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SPECTRAL ELEMENT SIMULATIONS OF FLOW PAST AN
ELLIPSOID AT DIFFERENT REYNOLDS NUMBERS

DON LIU, GEORGE KARNIADAKIS, MARTIN MAXEY

Abstract. A new method is developed to simulate the fully coupled motion
involving an ellipsoidal particle and the ambient fluid. This method essentially

reduces a two-phase flow problem into a single-phase fluid flow problem. The

momentum exchange at the interface between the particle and the fluid is com-
puted in a spectral element method. To validate this method and demonstrate

the accuracy of the results, theoretical data as well as results from the direct

numerical simulations (DNS) via a spectral element method are obtained to
provide reference and comparison.

1. Introduction

Many industrial, mechanical and biomedical phenomena involve two phase flows.
The mutual interactions between particles and a carrier fluid have been studied
experimentally and numerically, for example [2, 9, 5, 6]. However, most of the
relevant research papers deal with spherical particles. Two-phase flows with non-
spherical particles are quite commonly met but not as well studied as spherical
particles because of the extra complexity in the ellipsoidal interface. Therefore
two-phase flow involving non-spherical particles becomes interesting to researchers.
This paper presents a spectral/hp element simulation of an ellipsoidal particle in
confined domains. A novel method to describe the two-way coupled motion between
the fluid and the ellipsoid is addressed here. The novelty of this method lies in the
fact that it fully utilizes the high order accuracy of a spectral element method and
also essentially reduces a two-phase flow problem into a single-phase flow problem.

In this paper, a mathematical description of this method is presented, especially
about how the two-way coupled motion is handled, and how an ellipsoid is rep-
resented in the computational domain. This method is related to the low order
multipole expansion method, based on the Force-Coupling Method (FCM) which
was developed by Maxey et al. [8]. The presence of the ellipsoidal particle is
implicitly included in the mathematical formulation by a set of terms called force
monopole and torque dipole terms. The forces and torques involved in the mutually
coupled motion are distributed finitely via tailored Gaussian distribution functions
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with the mean being coordinates of the center of the ellipsoid. The envelopes of
the Gaussian functions are selected according to the orientation and the size of the
semi-axes of the ellipsoid. A spectral/hp element method is used to obtain the
numerical solutions of this two phase flow problem with the immersed ellipsoid.

Among a series of systematic simulation results, two benchmark simulation ex-
amples, a Stokes flow case and a finite Reynolds number flow case are selected and
presented in this paper. The induced drag, lift and torque are verified and com-
pared with the analytic data from Happel et al. [1] as well as results from the direct
numerical simulation (DNS) on a body-fitted mesh. The associated computational
errors are tabulated in detail.

2. Mathematical Formulation and Simulation Methods

The two-way coupling between the particle and fluid is the core of two-phase
flow problems. To describe the particle and fluid motion efficiently, artificial source
terms are introduced in Navier-Stokes equations to account for the mutual effects
between the ellipsoid and the ambient fluid. The governing equations of the fluid
momentum in terms of the primitive variables u and p are given as:

ρ
Du
Dt

= −∇p + µ∇2u + f(x, t), (2.1)

∇ · u = 0. (2.2)

Where ρ, p and µ are the fluid density, pressure and viscosity, respectively. The
source term f(x, t) describes the two-way mutual interactions between the fluid and
the ellipsoid centered at Y(t), and is the sum of the force monopole (the first term)
and the dipole (the second term) in (2.3):

f(x, t) = F∆(~σm,x−Y(t)) + G∇
[
∆(~σd,x−Y(t))

