. This will be demonstrated in
the numerical simulations in the next section.

The last theoretical result in this section shows that the numerical solution at
time tn+1 in a grid point in Ωn

1 is bounded from above by the values of the solution
in neighboring grid points. This is of particular interest in the case where the grid
point changes its membership from Ωn

1 to Ωn+1
2 as tn → tn+1, i.e. is passed by a

biofilm/water interface.

Lemma 3.6 (Merging of two colonies). Let xi ∈ Ωn
1 and assume that (3.4) holds.

Then un+1
i is bounded by the values of u in the neighboring nodes, i.e.

0 ≤ un+1
i ≤ max

j∈Ni

{un+1
j }

Proof. We have xn
i ∈ Ωn

1 =⇒ un
i = 0 =⇒ D(un

i ) = 0. Thus (3.2) and (3.1) imply

un+1
i =

∆t

∆x2

∑
j∈Ni

D(un
j )(un+1

j − un+1
i ) + ∆tkn

i un+1
i

and, hence,

un+1
i =

∆t
∆x2

∑
j∈Ni

D(un
j )un+1

j

1 + ∆t
∆x2

∑
j∈Ni

D(un
j )−∆tkn

i

≤
∆t

∆x2

∑
j∈Ni

D(un
j ) ·maxj∈Ni

un+1
j

1 + ∆t
∆x2

∑
j∈Ni

D(un
j )−∆tkn

i

≤ max
j∈Ni

un+1
j

The last inequality follows from (3.4) with 1 − ∆tkn
j > 0. From Lemma 3.1, we

have 0 ≤ un+1
i . �

Thus, if xi ∈ Ωn
1 separates two approaching interfaces then Lemma 3.6 implies

that the colonies merge smoothly without forming bulges or inducing oscillations.
In the case of a single moving interface, Lemma 3.6 implies monotonicity, i.e. the
absence of non physical oscillations. Note that Lemma 3.6 includes the previous
Lemma 3.4 for the trivial case where xi is interior to Ωn

1 .
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Figure 3. Simulation of biofilm formation in time: the inoculum
at t = 0 consist of (right) three sinusoidal colonies of different
height and (left) two colonies with constant densities of different
height.

4. Numerical Simulations

We present three sets of simulations of (2.1) with the nonstandard finite difference
scheme (3.3). The first one is one-dimensional in space. While this does not fully
capture the features of biofilm formation and growth it allows to investigate the
behavior of the numerical scheme. In the second part of this section we carry
out some two-dimensional numerical illustrations of biofilm growth for constant
net growth rate k. In both cases we had for the parameters of the dimensionless
equation a = b = 4, k = 0.1, δ = 10−8. In the third simulation study we apply
the discretisation scheme to a more complicated system, where biofilm formation
is controlled by two dissolved substrates. All simulations were carried out using
double accuracy arithmetics. Codes were implemented in Fortran 95 on Linux
based personal computers. In all simulations the time-step was variable, as

∆t = min
{

1/k,min
j

M∆x2

D(un
j )

, 0.1
}

(4.1)

The first condition is according to (3.4), the last one to keep the time-step bounded
for the sake of accuracy. This was also the reason to introduce the second condition,
where M is a user-defined constant. It renders the typical ∆t/∆x2 dependency for
parabolic problems and allows comparability of results for different choices of ∆x. In
our simulations, we use M = 40; this choice of time-step is well above the limitations
of the explicit method. That said, this time-step constraint was introduced as a
trade-off between between fast and accurate computation. The condition (3.8) was
implemented as an emergency brake, such that it becomes active only if (4.1) would
lead to maxUn+1 > 1. It never became activated.

4.1. One-dimensional simulations. The results of two numerical simulations of
(2.1) with the finite difference method presented here are shown in Figure 3. In
case the (I), the initial data were specified by the function

u(x, 0) = max(0,−0.8 sin(7πx)(1− x4)).
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Figure 4. left: Location of the left interface between liquid
and biofilm in the third scenario for different choices of ∆x =
1/N, N = 50, 100, 200, 400, 800; right: solution of scenario 3 for
various choices of N .

In the case (II), the initial data were specified by

u(x, 0) =


0.8, 0.3 ≤ x ≤ 0.4
0.9, 0.5 ≤ x ≤ 0.6,

0, elsewhere.

In the case (III), finally one sinusoidal colony was placed around the centre of the
interval (0, 1). This scenario is included to study the dependence of the interface
on the spatial resolution.

That is, in the first and third case the initial data are continuous but not differen-
tiable at the interface, while in the second case they are only piecewise continuous.
Both scenarios are known to be problematic if treated with standard techniques.
It is easily verified that in the first case the biomass is organised in three colonies
originally. Figure 3 shows the simulations of cases I and II. They were carried out
with a spatial step-size ∆x = 1/200.

