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ISSUES IN ADAPTIVE MESH REFINEMENT
IMPLEMENTATION

NOUREDDINE HANNOUN, VASILIOS ALEXIADES

Abstract. Physical phenomena often involve discontinuities and/or localized
high-gradient areas. The numerical simulation of these problems and conven-

tional techniques (Finite Elements, Finite Volumes, Finite Differences, and

Spectral Methods) with a uniform grid is inefficient when high accuracy is
required. Adaptive Mesh Refinement (AMR) is a technique that allows lo-

cal refinement of the grid. In this presentation, we describe a typical AMR

technique and address implementation and algorithmic issues. Triangular un-
structured grids and a regular 1 to 4 refinement are considered.

1. Introduction

The numerical solution of problems in Science and Engineering usually requires
a grid that covers the computational domain. Discretization of the model equations
is performed at the grid element level.

Solution accuracy may be increased through the use of higher order discretiza-
tion, or uniform refinement. Both methods have drawbacks: higher order schemes
are prone to producing oscillations (nonmonotone), while uniform refinement is too
expensive.

Adaptivity of the mesh is necessary to cluster grid points in the regions where
it is most needed, while keeping the grid coarse elsewhere. There are two main
adaptive strategies [3]: adaptive mesh redistribution, also called p-refinement, and
adaptive mesh refinement, also called h-refinement. The first type of refinement, p-
refinement, continuously repositions a fixed number of cells to improve resolution in
selected areas. Although easier to implement, it has serious drawbacks: it does not
allow for a change of topology in the solution discontinuity, and the grid may get
severely distorted. The second type of mesh adaption, h-refinement, or more com-
monly AMR [2], adds new cells and deletes other cells that are no longer required.
The AMR technique is extremely useful for applications involving discontinuities,
shock waves [7], phase change [6] or/and combustion [5] interfaces, or any localized
large-gradient regions. However, it is more complex to implement and program.
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The present work aims at presenting the steps involved in a typical AMR tech-
nique for unstructured triangular grids. Emphasis will be on some of the problems
that may arise during the implementation.

2. Choosing the data structure

2.1. Types of triangular mesh refinement. For grids with triangular elements,
there are three common refinement types, which are illustrated in Figure 1. The
regular 1:4 refinement, (c), has the advantage of maximizing children angles, thus
keeping the element aspect ratio close to one. This refinement type is adopted in
the present work.
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Figure 1. Triangle refinement: (a) longest-edge bisection, (b) In-
teresection of bisectors, (c) Edge midpoints or regular 1:4 refine-
ment.

2.2. Elements. An element is a basic grid entity. Each element is a triangle.
Elements are generated upon refinement or deactivated upon coarsening. Therefore,
it is necessary to keep in memory both active and inactive elements. A suitable
data structure for this type of problems is the so-called k-way tree [4]. Figure 2
displays the tree associated with a given AMR grid. The number of elements may
increase or decrease with time (calculations). This change requires making use of
dynamic memory allocation and of pointers, two features which are readily available
in Fortran 95 [1] and C++. Since an element is one node of the k-way tree, it should
have two pointers, one pointer to its parent and an array of four pointers to its four
children. Additional data may include the refinement level, the type of element
if multiple geometries are allowed, whether the element is a boundary element or
not, and all the data related to the type of numerical method being used (such as
the coefficients of the expansion of the solution w.r.t. the basis when using a finite
element method).

2.3. Nodes/Vertices. There are two approaches to the storage of vertices (the
three vertices of a triangular element). In the first approach (Figure 3), each vertex
is a unique entity and the vertices are stored in a queue. In the second approach, a
vertex is part of the data structure for the element to which it belongs. Advantages
of the second approach include faster access to vertices and simpler algorithms,
while there are two drawbacks. First, if a vertex belongs to several elements, it
will be stored in each element and this results in waste of memory. Second, it is
necessary to identify which vertex of one element corresponds to the same physical
vertex in an adjacent element. This may be accomplished by comparing coordinates
of the two vertices although comparison between real numbers may be tricky. When
using the second approach, it seems difficult to assign a global number to a vertex.
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Figure 2. k-way tree for the grid elements

The second approach is adopted in this work and the corresponding data structure
is described next.