]
, (2.3)

where ∆(~σm,x) and ∆(~σd,x) are the monopole and dipole Gaussian distribution
functions with the monopole envelope vector ~σm = (σm1, σm2, σm3) and the dipole
envelope ~σd = (σd1, σd2, σd3) respectively. For spherical particles [6], one Gauss-
ian envelope is used in all directions since spheres are isotropic in space. For an
ellipsoid, however, the semi-axes are different in three directions. Therefore differ-
ent envelopes are needed in different directions for both the monopole and dipole
Gaussian functions. For example, the monopole Gaussian distribution function for
an ellipsoid with the principal axes aligned with the fixed Cartesian coordinate axes
(x1, x2, x3) can be factorized as:

∆(~σm,x−Y) = ∆1(σm1, x1 − Y1)∆2(σm2, x2 − Y2)∆3(σm3, x3 − Y3), (2.4)

where ∆1, ∆2 and ∆3 can be computed in the same way as below with the corre-
sponding envelope: σm1, σm2 or σm3, respectively:

∆1(σm1, x1 − Y1) =
1√

2πσm1

e
− (x1−Y1)2

2σ2
m1 . (2.5)

These envelopes are related to the semi-axes of the ellipsoid in the following way:

σm1 =
a1√
π

, σm2 =
a2√
π

, σm3 =
a3√
π

, (2.6)

σd1 =
a1

3
√

6
√

π
, σd2 =

a2

3
√

6
√

π
, σd3 =

a3

3
√

6
√

π
, . (2.7)
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The monopole strength F is a force vector and equals the sum of the forces on
this particle. The components of the dipole G in (2.3) has the dimension of a
torque. It is a 3 by 3 matrix for each particle and is determined via the Dipole
Iteration Scheme [4].

The particle phase is described in Lagrangian approach. The particle velocity is
filtered out as

V(t) =
∫∫∫

Vol

u(x, t)∆(~σm,x−Y(t)) dVol. (2.8)

The particle angular velocity Ω is calculated similarly from the fluid vorticity and
dipole Gaussian distribution function. The particle position Y (t) is then updated
by integrating the following equation

V(t) =
dY(t)

dt
. (2.9)

Therefore the particle moves to the new position at the next time step. The details
of the Force-Coupling method are given by Maxey et al. [8] and Lomholt [7].

Most problems in reality are mobility problems, where the forces on the moving
particles are known and the motion is to be found. Another category of problems
is called resistance problems, where the motion is known but the force and torque
to maintain the known motion is to be determined. To simulate this resistance
problem, a novel method, which is related to the penalty methods, is developed
here to calculate the unknown force F(t) and torque Tij(t) on the ellipsoid:

dF(t)
dt

= λ[VT (t)−V(t)], (2.10)

and
dTij(t)

dt
= λεijk[ΩT

k (t)− Ωk(t)]. (2.11)

Where the target velocity VT and the target angular velocity ΩT
k are zero because

the ellipsoid is fixed still in this resistance problem. In Eqs. (2.10) and (2.11), λ is
the penalty parameter; εijk is the permutation symbol. A spectral element method
using both the h and p type refinements is used to solve the above problem in terms
of the primitive variables. Details of the spectral element methods can be found in
Karniadakis [3].

3. Simulation Results

Flow past an ellipsoid is studied here with the proposed method. Two benchmark
example problems - a Stokes flow and a low Reynolds number flow are presented in
this paper. Simulation results are compared with the analytic data from Happel et
al. [1] and also with the results from direct numerical simulation. As a reference for
comparison, the analytic data is reliable and accurate. The ellipsoid studied here
has the semi-axes a1 = 2, a2 = a3 = 1, which are aligned with the fixed coordinate
axes. The ellipsoid is fixed in an off-centered location inside a channel, which is
the computational domain. The dimensions of the channel are −80 ≤ x1/a2 ≤ 80
in the streamwise direction, −10/3 ≤ x2/a2 ≤ 10 in the lateral direction, and
−20 ≤ x3/a2 ≤ 20 in the spanwise direction. The origin of the coordinate system is
set at the center of the ellipsoid. A pressure gradient is imposed so that the ellipsoid
is immersed in a fully developed Poiseuille flow. The density and dynamic viscosity
of the fluid are non-dimensionalized into 1. Periodic boundaries are specified in
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the streamwise x1 and spanwise x3 directions. Non-slip boundary conditions are
specified in the lateral x2 direction.