In the third scenario the dependency of the simulation results on the spatial
resolution was tested. To this end, the location of the actual interface between
Ω1(t) and Ω2(t) for different step-sizes ∆x = 1/N, N = 50, 100, 200, 400, 800 is
plotted in the x-t plane. The second panel in Fig. 4 shows the solution surface
for various ∆x. In Figures 3 and 4 (right panel), the solution surfaces u(t, x) are
plotted where |u| > 10−16 for the sake of readability, assuming that 10−16 is a
reasonably good approximation of 0 for our purpose.

As predicted by the theory outlined above, the new numerical method gives
non-negative and oscillation-free solutions. The simulations also confirm the above
statement that the diffusive smearing around the interface is quantitatively small,
i.e. negligible. In both first scenarios the colonies of the inoculum compress initially,
that is the biomass density u increases while only very little spatial expansion is
observed. As u approaches 1, Ω2 expands exponentially due to the first order growth
term in (2.1) and the squeezing property. In both cases the colonies eventually
merge. In the first scenario, the first initial colony is bigger than the second one,
which is bigger than the third one. Accordingly the first and second colony merge
first. The actual interface was defined somewhat arbitrary as the location at which
u becomes bigger than 10−5 (as an approximation of 0). Both figures show a
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very good agreement. It can be seen that the computed interface converges as ∆x
becomes smaller. Even for the coarsest discretisation the deviations are accurate
within ∆x. This again confirms the above comment that the smearing effect at the
interface is small.

Figure 5. Formation of a homogeneous, thick biofilm from origi-
nally heterogeneously distributed biomass. The substratum y = 0
is at the top of each picture. Shown are snap shots at t =
0.01, 1.22, 2.1, 2.98, 3.85, 4.45, 5.06, 6.16 (top left to bottom right).
Biomass density u is coded in a linear greyscale: black corresponds
to u = 0, white to u = 1.

4.2. A two-dimensional illustration: Formation of a homogeneous biofilm.
The simplified biofilm model (2.1) with positive k = const describes biofilm forma-
tion under non-limiting conditions. This can be the case for nutrient rich envi-
ronments, e.g. bacterial growth in foods or relatively thin biofilms (in the initial
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stages) in wastewater treatment plants. For many other biofilms this is not a re-
alistic assumption because often either nutrients or oxygen or ph-value or other
controlling substances are not constant inside the biofilm. Typically, the thicker a
biofilm is, the more limited become nutrients in the deeper layers. Often, decay due
to lysis will even become dominant, leading to negative local net growth rates. This
spatially heterogeneous situation will be addressed in the next section. Since we
want to focus on the spatial discretisation of models of this kind first, we neverthe-
less accept the case k = const for an illustrative example. Under such non-limiting
conditions it is expected (cf. [5], [23]) that even starting from a heterogeneous ini-
tial distribution of biomass, a homogeneous biofilm will form eventually and that
the biomass distribution within Ω2 will be more or less homogeneous. This will be
verified in the following simulations.

Initially biomass is randomly distributed in 15 different locations across the
substratum, i.e. the surface on which the biofilm forms. That is, the biomass is
placed initially in the first layer of grid cells. The biomass density in each of these
locations is chosen randomly between 0 and 1. The computational domain is the
interval [0, 1]×[0, 0.3]. We specify Neumann boundary conditions at the substratum
y = 0.3 and on the boundaries x = 0, x = 1. The first assumptions ensures that
no biomass leaves the system across the solid surface, while the second assumption
allows us to consider the computational domain as part of a larger system (periodic
conditions would do this as well). At y = 0 we specify homogeneous Dirichlet
conditions. The results of a simulation are shown in Figure 5. The rate at which
the biofilm colonies grow depends initially on the biomass density at t = 0. Colonies
with larger u(x, 0) grow faster and merge earlier with their neighbors. Eventually all
colonies merge and form a compact film as expected. As it was already observed in
the one-dimensional simulations, the biomass density inside the biofilm approaches
the maximum density rapidly everywhere, due the homogeneous growth rate.

4.3. A two-dimensional illustration: Formation of a cluster-and-channel
biofilm. We investigate now the more general case where the local growth of
biomass is controlled by the availability of required substances. As an example
we choose a heterotrophic biofilm that is limited by two dissolved substrates, nu-
trients and oxygen. This is a standard example of biofilm systems in wastewater
engineering and was defined by the International Water Association’s taskgroup on
biofilm modeling as a first benchmark system (BM1) for biofilm models, cf. [18],
[23]. The local net growth rate k(t, x) in this example is given by

k(t, x) = k1
c1(t, x)

ks,1 + c1(t, x)
c2(t, x)

ks,2 + c2(t, x)
− k3 (4.2)

where the positive constant k1 is the maximum specific growth rate and the pos-
itive constant k3 is the lysis rate describing biomass deactivation. The positive
parameters ks,1 and ks,2 are the Monod half saturation constants. By c1 and c2 we
denote the concentrations of the dissolved substrates. They are governed by the
semi-linear diffusion-reaction equations

c1,t = D1∆xc1 − k4u
c1

ks,1 + c1

c2

ks,2 + c2
(4.3)

and
c2,t = D2∆xc2 − k5u

c1

ks,1 + c1

c2

ks,2 + c2
(4.4)
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where the consumption rates k4 and k5 are essentially the maximum specific growth
rate divided by the respective yield factors, which quantify how much substrate is
needed to produce one unit mass of microbial biomass. The positive parameters D1

and D2 are the diffusion coefficients of both substrates. For small molecules these
are constants, attaining the same values in the biofilm and in the surrounding bulk
phase. For our simulation we choose the same reaction and diffusion parameters as
in the benchmark problem specification in [18].

