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A NON-CONVEX DIFFUSION MODEL FOR SIMULTANEOUS
IMAGE DENOISING AND EDGE ENHANCEMENT

SEONGJAI KIM, HYEONA LIM

Abstract. Mathematical restoration models, in particular, total variation-
based models can easily lose fine structures during image denoising. In order

to overcome the drawback, this article introduces two strategies: the non-

convex (NC) diffusion and the texture-free residual (TFR) parameterization.
A non-standard numerical procedure is suggested and its stability is analyzed

to effectively solve the NC diffusion model which is mathematically unstable.

It has been numerically verified that the resulting algorithm incorporating the
NC diffusion and TFR parameterization is able to not only reduce the noise

satisfactorily but also enhance edges effectively, at the same time. Various

numerical examples are shown to confirm the claim.

1. Introduction

Image restoration is an important image processing (IP) step for various real-
world image-related applications and is often necessary as a pre-processing for other
imaging techniques such as segmentation and compression. Thus image restoration
methods have occupied a peculiar position in IP, computer graphics, and their
applications [14, 18, 19, 20, 26].

There have been various partial differential equation (PDE)-based models in im-
age restoration such as the Perona-Malik model [24], the motion by mean curvature
[15], the total variation (TV) minimization [17, 25], and color restoration models
[4, 11, 15, 16, 27]. These PDE-based models have been extensively studied to an-
swer fundamental questions in image restoration and have allowed researchers and
practitioners not only to introduce new mathematical models but also to improve
traditional algorithms [1, 5, 10, 21, 29]. Good references to work on them are e.g.
Aubert-Kornprobst [2], Osher-Fedkiw [23], and Sapiro [26].

However, most of these PDE-based restoration models and their numerical real-
izations show a common drawback: loss of fine structures. In particular, they often
introduce an unnecessary numerical dissipation on regions where the image content
changes rapidly such as on edges and textures. Therefore it is very important to
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develop mathematical models and/or numerical techniques which can effectively
preserve fine structures during the restoration.

The main objective in this article is to develop a model for simultaneous image
denoising and edge enhancement. The objective is quite challenging, because image
denoising filters out high-frequency components of the image while the edges in
principle show high frequencies. To overcome difficulties in conventional PDE-
models, we will consider a non-convex model incorporating an effective constraint
parameter which can both suppress noise and enhance edges at the same time.

An outline of the paper is as follows. In the next section, we briefly review
TV-based restoration models and recent studies for the reduction of nonphysical
dissipation. Section 3 analyzes sources of the nonphysical dissipation. Based on the
analysis, we suggest a non-convex (NC) diffusion model which is unstable math-
ematically. A non-standard numerical procedure is introduced for the new model
and analyzed for stability. In Section 4, we study an effective strategy for the
choice of the constraint parameter, called the texture-free residual (TFR) parame-
terization. Section 5 presents various numerical examples to show effectiveness of
the NC diffusion and the TFR parameterization. It has been numerically verified
that the resulting algorithm can satisfactorily reduce the noise and enhance edges
simultaneously.

2. Preliminaries

2.1. TV-based models. Let f be the observed image of the form

f = K ∗ u + v, (2.1)

where K is a blurring operator, ∗ represents the convolution, v denotes the noise,
and u is the desired image to find. In this article, our main concern is to remove
noise. Thus we assume that K = I, the identity operator. A common denoising
technique is to minimize a functional of gradient, given as

min
u

Fp(u), Fp(u) =
∫

Ω

|∇u|p dx +
λ

2
‖f − u‖2, (2.2)

where λ ≥ 0 and ‖ · ‖ denotes the L2-norm. When p = 1, the first term in F1(u) is
called the total variation (TV).

It is often convenient to transform the minimization problem (2.2) into a differen-
tial equation, called the Euler-Lagrange equation. Recall that for the minimization
problem in 2D of the form

min
u

∫
Ω

G(x, u,∇u)dx,

the Euler-Lagrange equation [28, §3.3] reads(
− ∂

∂x

∂

∂ux
− ∂

∂y

∂

∂uy
+

∂

∂u

)
G = 0.

By applying the variational calculus, one can transform the minimization problem
(2.2) into an equivalent differential equation:

−p∇ ·
( ∇u

|∇u|2−p

)
− λ (f − u) = 0. (2.3)
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For a convenient numerical simulation of (2.3), we may parameterize the energy
descent direction by an artificial time t; the resulting evolutionary Euler-Lagrange
equation can be formulated as:

∂u

∂t
−∇ ·

( ∇u

|∇u|2−p

)
=

λ

p
(f − u). (2.4)

The restored image becomes closer to f as λ grows. For the above equation, the
given image is set for the initial value, i.e., u(t = 0) = f . For the boundary
condition, the no-flux condition has often been adopted for simplicity.