One very important issue about the data structure of an element is the storage
of neighbors and edges, which are needed for both refinement/coarsening and for
flux evaluation for the numerical simulation. The problem is complicated by the
occurrence of dangling nodes (nodes in the middle of an edge). Figure 4 shows
a numbering that results in a one-to-one neighbor-edge-vertex mapping. This is
achieved by adding dangling vertices to the list of actual vertices of the element
while splitting edges into smaller ones as appropriate. A maximum of six vertices
(edges or neighbors) is thus allowed. If the actual vertices (the original three of the
triangle) are needed for refinement or solver algorithms, these can be stored in an
array of three integers “ind” corresponding to the indices of the actual vertices in
the list of all vertices of the element. For example, if there are 5 vertices and the
actual vertices are 1, 3, and 4, then ind(1) = 1, ind(2) = 3, and ind(3) = 4.

1 2 3 4 5 6 7 8 9

a b c d

Figure 3. Storage of vertices in queue

Neighbors of an element may be accessed through a pointer to an array of pointers
(Figure 5-a). This allows for easy accounting of the change of number of neighbors
upon grid refinement/coarsening. Null pointers are used for boundary edges with no
neighbors, thus preserving the one-to-one edge-neighbor-vertex mapping (Figure 5-
b). Vertices may be stored either in an allocatable array or an array of pointers.
When dealing with loops over indices of vertices, it is advantageous to avoid modulo
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Figure 4. Numbering of neighbors, edges, and vertices

arithmetic by the use of an integer array having twice as many elements as the
number of vertices (edges, neighbors); e.g. if there are four vertices, define an array
perm = [1 2 3 4 1 2 3 4 ] and, for example, use neighbor perm(i + 2) to refer to
neighbor (i + 2)

Array

(a) Neighbor data structure

Boundary Element

Null Pointer

(b) Boundary neighbor pointer

Figure 5. An element’s neighbors

3. Before the refinement

3.1. When should the grid be refined? Refinement of the grid is performed
locally according to some criterion which depends on the type of problem being
solved. When the solution is known in advance, a suitable criterion is ‖∇f‖h > ε,
where f is the solution, h the size of the mesh, and ε the threshold value for
refinement. If the solution has a discontinuity, an element would be refined if it
is intersected by the discontinuity. If the solution is not known in advance, the
refinement criterion is often based on the residual of the model equation. There is
extensive research on this type of criterion, usually referred to as Error Estimates
for AMR [8, 9].
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3.2. Refinement constraints. Two fundamental issues arise when dealing with
the refinement process. First, it is necessary to choose a maximum level of re-
finement, otherwise the algorithm may result in an infinite loop or simply exceed
available computer memory. A second constraint, that two neighboring elements
should not differ my more than one refinement level [7], may be imposed to simplify
both book-keeping and algorithm, as well as ensure accurate inter-element flux cal-
culations. Figure 6 shows the three possible neighbor configurations (a), and an
example of a not-allowed configuration (b).
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tions

(b) Impossible configuration

Figure 6. Refinement/coarsening constraints

3.3. Refinement strategy (order). The process of refinement of the grid is com-
plex and involves recursion. It is not enough for an element to satisfy the refinement
criterion in order to be refined. Indeed, the constraints mentioned in the previous
section may result in the following scenario: if any of the element’s neighbors are
larger than the element itself, they must be refined before the element is refined.
Therefore, recursive programming features need be used.

4. Performing the refinement of an element.

The process of refining an element, once it qualifies for refinement, is described
next.