The computational domain for the simulation with the FCM is the entire channel
including the volume which is supposed to be occupied by the ellipsoid since a
virtual particle is imposed in this channel. To compare the flow details, a direct
numerical simulation with a spectral element method is conducted under the same
boundary conditions. The computational domain is inside the channel and outside
the ellipsoid. Non-uniform structured meshes were created to discretize both the
computational domains.

4. Stokes Flow

We consider a resistance problem in a Stokes flow. A dimensionless pressure
gradient of 0.06075 is imposed to drive the flow over a fixed ellipsoid. The dimen-
sionless viscosity is µ = 1. Upon convergence, the centerline fluid velocity at the
entrance is ucl = 1.366, and the approach velocity (Happel et al. [1], p.333) is
uo = 1.0245. The approach velocity is 3/4 of the centerline velocity due to its loca-
tion. Although the ellipsoid is off-centered, no lift force is induced on the ellipsoid
because of the nature of a Stokes flow. However the drag and torque acting on this
ellipsoid are present and are to be determined. A penalty method, which is new in
this paper, is developed in order to determine the restoring force and the restoring
torque, which balance the drag and torque from the fluid, see Eqs. (2.10) and (2.11).
From the simulation result, the scaled restoring force in x1 is F1/(µa2uo) = 29.265
and the scaled restoring torque in x3 is T12/(µa2

2uo) = 4.376. The particle velocity
and angular velocity approach to zero with small errors as shown in table 1.

From the analytic data - table 7-5.1 in Happel et al. [1], the drag normalized by
µa2uo is 28.816. Compared with this analytic value, the restoring force has an error
of 1.56% in table 1. The difference in the scaled drag between the DNS result and
this analytic value is only 0.76%. The value of the analytic torque is unavailable for
comparison; therefore the error in the torque given in table 1 is relative to the DNS
result. To see the periodic effect in both the streamwise and the spanwise boundary
conditions, different channel sizes are tested in the subsequent parametrical studies
in in Liu [4]. For example, a smaller geometry −10 ≤ x3/a2 ≤ 10 increases the drag
to 5.48% of the analytic value. When the size of the channel is further reduced in
both x1 and x3 directions to −20 ≤ x1/a2 ≤ 20 and −5 ≤ x3/a2 ≤ 5, an increased
drag is anticipated. The simulation result in [4] confirms that the drag actually
increases up to 11%.

Source Drag/(µa2uo) Torque/(µa2
2uo) V1/uo Ω3a/uo

[1] 28.816 N/A 0 0
Simul. 29.265(1.56%) 4.376(3.5%) 0.000973(0.1%) 0.000763(0.1%)
DNS 28.598(0.76%) 4.231 0 0

Table 1. Comparisons of the scaled results from the analytic data,
the DNS, and the simulation with the FCM for an aligned ellip-
soidal particle in a Stokes flow. The numbers in percentage show
the relative errors against the analytic data or DNS.
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Further validation with the analytic results [1] was conducted by setting the
semi-axes of the ellipsoid to be a1 = a2 = a3 = 1. The measures of the channel
are −80 ≤ x1/a2 ≤ 80, −10 ≤ x3/a2 ≤ 10, and the dimension in x2 remains the
same. The pressure gradient is set to be 0.05 and the dynamic viscosity is still
1. The centerline fluid velocity at the entrance becomes 1.152 and the approach
velocity is 0.864. From table 7-5.1, Happel et al. [1], a/c = 1 and c/l = 0.3, the
error in drag is 4.2%. If the measure in x3 is expanded to −20 ≤ x3/a2 ≤ 20 and
the pressure gradient is set to 0.06075, the centerline fluid velocity at the entrance
becomes 1.395 and the approach velocity is 1.04625. From table 7-5.1 in [1], the
error in the drag drops down to 1.1% of the analytic value. Further details are
documented in Liu [4].