Note that to prevent the denominator |∇u| approaching zero, it must be regu-
larized as

|∇u| ≈ |∇εu| := (u2
x + u2

y + ε2)1/2, (2.5)

for some ε > 0 small. Such a regularization can be a significant source of nonphysical
dissipation to be discussed later in this article. As most other PDE-based models,
the model (2.4), 1 ≤ p ≤ 2, can easily lose fine structures (due to nonphysical
dissipation).

An interesting case in (2.4) is when p = 1, the TV model:

∂u

∂t
−∇ ·

( ∇u

|∇u|

)
= λ(f − u). (2.6)

It is known that the TV model tends to transform the image into a collection of
locally constant portions, which is called the staircasing. The removal of staircasing
has been an interesting research topic [3, 4, 9]. As an anti-staircasing approach,
Marquina and Osher [17] introduced the improved TV (ITV) model

∂u

∂t
− |∇u|∇ ·

( ∇u

|∇u|

)
= λ |∇u| (f − u). (2.7)

In order to obtain the above model, the authors have first scaled the stationary
TV model (2.3) by a factor of |∇u| and then introduced the time parameterization.
The scaling can be beneficial in some aspects, as indicated in [23, §11.3]. However,
as Cha and Kim have analyzed in their recent paper [6], such a scaling is hardly
advantageous for the reduction of nonphysical dissipation. Note that since |∇u|
vanishes only in flat regions, the ITV model must have the same steady states as
the TV model (2.6).

2.2. Recent studies for the reduction of nonphysical dissipation. For the
TV-based image restoration, the staircasing effect is now well understood and rela-
tively easy to handle compared with nonphysical dissipation. Here we review briefly
three of recent studies for the reduction of nonphysical dissipation: employment of
Besov norm [18], iterative refinement [22], and the method of nonflat time evolution
(MONTE) [6].

Employment of Besov norm: As Meyer [18] analyzed, the L2-norm applied
to the residual (f − u) in the TV minimization (2.2) is not sensitive enough to
distinguish the noise from textures. As a consequence, the residual can easily
contain not only the noise but also fine structures and therefore the restored image
u turns out to be erroneous and blurry. To reduce the blur associated with the TV
model, Meyer suggested the following modified variational problem:

u = arg min
u∈BV (Ω)

(|u|BV + λ‖f − u‖∗), (2.8)
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where | · |BV is the bounded variation (BV) seminorm defined as

|u|BV =
∫

Ω

|∇u| dx

and ‖·‖∗ denotes the norm in the Besov space B−1,∞
∞ ; see [18, §1.13-1.15] for details.

The Besov norm has shown a better ability in the distinction of different textures
and therefore it can preserve more of fine structures. However, the model (2.8) is
difficult to minimize, in particular, utilizing the Euler-Lagrange equation approach.

Iterative refinement: In order to effectively suppress nonphysical dissipation,
Osher et al. [22] recently suggested an iterative refinement procedure:

• Initialize: u0 = e0 = 0.
• For k = 1, 2, · · · : compute uk as the minimizer of the following model

uk = arg min
u∈BV (Ω)

(
|u|BV +

λ

2
‖f + ek−1 − u‖2

)
(2.9)

and update
ek = ek−1 + f − uk. (2.10)

The authors have proved that uk converges monotonically in L2 to f , the noisy
image, as k →∞. However, it should be noticed that such a mathematical property
is not necessarily advantageous to a denoising algorithm, because the iterates uk

can get noisier as the iteration goes. The iterative refinement recovers not only fine
structures but also the noise [22].

The method of nonflat time evolution (MONTE) [6]: The MONTE is a
numerical approach for an effective reduction of nonphysical dissipation. Consider
a model of the form

∂u

∂t
+ Lu = R(f − u), (2.11)

where L is a nonlinear diffusion operator and R denotes a nonnegative constraint
term. The above equation is a generalized restoration model which fits with most
of known PDE-based models including the TV model (2.6), the ITV model (2.7),
the Meyer model (2.8), the Perona-Malik model [24], and the motion by mean
curvature.