4.1. Creating the children. First, the four children need to be created and an
appropriate numbering scheme should be adopted. Figure 7 displays a possible
numbering choice. Edge nodes are numbered according to their location vis-a-
vis the element vertices and similarly for the children. Children vertices may be
numbered as follows: the first vertex of a child corresponds to the vertex of the
parent element where the child is located, while for the fourth child (central one)
the first vertex would correspond to the first edge of the parent element.

Data also needs to be transferred from the parent element to the children in a
consistent way. Accuracy, conservation, monotonicity, and many other considera-
tions may need to be taken into account during the transfer operation.
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Figure 7. Numbering of childrens

4.2. Finding neighbors of children. Once the children are created, it is neces-
sary to create the list of vertices as well as find their neighbors. Vertices are easy to
determine. For neighbors, this can be accomplished using an edge-based analysis.
Figure 8 shows the two possible configurations as well as appropriate nomenclature
for child iv corresponding to main vertex iv. Keeping in mind that there is a one-
to-one mapping between vertices, edges, and neighbors of an element, it is possible
to determine the three new neighbors N1, N2, and N3 of a child iv corresponding
to the vertex i = ind(iv). As Figure 8 shows, the first neighbor N1 is always the
ith neighbor of the parent element, the second neighbor N2 is always the 4th child,
while the third neighbor N3 is either the ind(iv +2) neighbor of the parent element
or the next one, depending on whether or not neighbor ind(iv + 2) of the parent
element has the same refinement level as the parent element.

Figure 8. Finding children’s neighbors after refinement

4.3. Updating neighbors. Proceeding edge-wise, the neighbor(s) of the parent
element on edge iv need(s) an update of its (their) vertices and list of neighbors after
the refinement process is performed. Figure 9 shows the two possible configurations.
When the neighbor has the same level of refinement as the element being refined,
there is only one neighbor along the edge. The refinement adds a vertex for that
neighbor. Morover, the neighbor element i no longer has the element being refined
as its neighbor since it is deactivated. The two children iv and iv + 1 are now the



EJDE-2006/CONF/15/ ISSUES IN ADAPTIVE MESH REFINEMENT 147

new neighbors. This can be accomplished by changing the target of one neighbor
pointer as well as inserting a new neighbor in the list (Figure 9).
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Figure 9. Udpating vertices and neighbors of the refined element neighbors.

On the other hand, if the neighbors are smaller than the element being refined,
the only change to make is to change the pointer assignment of the two neighbors
i and i + 1 on that edge by making them point to the appropriate children iv and
iv + 1.

4.4. Deallocating data storage of the parent element. After refinement, the
parent element is no longer in the list of active elements and is not updated during
the numerical simulation. It may be useful to free the space allocated to store
information about its vertices, neighbors, as well as data values. If this element is
reactivated upon coarsening, reallocation of adequate space will be needed.

5. The coarsening process

5.1. Why coarsening? For unsteady problems, the regions in need of a finer
mesh move with time. In some regions, a refined grid may become useless. To
avoid wasting memory and computation, it is necssary to coarsen the grid in those
regions.

5.2. Coarsening strategy (order). As for refinement, recursive programming is
required for coarsening. Coarsening involves an additional difficulty as an element
may be coarsened if and only if the neighbors that are finer can be coarsened
recursively. However, it may turn out that at the end of a refinement cascade, one
neighbor may not be coarsened because of accuracy requirements. Hence, it is first
necessary to check that all the elements in the pyramid can be coarsened before
actually proceeding to the coarsening of an element. It may be advantageous to
proceed with coarsening level-wise from the finest levels to the coarsest levels. This
trick avoids the need for a recursive procedure.

5.3. Coarsening of an element procedure. Reactivation of a cell is equivalent
to the removal of its four children, which must all meet the coarsening criteria.
The coarsening process proceeds with the reallocation of the parent vertices and
neighbors and their update. Afterwards, data can be transferred from the children
to the parents and the children may be deleted.
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5.4. The refinement-coarsening conflict. Visiting all grid elements once is usu-
ally not enough to complete the operations of refinement and coarsening. Visiting
the elements several times, on the other hand, raises a new problem. Elements
that are refined in a sweep may turn out to qualify for coarsening during the next
sweep. Moreover, some elements are refined/coarsened due to constraints (e.g. two
neighbors should not differ by more than one refinement level) and not because they
meet the refinement/coarsening criterion. This leads to the possiblilty of “chatter”
between the refinement and coarsening operations and could result in infinite loops.
A way around this is to tag the cells that are refined during the refinement process
so as to prevent their coarsening subsequently.

