\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small Eighth Mississippi State - UAB Conference on Differential Equations and Computational Simulations. {\em Electronic Journal of Differential Equations}, Conf. 19 (2010), pp. 37--44.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \setcounter{page}{37} \title[\hfilneg EJDE-2010/Conf/19/\hfil Quasireversibility] {Quasireversibility for inhomogeneous ill-posed problems in Hilbert spaces} \author[B. M. Campbell Hetrick \hfil EJDE/Conf/19 \hfilneg] {Beth M. Campbell Hetrick} % in alphabetical order \address{Beth M. Campbell Hetrick \newline Department of Mathematics, Gettysburg College, Gettysburg, PA 17325, USA} \email{bcampbel@gettysburg.edu} \thanks{Published September 25, 2010.} \subjclass[2000]{47A52, 35R25, 35A35} \keywords{Quasireversibility; ill-posed problems} \begin{abstract} In a Hilbert space $\mathcal{H}$, the inhomogeneous ill-posed abstract Cauchy problem is given by $\frac{du}{dt} = Au(t) + h(t)$, $u(0) = \chi$, $0 \leq t < T$; where $A$ is a positive self-adjoint linear operator acting on $\mathcal{H}$, $\chi \in \mathcal{H}$, and $h: [0,T) \to \mathcal{H}$. Using semigroup theory, we obtain H\"older continuous dependence for the control problem generated by the method of quasireversibility. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In a Hilbert space $\mathcal{H}$, we consider the problem $$\begin{gathered} \frac{du}{dt} = Au(t) + h(t), \quad 0 \leq t < T, \\ u(0) = \chi, \end{gathered} \label{inhomCP_H}$$ where $A$ is a positive self-adjoint linear operator, $\chi \in \mathcal{H}$, and $h: [0,T) \to \mathcal{H}$. Since $A$ is unbounded, the problem is ill-posed. Lattes and Lions introduced the method of quasireversibility in \cite{LL} in the 1960s as a way to generate approximate solutions to ill-posed problems. As part of their technique, they perturb the operator $A$ to construct an approximate problem. We do the same, considering the approximate problem $$\begin{gathered} \frac{dv}{dt} = f(A)v(t) + h(t), \\ v(0) = \chi, \end{gathered}\label{approx_inhomCP_H}$$ where $f(\lambda)$ is a real-valued Borel function bounded above. Since $f(A)$ is bounded above, the approximate problem \eqref{approx_inhomCP_H} is well-posed with solution $v(t)$. Following work done by Ames and Hughes \cite{AH}, we have proved that the solution to the ill-posed problem, if it exists, depends continuously on the solution to the approximate problem. These results have been obtained both in Hilbert space (including the nonlinear case) \cite{Campbell_nonlin} and in Banach space \cite{Campbell}. As mentioned above, Lattes and Lions perturb the operator to define an approximate problem. However, they use the solution $v(t)$ to this approximate problem to generate data $w(T)$ used to solve the problem $$\begin{gathered} \frac{dw}{dt} = Aw(t), \quad 0 \leq t < T, \\ w(T) = v(T). \end{gathered} \label{fvp_homCP_H}$$ As a final-value problem, this problem is well-posed. Lattes and Lions show that $\|u(0) - w(0) \| \leq \epsilon.$ Note that the method of Lattes and Lions does not give an approximation for $u(t)$ where $t > 0$. In \cite{Miller}, Miller points out an additional concern: that the norm of the operator $\mathrm{e}^{f(A)}$ is large for small $\epsilon$. Miller refines the method of quasireversibility, making additional assumptions on $f$ in order to obtain a logarithmic convexity result for the difference of the solutions $u(t)$ and $w(t)$. He calls this approach a stabilized quasireversibility method. We show here that we are able to obtain the same results as Miller using our assumptions. In particular, we use the solution to \eqref{approx_inhomCP_H} to create the final-value problem $$\begin{gathered} \frac{dw}{dt} = Aw(t) + h(t), \quad 0 \leq t < T, \\ w(T) = v(T). \end{gathered} \label{fvp_inhomCP_H}$$ Under the appropriate stabilizing conditions, we