The MONTE begins with a keen observation: Plugging v = f−u into the model
(2.11), we obtain the associated residual equation

∂v

∂t
+Rv = Lu. (2.12)

Then one can see from (2.12) that the residual v increases as the diffusion term Lu
grows. Note that the diffusion term is often larger in modulus on fine structures
than on smooth regions. Thus the residual becomes extensive on fine structures;
as a result, the restored image u must involve a lavish nonphysical dissipation
wherever the diffusion term is large in modulus. In order to reduce such nonphysical
dissipation effectively, Cha and Kim [6] has introduced the MONTE in which the
timestep size (in the numerical time integration) is determined as

∆t(x, tn) = τ F (Lu(x, tn−1)), (2.13)

where τ > 0 is a constant and, for some γ, η > 0,

F (s) =
γ

1 + η |s|
.
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Thus the solution is computed on a nonflat surface of time evolution and the cor-
responding residual becomes a standard numerical realization of

∂v

∂t
+ F (Lu)Rv = F (Lu)Lu. (2.14)

Note that when the ratio γ/η is fixed, the function G(s) (:= F (s)s) becomes flatter
on {s : |s| ≥ s0 > 0}, approaching γ/η, as η increases. Thus with appropriately
chosen parameters (γ and η), the MONTE allows the residual to involve equalized
diffusion except for very smooth regions. As a consequence, the restored image can
preserve fine structures more effectively, which has also been numerically verified
[6]. Since the MONTE can be viewed as a time-stepping numerical procedure, it is
applicable to various restoration models. The MONTE also improves computational
efficiency for all aforementioned PDE-based models; see [6] for details.

However, to further improve edge-preservation capability, the operator F (Lu)R
must be well understood, because otherwise the diffusion equalization can be de-
graded in (2.14).

The main objectives in this article are (1) to analyze sources of nonphysical
dissipation of TV-based models, (2) to introduce a non-convex diffusion model as a
remedy for nonphysical dissipation and as a method of edge enhancement, and (3)
to study the operator R; in order to remove noise, preserving fine structures more
effectively, and at the same time, to enhance edges.

3. Control of Nonphysical Dissipation

This section begins with an analysis for sources of nonphysical dissipation: regu-
larization and convexity. Then we will introduce a new non-convex diffusion model
and its non-standard numerical procedure which can control dissipation satisfacto-
rily and enhance edges effectively.

3.1. Regularization and convexity. Due to the regularization in (2.5), the min-
imization problem in (2.2) must be modified as

min
u

Fε, p(u), Fε, p(u) =
∫

Ω

|∇εu|p dx +
λ

2
‖f − u‖2, (3.1)

and its corresponding Euler-Lagrange equation becomes

−p∇ ·
( ∇u

|∇εu|2−p

)
− λ (f − u) = 0. (3.2)

In the following, we will see that the regularization becomes a source of numerical
dissipation. To understand the combined effects of p and ε in (3.1) (and therefore
in (3.2)), we will first measure the functional Fε, p, with λ = 0, for the cartoon
images as in Figure 1.

Table 1 presents the values of Fε, p for various selections of ε and p (with λ = 0).
Consider the first case F0, 2; the value is smaller for the blurry image in Figure 1(b),
which implies that the minimization with (ε, p) = (0, 2) invokes blur. Applying the
same logic, one can see that F0, 1 does not introduce blur during the minimization.
But, when we set (ε, p) = (0.1, 1) as to prevent the denominator approaching zero
in the Euler-Lagrange equation, the minimization algorithm will make the image
blurry, because the blurry image reduces the value of the functional. Here an
interesting case is when p < 1. As one can see from the table that when p = 0.9,
the functional has a smaller value for the sharper image. Thus the functional Fε, p,
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(a)

(b)

Figure 1. A cartoon image in one-dimensional space (a) and its
blurry version (b). Gradient magnitudes are indicated in the bot-
tom of each figure.

Table 1. The values of the functional Fε, p, with λ = 0, for images
in Figure 1.

Fε, p Figure 1(a) Figure 1(b)
F0, 2 0 + 0 + 12 + 0 = 1 0 + 0.52 + 0.52 + 0 = 0.5
F0, 1 0 + 0 + 1 + 0 = 1 0 + 0.5 + 0.5 + 0 = 1

F0.1, 1 0.1 + 0.1 +
√

1.01 + 0.1 ≈ 1.31 0.1 +
√

0.26 +
√

0.26 + 0.1 ≈ 1.22
F0, 0.9 0 + 0 + 10.9 + 0 = 1 0 + 0.50.9 + 0.50.9 + 0 ≈ 1.07

with appropriate p < 1 and ε > 0, can be utilized for edge enhancement, at least
for the cartoon image in Figure 1.