To verify the details of the flow field, a set of DNS with a spectral element
method on different meshes were conducted. The computational domain is the
volume inside the channel of the same size as before and outside the ellipsoid of
semi-axes a2 = 2, a2 = a3 = 1. Similar boundary conditions and pressure gradient
are imposed in the DNS. From the Gauss-Legendre-Lobatto integrations, the non-
dimensional values for the drag and the torque on the ellipsoid are found to be
28.598 and 4.23, respectively. Compared with the analytic value from Happel et
al. [1], the drag from the DNS has an error of 0.76% as shown in table 1. The
analytic data for the torque is unavailable; therefore the difference of 3.5%, which
is between the DNS result and the simulation with the proposed method in this
paper, is listed in table 1.
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Figure 1. Fluid velocity comparisons between the results from
the DNS and from the simulation with the FCM for a Stokes flow:
(a) u1 versus x1; (b) u2 versus x1.

Comparisons of the velocity distributions between the DNS and the simulation
using the proposed method (denoted as FCM in the following figures) are made
near the ellipsoid. Figure 1 shows the fluid velocity u1 and u2 versus the streamwise
distance in x1 with x2 = x3 = 0. Figure 2 presents u1 and u2 versus the lateral
distance in x2 with x3 = 0. Since a virtue ellipsoid is actually placed in the
simulation, there is no DNS result inside this ellipsoid in the range −2 ≤ x1/a2 ≤ 2.
Outside this ellipsoid, good agreement is achieved.
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Figure 2. Fluid velocity comparisons between the results from
the DNS and from the simulation with the FCM for a Stokes flow:
(a) u1 versus x2; (b) u2 versus x2.

4.1. Finte Reynolds Number Flow. At a finite Reynolds number the flow is
convective, not only does the off-centered ellipsoid subject to a drag, but also it
induces a lateral lift force. It is demonstrated in this paper that the penalty method
described in (2.10) and (2.11) is able to predict the sensitive lateral lift force as well
as the torque on the ellispod. The computed restoring forces balance the drag (D)
and the lift (L) on the ellipsoid to keep it from translating; the computed restoring
torque balances the torque (τ) induced from the fluid on the ellipsoid to prevent
it from rotating. The ellipsoid of the same size is placed at the origin of a channel
of a smaller size −14 ≤ x1/a2 ≤ 6, −10/3 ≤ x2/a2 ≤ 10, and −5 ≤ x3/a2 ≤ 5. A
parabolic velocity profile u1 = (1+3x2/10)(1−x2/10) is specified at the inlet x1 =
−14. Therefore the approach velocity is uo = 1. Based on this approach velocity,
the length scale 2a2, and the kinematic viscosity ν = 1, the particle Reynolds
number is 2. Periodic boundary conditions are specified at x3 = ±5. Non-slip
boundary conditions are imposed at x2 = −10/3 and x2 = 10. Since there is no
analytic solution for this problem, the comparison was made between the results
from the DNS and the simulation with the FCM. The computational meshes used in
both the FCM simulation and the DNS are conforming, non-uniform and structured,
with 1920 and 2220 hexahedral elements respectively. The scaled drag, lift, torque,
and their associated relative errors are tabulated in table 2. The relatively larger
error in the lift is because the lift is proportional to the shear stress and it is very
sensitive to the spatial resolution.

The comparisons of the flow field details between the DNS and the simulation
with the FCM are presented in the following figures. Figure 3(a) shows the stream-
wise fluid velocity distribution along x1 through the center of the ellipsoid. Figure
3(b) demonstrates the pressure distribution along x1. Both plots are along the line
x2 = x3 = 0. Near the tips of the ellipsoid where x1/a2 = ±2, there is a slight
difference between the two results.