6. Maintaining an active list of elements (and output list)

Rather than having to search the tree each time an operation is to be performed
on active elements, it may be useful to create an array of pointers to the active
elements in the tree. This array could be used for calculations, output, and refine-
ment/coarsening operations.

7. Pointers and associated problems

Dealing with pointers may be a nightmare. Figure 10 displays a typical setup
for a common problem. The allocated memory is created via a pointer a. Later,
it is accessed via pointer b which modifies its content. If pointer a is accidentally
deallocated (not nullified), then pointer b will point to a location that is no longer
used for the purpose it was initially set for. The dangerous outcome is this error
can go undetected for long if that particular location in memory happens not to be
reused right away by the computer’s operating system. One day, the memory con-
figuration will be different, the operating system will decide to assign that memory
location to another purpose, and the program will abort.

a

b

store

create
allocated

memory

Figure 10. Using two pointers to access allocated memory.

A typical remedy is the following. If a subroutine is called with a pointer ar-
gument pointing to a location to be removed, then it is best to use an additional
temporary pointer that points to that location to be removed as a calling argument.
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8. DO loops and recursive refinement/coarsening

The recursive nature of the refinement/coarsening processes results in some un-
usual problems for the programmer. Consider the element shown in Figure 11,
along with the data structure used for its neighbors (Fortran 95 is considered here).
Before coarsening the element, it is necessary to coarsen any of the neighbors that
are already finer than the element. Assuming a DO loop is used for that purpose,
the process will go as follows: for i = 1, 5, if Neighbor Ni is too small, coarsen it.
When the program gets to i = 2, N2 will be coarsened and the number of point-
ers will decrease to 4 while the allocated pointer array will be deallocated, then
reallocated to meet the number of neighbors. This means, the DO loop will not
terminate !

N1
N2
N3
N4
N5

Allocated array

Element
Neighbor

(a) Neighbor data structure

N4

N5

N1

N3

N2

(b) Element with
neighbor pointers

Figure 11. Neighbor data structure

A similar problem arises when considering recursive coarsening of active ele-
ments. If an element is to be coarsened, this means its three brothers/sisters are
to be coarsened simultaneously. Hence a DO loop over the children will abort after
the coarsening of the first child.

9. Output and visualization problems

Using a standard visualization software package, such as Tecplot, to draw two-
dimensional contour plots may return surprising results. A nonlinear field will
generally display gaps near the dangling nodes (Figure 12). This is due to the fact
that the contours are drawn element-wise when the Finite-Element data structure
is being used with Tecplot (version 9). Using the FE data structure is necessary
with unstructured grids such as AMR grids.

A way around this problem is to use a dual grid obtained by partitioning an
element having a dangling node into smaller triangles with no dangling nodes.
This is shown in Figure 13, where three possible configurations (1, 2, or 3 dangling
nodes) are considered. The dual grid is used only for output purposes. Figure 12
shows the discontinuous contours (top) as well as the corrected continuous contour
field along with two grids, the AMR grid and the dual grid.
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Figure 12. Contour plots with AMR and dual grids: top (dis-
continuous with AMR grid), bottom (continuous with both AMR
and dual grids)

Figure 13. Generating the dual grid from the AMR grid.
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10. Conclusion

Although there is abundant literature on AMR grids, it seems difficult to find a
detailed presentation of the problems related to their implementation. This paper
examined the process of implementing a typical AMR procedure and discussed some
of the issues that arise during this process. A particular choice of data structure
was selected and problems related to that choice were presented and discussed.
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