We summarize what we have seen with Fε, p, as follows:

• The strictly convex minimization (p > 1) makes images blurrier.
• The TV model itself (p = 1 and ε = 0) may not introduce “blur”. However,

its regularization (p = 1 and ε > 0) does.
• When p < 1, the model can make the image sharper. For the non-convex

functional, there may not exist the minimizer; however, this does not mean
that the discrete version of the equation is not interesting by itself. This
case has motivated one of the authors to develop an image denoising model
which can preserve fine structures satisfactorily for color images [15].

Based on the above observation, we introduce the following model:

∂u

∂t
− |∇εu|1+ω∇ ·

( ∇u

|∇εu|1+ω

)
= β (f − u), ω ∈ [−1, 1), (3.3)

where β = β(x, t) ≥ 0. Following the idea of the ITV model (2.7), the parameter
β can be chosen as

β =
λ

1− ω
|∇εu|1+ω,
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which is related to the minimization problem (3.1) with p = 1 − ω. There is no
mathematical criterion for the choice of ω; we will set it heuristically between 0
and 1 (non-convex diffusion).

The constraint parameter can play a crucial role in the preservation of fine struc-
tures. In §4, we will study an effective numerical procedure for the determination
of β(x, t).

In order to understand characteristics of the new model (3.3), we consider its
one-dimensional formulation:

∂u

∂t
− (u2

x + ε2)(1+ω)/2
( ux

(u2
x + ε2)(1+ω)/2

)
x

= β (f − u),

or equivalently,
∂u

∂t
− ε2 − ωu2

x

u2
x + ε2

uxx = β (f − u). (3.4)

Thus, when ω > 0, the equation (3.4) (and therefore (3.3)) acts as a diffusion
model for small derivatives (|ux| ≤ ε/

√
ω) and as a reverse-time heat equation on

regions where the slope is relatively large (|ux| > ε/
√

ω). Such a property will play
an important role for a simultaneous denoising and edge enhancement, although
the mathematical model is unstable. In the following subsection, we will introduce
an efficient linearized time-stepping procedure along with a non-standard spatial
numerical scheme, which makes the resulting algorithm stable for reasonable choices
of simulation parameters.

3.2. Numerical procedures. Here we present numerical procedures for (3.3).
The spatial scheme can be viewed as a weighted average and the temporal approx-
imation is based on a linearized θ-method and the alternating direction implicit
(ADI) perturbation; the resulting algorithm is unconditionally stable for θ = 1
(fully implicit) and stable for a reasonably large timestep size when θ = 1/2 (Crank-
Nicolson).

Denote the timestep size by ∆t. Set tn = n∆t and un = u(·, tn) for n ≥ 0.
Then, the problem (3.3) can be linearized by evaluating the nonlinear parts from
the previous time level. Consider the linearized θ-method for (3.3) of the form:

un − un−1

∆t
+ (An−1 + βnI) [θun + (1− θ)un−1] = βn f, 0 ≤ θ ≤ 1, (3.5)

where An−1 is a spatial approximation of a linearized diffusion operator, i.e.,

An−1um ≈ −|∇εun−1|1+ω∇ ·
( ∇um

|∇εun−1|1+ω

)
, m = n− 1, n.

For an efficient computation of (3.5), the matrix An−1 can be integrated to be
separable, i.e., An−1 = An−1

1 +An−1
2 , with

An−1
` um ≈ −|∇εun−1|1+ω ∂x`

( ∂x`
um

|∇εun−1|1+ω

)
, ` = 1, 2, (3.6)

where ∇ = (∂x1 , ∂x2)
T = (∂x, ∂y)T . Let

Bn−1
` = An−1

` +
1
2
βnI, ` = 1, 2.
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Then, the alternating direction implicit (ADI) method [12, 13] is a perturbation of
(3.5), with a splitting error of O(∆t2):[

1 + θ∆tBn−1
1

]
u∗ =

[
1− (1− θ)∆tBn−1

1 −∆tBn−1
2

]
un−1 + ∆tβn f,[

1 + θ∆tBn−1
2

]
un = u∗ + θ∆tBn−1

2 un−1,
(3.7)

where u∗ is an intermediate solution. When the matrices An−1
` are composed with

a 3-point stencil, each sweep in (3.7) can be carried out by inverting a series of
tri-diagonal matrices; the ADI is efficient.

Now, we will construct the matrix An−1
1 ; one can obtain An−1

2 similarly. Let
D un−1

i−1/2,j be a finite difference approximation of |∇un−1| evaluated at xi−1/2,j , the
mid point of xi−1,j and xi,j . For example, a second-order scheme reads

Dun−1
i−1/2,j =

(
(un−1

i,j − un−1
i−1,j)

2 +
[1
2

(un−1
i−1,j+1 + un−1

i,j+1

2
−

un−1
i−1,j−1 + un−1

i,j−1

2

)]2)1/2

.