Figure 4(a) presents the streamwise fluid velocity profiles u1 versus the lateral
distance x2 between the two side walls. The locations of the profiles are at the
center of the ellipsoid, tangential to it in both the upstream and the downstream
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Source D/(µa2uo) L/(µa2uo) τ/(µa2
2uo) V1/uo Ω3a2/uo

Simul. 34.371 3.078 4.102 4.61× 10−4 1.47× 10−3

DNS 34.231 2.898 4.12 0 0
Error 0.4% 6.2% 3.5% 0.05% 0.15%

Table 2. Comparisons of the scaled drag, lift and torque from the
DNS and the simulation with the FCM for an ellipsoid in a channel
flow at Reynolds number 2. The numbers in percentage show the
relative errors against the values from the DNS.
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Figure 3. Comparisons between the results from the DNS and
from the simulation with the FCM at particle Re = 2: (a) stream-
wise fluid velocity u1 versus x1; (b) normalized pressure p versus
x1.
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the DNS and from the simulation with the FCM at particle Re = 2:
(a) u1 versus x2; (b) u2 versus x2.
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directions, and further away from the ellipsoid. All the velocity profiles are within
the plane x3 = 0. Figure 4(b) plots the lateral velocity (u2) profiles at the same
locations as in Figure 4(a). There are small errors around the surface of the ellipsoid.
However, in the locations outside the volume of the ellipsoid, the DNS result and
the simulation with the FCM agree well. But inside the ellipsoid, the comparison
can not be made, because the simulation involves a virtue ellipsoid which is actually
filled with fluid while in the DNS a real ellipsoid is placed in the channel.
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Figure 5. Comparisons in the plane x3 = 0 through the center of
the ellipsoid: (a) contour lines of the streamwise fluid velocity ; (b)
computational meshes; Top - simulation with the FCM; Bottom -
DNS.

To further compare the overall flow field characteristics between the simulation
with the FCM and the DNS, figure 5(a) presents the contour lines of the streamwise
fluid velocity field. The top plot is the simulation with the FCM while the bottom
one is the DNS. In the top plot the fluid fills the volume nominally occupied by
the ellipsoid and forms a virtual ellipsoid. In the DNS plot, the non-slip boundary
condition is imposed on the surface of the ellipsoid, which is impermeable to the
fluid. Therefore contour lines are outside the ellipsoid. It is shown in this figure that
outside the ellipsoid, the flow field from the simulations with the FCM is similar
and comparable to that from the DNS. However, the simulation with the FCM is
computationally less expensive than DNS.

Figure 5(b) shows the computational meshes used in the simulation with the
FCM and the DNS. To enhance resolution while maintaining efficiency with less
elements, finer elements are fitted together around this ellipsoid in the DNS mesh.
On the other hand, the top plot does not need to have mesh refinement around the
position where the ellipsoid is placed. Therefore computational cost is much less
than the DNS.
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Conclusions. This paper proposed an efficient method to simulate the flow with a
two-way force interaction between the ellisoid and the ambient fluid. The merit of
this method lies in the fact that the presence of an immersed object in the flow field
is described implicitly in the formulation. There is no need to enhance the resolution
around the solid-fluid interface. Therefore this helps to significantly reduce the size
of the unknowns in the computation domain and lower the computational cost.
The proposed method is capable of providing good accuracy and remain robust
in low Reynolds number flow Regime due to the fact that the envelopes of the
Gaussian functions are determined [4]. The spectral DNS on a different mesh in this
paper verifies this method. However, inside the immersed ellipsoid, the flow field
is ficticious and comparisons can not be made. This method is good for predicting
both the hydrodynamical parameters and the flow field detail at a relative less cpu
time.

This method can be easily applied to the situation involving many immersed
spheres and/or ellipsoids while the computational overhead is only a small fraction
(depends on the number of immersed objects) of the cost for computing the fluid
phase.
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