The model is completed by initial and boundary conditions for c1 and c2. We
choose the computational domain to be rectangular of size L1×L2 and specify the
mixed boundary conditions for j = 1, 2

cj = c∞,j for x2 = L2

and
∂cj

∂n
= 0 elsewhere on ∂Ω

The initial conditions for c1,2 are

cj(x, 0) = c∞,j

For the biomass density u we specify the same initial and boundary conditions as
in the previous example.

The purpose of this example is to show that the numerical scheme is able to
simulate the formation of spatially heterogeneous of mushroom-shaped cluster-and-
channel biofilm architectures. It is well understood in the biofilm literature, cf [23],
that a good predictor for the surface heterogeneity of a biofilm is how biomass
growth terms relate to substrate availability. If substrate does not become limited,
a flat, spatially homogeneous biofilm is eventually obtained, as in the previous
example. If substrate in the biofilm becomes limited, growth of biomass slows
down. Microbial inner-species competition for nutrients leads to irregular biofilm
morphologies. Eventually larger biofilm colonies closer to the food source become
dominating and smaller colonies stay back in their development. With our choice
of parameters from [18], the growth terms are fixed. Hence, we use substrate
availability to control the biofilm structure. It is quantified in terms of the diffusion
coefficients (also fixed from [18]) and the environmental conditions, in particular the
Dirichlet values c∞,j and the diffusion length L2. We choose the bulk concentrations
in the same range as the Monod half saturation concentrations, c∞,1 = ks,1 and
c∞,2 = 2ks,2. The maximum principle for parabolic equations implies that these
values are upper estimates for the concentrations c1 and c2 and that inside the
domain and, hence, in the biofilm lower concentration values will be obtained. Thus,
our choice of environmental concentrations ensures that substrates are not available
in abundance. The system height L2 is the distance over which substrates need to be
transported by diffusion to reach the bacteria at the substratum. The smaller this
value is, the more compact a biofilm develops [23]. We choose L2 = L1 = 500µm,
i.e. carry out our simulations in a square domain.

For the numerical solution of (4.3) and (4.4) we use a standard finite volume
scheme on the same grid on which (2.1) is discretised, 2nd order in space and 1st
order in time. The simulation results of this example are shown in Figure 6; plot-
ted are the biofilm/liquid interface and the concentration field of oxygen, c2. The
nutrient concentration field c1 is qualitative similar, albeit on a higher quantitative
level. Initially the substratum is inoculated by few small bacterial colonies. As time
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increases, first a smooth, almost homogeneous, smooth biofilm layer develops which
than changes in a cluster-and-channel morphology as substrates become limited. It
should be noted that due to the lysis term in (4.2) and due to substrate limita-
tions the active biomass density remains distinctively separated from the maximum
biomass density, i.e. u < 1 clearly. Thus, the simulation results agree with our a
priori expectations on model behavior.

5. Conclusion

A finite difference scheme was developed for a parabolic evolution equation with
two distinct nonlinear effects in the density-dependent diffusion coefficient. One is
degeneracy as in the porous medium equation, while the other one is a singularity
as the dependent variable approaches its a priori known maximum value. In the
numerical method, the nonlinearity of the diffusion operator was handled in a non-
local representation in time. It was shown that the numerical method renders
the essential qualitative features of the solution of the continuous problem. In
particular it is free of non physical oscillations that often are observed in problems
of this kind, it shows the finite speed of propagation of interfaces between the
regions Ω1(t) where u = 0 and Ω2(t) where u > 0, and it guarantees that the upper
bound of the solution.

The nonstandard finite difference scheme for the proto-type biofilm model (2.1)
is based on a non-local in time representation of the nonlinear diffusive flux. The
method was constructed in a manner that allows a straightforward application to
more complicated biofilm systems with several particulate substances as in section
44.3 and dissolved substrates, i.e. for models as studied in e.g. [6], [7]. Although
only one- and two-dimensional simulations have been carried out here for the il-
lustration of the new method, an application to more realistic three-dimensional
biofilm descriptions is possible. In fact, the method (3.3) itself is formulated in
the general setup and the analytical results were derived for the three-dimensional
case. This makes the new method attractive for further studies in mathematical
modeling of biofilms.
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Figure 6. Formation of a cluster-and-channel biofilm morphol-
ogy (top left to bottom right): Shown are the biofilm/liquid
interface and the limiting oxygen concentration c2(t, x) in time
t = 0.02, 4.03, 6.05, 9.08, 19.12, 39.13d. The food source is located
at the right boundary x2 = L2.
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Figure 7. Figure 6 continued for t = 79.13, 119.13, 159.13, 199.13, 229.20, 249.35d
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