(3.8)
Define

dn−1
ij,W = [(D un−1

i−1/2,j)
2 + ε2](1+ω)/2, dn−1

ij,E = dn−1
i+1,j,W . (3.9)

Then the differential operators in (3.6) can be approximated as

−∂x1

( ∂x1u
m

|∇εun−1|1+ω

)
≈ − 1

dn−1
ij,W

um
i−1,j +

( 1
dn−1

ij,W

+
1

dn−1
ij,E

)
um

i,j −
1

dn−1
ij,E

um
i+1,j ,

|∇εun−1|1+ω ≈ 2
dn−1

ij,W · dn−1
ij,E

dn−1
ij,W + dn−1

ij,E

.

(3.10)
By combining the right sides of (3.10), we can obtain the three consecutive non-zero
elements of the matrix An−1

1 corresponding to the pixel xij :

[An−1
1 ]ij = (−an−1

ij,W , 2, −an−1
ij,E ), (3.11)

where

an−1
ij,W =

2 dn−1
ij,E

dn−1
ij,W + dn−1

ij,E

, an−1
ij,E =

2 dn−1
ij,W

dn−1
ij,W + dn−1

ij,E

. (3.12)

Note that an−1
ij,W + an−1

ij,E = 2. The above non-standard numerical scheme has been
successfully applied as an edge-forming formula for image zooming of arbitrary
magnification factors [7, 8].

The following theorem analyzes stability for the θ-method (3.5).

Theorem 3.1. Define β0 = mini,j,n βn
ij and β1 = maxi,j,n βn

ij. Suppose that the
θ-method (3.5) incorporate the numerical scheme in (3.8)-(3.12) and let

(4 + β1) (1− θ)∆t ≤ 1. (3.13)

Then (3.5) is stable and holds the maximum principle and its solution satisfies

‖un − f‖∞ ≤ 4
4 + β0

‖f‖∞, n ≥ 0. (3.14)

Proof. We will first prove the following inequality:

min
i,j

fij ≤ un
ij ≤ ‖f‖∞, n ≥ 0, (3.15)
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which implies the maximum principle and stability. The equation (3.5) at a point
xij can be written as

[1 + (4 + βn
ij)θ∆t]un

ij

= θ∆t[an−1
ij,W un

i−1,j + an−1
ij,E un

i+1,j + an−1
ij,S un

i,j−1 + an−1
ij,N un

i,j+1]

+ (1− θ)∆t[an−1
ij,W un−1

i−1,j + an−1
ij,E un−1

i+1,j + an−1
ij,S un−1

i,j−1 + an−1
ij,N un−1

i,j+1]

+ [1− (4 + βn
ij)(1− θ)∆t]un−1

ij + ∆tβn
ij fij .

(3.16)

Let un
ij be a local minimum. Then, it follows from (3.13) and the identity

an−1
ij,W + an−1

ij,E + an−1
ij,S + an−1

ij,N = 4 (3.17)

that each of coefficients in the right side of (3.16), including the term of fij , is
nonnegative and their sum becomes 1 + (4 + βn

ij)θ∆t. Thus, since un
ij is smaller

than or equal to the neighboring values, we must have

fij ≤ un
ij .

The inequality holds for all local minima, which proves the first inequality in (3.15).
The same argument can be applied for local maxima to verify the other inequality.

Now, to prove (3.14), let δn
ij = un

ij − fij , n ≥ 0. Then it follows from (3.16) that

[1 + (4 + βn
ij) θ∆t]δn

ij

= θ∆t[an−1
ij,W un

i−1,j + an−1
ij,E un

i+1,j + an−1
ij,S un

i,j−1 + an−1
ij,N un

i,j+1]

+ (1− θ)∆t[an−1
ij,W un−1

i−1,j + an−1
ij,E un−1

i+1,j + an−1
ij,S un−1

i,j−1 + an−1
ij,N un−1

i,j+1]

− 4∆tfij + [1− (4 + βn
ij)(1− θ)∆t] δn−1

ij .

(3.18)

Thus, utilizing (3.15) and (3.17), we have

|δn
ij | ≤

4∆t

1 + (4 + β0) θ∆t
‖f‖∞ + γ0 ‖δn−1‖∞, (3.19)

where

γ0 =
1− (4 + β0)(1− θ)∆t

1 + (4 + β0) θ∆t
= 1− (4 + β0)∆t

1 + (4 + β0) θ∆t
.

The inequality (3.13) also holds when β1 is replaced by β0, i.e.,

(4 + β0)∆t ≤ 1 + (4 + β0) θ∆t,

which implies 0 ≤ γ0 < 1. Since ‖δ0‖∞ = 0, we can have

|δn
ij | ≤

4∆t

1 + (4 + β0) θ∆t
·

n−1∑
k=0

γk
0 · ‖f‖∞

≤ 4∆t

1 + (4 + β0) θ∆t
· 1
1− γ0

· ‖f‖∞

=
4

4 + β0
‖f‖∞,

(3.20)

which completes the proof. �

The above analysis deserves a few remarks.
(1) The stability condition in Theorem 3.1 holds independently on ω ∈ [−1, 1).
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(2) The θ-method is unconditionally stable for θ = 1. When θ = 1/2 (Crank-
Nicolson), the stability condition reads

∆t ≤ 2
(4 + β1)

.

However, in practice, it is stable for reasonable choices of the timestep size,
say, ∆t ≤ 2. The Crank-Nicolson scheme is preferred due to a smaller
numerical error.

(3) The main diagonal of the matrix An−1 is 4 for all n ≥ 1, independently
on ω and image contents as well. The numerical scheme in (3.8)-(3.12),
producing such a diffusion matrix, plays important roles in mathematical
analysis and practical computation.

(4) As one can see from (3.14), the residual (f−u) becomes smaller in modulus
as β increases. A question may occur whether the estimate can be sharper
or not. To answer the question, we consider an example. Let f be zero
at all pixels except one point, say x0. Then the desired image to recover
must be zero: u ≡ 0, which is possible when β = 0 in a neighborhood of
x0. In the case, ‖u − f‖∞ = ‖f‖∞ = f(x0). It seems to the authors that
the estimate (3.14) may not be sharper, as long as the maximum norm is
the measure.

We will close the section, figuring out the stationary solution of the θ-method
(3.5) incorporating the numerical scheme in (3.8)-(3.12). By removing the super-
scripts n and n− 1 from (3.16), one can obtain

(4 + βij)uij = ui−1,j + ui+1,j + ui,j−1 + ui,j+1 + βijfij ,

which is also satisfied by a second-order finite difference solution of the following
elliptic equation

−∇ · ∇u = β(f − u). (3.21)

Hence we may conclude that the iterates of the θ-method (3.5) approach the solution
of (3.21), provided that the numerical scheme (3.8)-(3.12) is incorporated and the
simulation parameters convince (3.13). Note that the solution of (3.21) can be
controlled in some degrees by selecting β appropriately.

In practice, the computation in image restoration stops much earlier than reach-
ing the stationary state; however, the restored image must show some characteris-
tics of the stationary solution. In this point of view, the choice of the constraint
parameter β can be crucial for an effective image restoration.

4. The Constraint Parameter

The selection of the constraint parameter has been an interesting problem for
PDE-based models, in particular, for the TV model (2.6) and its relatives. The
basic mechanism of the PDE-based denoising is diffusion. Thus the parameter β
cannot be too large; it must be small enough to introduce a sufficient amount of
diffusion. On the other hand, it should be large enough to keep the details in the
image. However, in the literature, the parameter has been chosen constant for most
cases; the resulting models either smear out fine structures more excessively than
desired or leave a certain amount of noise in the restored image.

In order to overcome the difficulty, the parameter must be variable; it can become
larger wherever dissipation is excessive, being small else where. In the following, we
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will consider an automatic and effective numerical method for the determination of
the constraint function β(x, t):

(1) Set β as a constant:
β(x, 0) = β0. (4.1)

(2) For n = 2, 3, · · ·
(2a) Compute the absolute residual and a quantity Gn−1

Res :

Rn−1 = |f − un−1|,

Gn−1
Res = max

(
0, Sm(Rn−1)−Rn−1

)
,

(4.2)

where Sm is a smoother and Rn−1 denotes the L2-average of Rn−1.
(2b) Update:

βn = βn−1 + γn Gn−1
Res , (4.3)

where γn is a scaling factor having the property: γn → 0 as n →∞.
The above procedure has been motivated from the following observation. The

PDE-based denoising algorithms tend to have a larger numerical dissipation near
fine structures. The tendency in turn makes the residual have structural com-
ponents on regions where dissipation is excessive. It is more apparent when the
absolute residual is smoothed and adjusted by an average. Such structural compo-
nents in the residual can be viewed as an indicator for nonphysical dissipation. By
adding the components to the constraint parameter β, and by allowing the parame-
ter to grow at pixels wherever diffusion is inordinate, we may return fine structures
in the residual back to the restored image. The objective is to restore images whose
corresponding residual is free of structures and textures. We will call the above
procedure, (4.1)-(4.3), the texture-free residual (TFR) parameterization.

In practice, one may wish to limit the parameter in a prescribed interval, i.e.,
β(x, t) ∈ [β0, β1]. Also one may want to update the parameter a few times only.
Note that the θ-method (3.7) converges fast, not larger than 10 iterations, for most
images having reasonable noise levels. Thus we can update the TFR parameter
β in the first few iterations, say, four. In the case, the scaling factor γn can be
selected as follows:

γn ‖Gn−1
res ‖∞ = η (β1 − β0), η =


0.4, n = 2,

0.3, n = 3,

0.2, n = 4,

0.1, n = 5.

(4.4)

Remark. One may compute the quantity Rn−1 in a different way:

Rn−1 = |∇(f − un−1)|. (4.5)

The above and the one in (4.2) have made no significant differences in practice.

5. Numerical Experiments

In this section, we present some numerical examples to show effectiveness of the
non-convex model, (3.3) with ω > 0, and the TFR parameterization. For com-
parison purposes, we consider four different models: the ITV model with constant
β(= βc) (ITV), the non-convex model with constant β(= βc) (NC), the ITV model
with variable β (ITV-TFR), and the non-convex model with variable β (NC-TFR).
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(a) (b)

(c) (d)

Figure 2. Lenna: (a) The original image g, (b) a noisy image
f with a Gaussian noise (PSNR=29.6), and restored images u by
using (c) ITV and (d) ITV-TFR.

For all experiments, images are first scaled to have values in [0, 1] and after
denoising, it is scaled back for the 8-bit display. For ITV-TFR and NC-TFR, the
variable β is chosen as in (4.1)-(4.4). We set the parameters as ε = 0.05, βc = 0.6,
β0 = 0.5, β1 = 5.0, and ∆t = 1. For non-convex models, ω = 0.9. (Exceptionally,
for the last example in Figure 5, we set ω = 1.5.) The residual is measured in the
peak signal-to-noise ratio (PSNR) defined as

PSNR ≡ 10 log10

( ∑
ij 2552∑

ij(gij − uij)2
)
dB,

where g denotes the original image and u is the restored image from a noisy image
of g.

In Figure 2, we verify effectiveness of the TFR parameterization presented in
Section 4. The Lenna image, Figure 2(a), is contaminated by a Gaussian noise of
PSNR=29.6 as in Figure 2(b) and restored by the ITV and ITV-TFR models. As
one can see from Figure 2(c), the ITV model has introduced a great deal of non-
physical dissipation which in turn makes the restored image blurry (PSNR=33.3).
On the other hand, the ITV-TFR model has restored an image as in Figure 2(d),
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Table 2. PSNR analysis.

f ITV NC ITV-TFR NC-TFR
Lenna 29.6 33.3 (3) 34.2 (3) 35.0 (6) 35.7 (8)

24.7 32.1 (3) 32.6 (5) 32.8 (5) 33.0 (4)
Clock 29.6 32.9 (3) 33.8 (3) 35.3 (7) 35.8 (8)

24.7 31.6 (4) 32.1 (4) 32.5 (5) 32.7 (4)
Park 28.5 28.3 (3) 28.7 (3) 32.1 (26) 32.2 (26)

24.8 27.9 (3) 28.5 (3) 30.1 (17) 30.1 (17)
Milk 28.5 33.8 (5) 34.4 (4) 35.9 (20) 36.2 (18)

22.9 31.9 (6) 32.3 (5) 32.5 (5) 32.8 (3)
Tank 28.5 31.5 (4) 31.8 (4) 33.1 (23) 33.2 (22)

23.9 30.7 (5) 30.8 (4) 31.1 (6) 31.1 (5)

which shows much less nonphysical dissipation (PSNR=35.0). It is apparent from
the example that the TFR parameterization is effective in preserving fine structures.

It has been observed from various numerical examples that the NC model im-
proves the restoration quality over the ITV model. However, for most cases, ITV-
TFR outperforms the NC model and NC-TFR is the best. In the following example,
we will compare performances of the four models.

Figure 3 presents restored images for the Clock image carried out by four different
models. The noisy image in Figure 3(b) contains a Gaussian noise of PSNR=29.6.
Again for this example, the ITV model introduces a large amount of nonphysical
dissipation to lose fine structures as in Figure 3(c). One can see from Figures 3(d)
and 3(e) that the ITV-TFR outperforms the NC model, which has been observed
for most cases. On the other hand, the NC-TFR model produces the best restored
image as shown in Figure 3(f). It preserves fine structures of the image effectively
and therefore most details are restored satisfactorily.

In the following, we present a PSNR analysis for a more systematic comparison
of the four models. We select three additional images in Figure 4, in addition to
the ones dealt in Figures 2 and 3.

Table 2 shows PSNRs of noised images f and restored images u by applying the
four different models. For each image, Gaussian noise is applied in two different
levels. The integers in parentheses represent the number of CN-ADI iterations
which can restore the best image, measured in PSNR and visual verification. As
shown in the table, the NC and ITV-TFR models have restored the images better
than the ITV model; the NC-TFR model has obtained the best PSNR values for all
cases. The TFR parameterization (ITV-TFR and NC-TFR) takes in general more
iterations to reach its best restored images. However, this observation does not
imply that the TFR parameterization makes the denoising procedure slow down.
Instead it is related to the capability that can continue improving image quality
for a longer time. For example, for the Park image with PSNR=28.5 in the noisy
image f , three iterations of the ITV-TFR and NC-TFR models produce restored
images of PSNR=29.5 and PSNR=29.8, respectively. These intermediate images
have better PSNRs (and better in visual verification) than those of the constant
parameterization. It is safe to say that the TFR parameterization does not slow
down the restoration procedure but runs more steps to continuously improve the
image quality in higher levels.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Clock: (a) The original image, (b) a noisy image with
a Gaussian noise (PSNR=29.6), and restored images by using (c)
ITV, (d) NC, (e) ITV-TFR, and (f) NC-TFR.

The inclusion of the NC diffusion (ω > 0) improves the performance only slightly
when compared by the PSNR. For example, PSNRs of the NC model are slightly
higher than those of the ITV model and PSNRs of the NC-TFR model are improved
by only a small amount over the ITV-TFR model. However, the idea of the NC
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Figure 4. Additional images utilized for a PSNR analysis: Park,
Milk, and Tank.

(a) (b)

(c) (d)

Figure 5. Human Brain: (a) The original image and denoised
images by (b) ITV, (c) ITV-TFR, and (d) NC-TFR.

diffusion should not be underestimated. In the following example, we will explore
characteristics of the NC diffusion.
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Figure 6. Horizontal line cuts of the Brain image and its restored
images in Figure 5. Each of the curves depicts the first 48 values
of the 200th row of the corresponding image.

Figure 5 shows an MRI image for a human brain and the restored images by
ITV, ITV-TFR, and NC-TFR. (No noise is applied.) For this real-world example,
we have reset ω = 1.5 for NC-TFR to perform its best. The other parameters
(ε, βc, β0, β1, and ∆t) are kept the same as in previous examples, because they
have been verified little sensitive to the image content. The ITV model has reduced
the noise reasonably well, although its restored image looks somewhat blurry as in
Figure 5(b). However, the ITV-TFR and NC-TFR models produce better images as
shown in Figures 5(c) and 5(d), respectively in six and seven iterations. These TFR-
parameterized models can reduce the noise effectively, preserving fine structures
satisfactorily.

In order to show details of the restoration, Figure 6 presents horizontal line
segments of the original brain image and the restored images. Each of the curves
depicts the first 48 values of the 200th row of the corresponding image. The solid,
dot-dashed, dot-solid, and dashed curves are respectively for the original Brain
image and three restored images by the ITV, ITV-TFR, and NC-TFR models in
Figure 5. The ITV model dissipates the image in some degree, while the TFR-
parameterized models represent the original image quite accurately. It should be
noticed that the restored image by the NC-TFR model shows edges sharper than
the original image, particularly on pixels 13-20 and 32-40. It is clear to see that the
NC-TFR model has an ability not only to reduce the noise but also to enhance edges.
Such simultaneous image denoising and edge enhancement (without an apparent
torture of image content) are unique characteristics of the NC-TFR model.

Conclusions

PDE-based models in image restoration show a common drawback, loss of fine
structures, due to a severe nonphysical dissipation. After presenting preliminar-
ies, we have analyzed sources of the nonphysical dissipation focusing on the total
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variation-based models. Based on the analysis, a non-convex (NC) diffusion model
has been introduced in order to enhance edges effectively by compensating non-
physical dissipation. Then a non-standard numerical procedure has been suggested
and analyzed for stability. In order to further improve the edge-preserving capa-
bility, this article has studied a strategy for the choice of an effective constraint
parameter, called the texture-free residual (TFR) parameterization. It has been
numerically verified that (1) the TFR parameterization improves the image quality
continuously and in higher levels, (2) the NC diffusion shows an ability to make the
edges sharper than the original real-world images of interests, and (3) the resulting
algorithm incorporating both the NC diffusion and the TFR parameterization can
simultaneously suppress the noise and enhance edges.
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