show that there exist computable constants $C$ and $M$, independent of $0 < \beta < 1$, such that $\| u(t) - w(t)\| \leq C \beta^{1- \frac{t}{T}} M^{t/T},$ where $u(t)$ and $w(t)$ are solutions to \eqref{inhomCP_H} and \eqref{fvp_inhomCP_H}, respectively, assuming a solution to \eqref{inhomCP_H} exists. \section{Theory} In Hilbert space, the linear inhomogeneous ill-posed problem is given by $$\begin{gathered} \frac{du}{dt} = Au(t) + h(t), \\ u(0) = \chi , \end{gathered} \label{inhomCauchyprob}$$ for $0 \leq t < T$, where $A$ is a positive self-adjoint operator on a Hilbert space $\mathcal{H}$, $\chi \in \mathcal{H}$, and $h: [0, T) \to \mathcal{H}$. We assume that $h$ is differentiable on $(0, T)$ and that $h' \in L^1((0, T); \mathcal{H})$. The following theorem states conditions under which a solution exists. \begin{theorem}[{\cite[Corollary 4.2.10]{Pazy}}] \label{solution} Let $X$ be a Banach space and let $A$ be the infinitesimal generator of a $C_0$ semigroup $T(t)$ on $X$. If $h: [0, T) \to X$ is differentiable almost everywhere on $[0, T]$ and $h' \in L^1((0, T);X)$, then for every $\chi \in \operatorname{Dom}(A)$ the initial value problem \eqref{inhomCauchyprob} has a unique strong solution $u$ on $[0,T]$ given by $$\label{solution_u(t)} u(t) = T(t)\chi + \int_0^t T(t-s) h(s) ds.$$ \end{theorem} Recall that self-adjoint operators bounded above generate $C_0$ semigroups. This yields the following corollary: \begin{corollary} \label{bddabove_solution} Let $\mathcal{H}$ be a Hilbert space, and let $A: \mathcal{H} \to \mathcal{H}$ be a closed, densely-defined linear operator. If $A$ is self-adjoint and bounded above and $h: [0, T) \to \mathcal{H}$ is differentiable on $(0, T)$ with $h' \in L^1(0, T)$, then for every $\chi \in \operatorname{Dom}(A)$ the initial value problem \eqref{inhomCauchyprob} has a unique solution $u$ on $[0,T]$ given by \eqref{solution_u(t)}. \end{corollary} We approximate the inhomogeneous ill-posed problem with \begin{gather*} \frac{dv}{dt} = f(A)v(t) + h(t), \\ v(0) = \chi , \end{gather*} where $f$ is a real-valued Borel function bounded above that approximates $A$ in a suitable sense. Take $f(A) = A - \epsilon A^2$, following Lattes and Lions \cite{LL}, Miller \cite{Miller1}, and Ames \cite{Ames}, or $f(A) = A(I + \epsilon A)^{-1}$, following Showalter \cite{Showalter}. Since $f(A)$ is bounded above, by Corollary \ref{bddabove_solution} the approximate problem is well-posed with solution $v(t) = \mathrm{e}^{tf(A)} \chi + \int_0^t \mathrm{e}^{(t-s) f(A)} h(s) \, ds.$ Now consider the \emph{final}-value problem given by $$\begin{gathered} \frac{dw}{dt} = Aw(t) + h(t), \\ w(T) = v(T) = \mathrm{e}^{Tf(A)} \chi + \int_0^T \mathrm{e}^{(T-s) f(A)} h(s) \, ds. \end{gathered} \label{FVP}$$ This problem is well-posed with solution $w(t) = \mathrm{e}^{(t-T)A} \Big( \mathrm{e}^{Tf(A)} \chi + \int_0^T \mathrm{e}^{(T-s) f(A)} h(s) \, ds \Big) - \int_t^T \mathrm{e}^{(t-s)A} h(s) \, ds,$ where $\chi \in \operatorname{Dom}(f(A))$. Under certain stabilizing conditions, we prove that $\| u(t) - w(t)\| \leq C \beta^{1- \frac{t}{T}} M^{t/T},$ where $0 < \beta < 1$ and $C$ and $M$ are computable constants independent of $\beta$. \begin{definition}[{\cite[Definition 1]{AH}}] \label{Cond_A} \rm Let $A$ be a positive self-adjoint operator on a Hilbert space $\mathcal{H}$. Let $f:[0, \infty) \to \mathbb{R}$ be a Borel function, and assume that there exists $\omega \in \mathbb{R}$ such that $f(\lambda) \leq \omega$ for all $\lambda \in [0, \infty)$. Then $f$ is said to satisfy \emph{Condition ($\mathcal{A}$)} if there exist positive constants $\beta$, $\delta$, with $0 < \beta < 1$, for which $\operatorname{Dom}(A^{1+\delta}) \subseteq \operatorname{Dom}(f(A))$, and $$\label{ConditionA} \|(-A + f(A)) \psi \| \leq \beta \|A^{1+\delta} \psi \|,$$ for all $\psi \in \operatorname{Dom}(A^{1+\delta})$. \end{definition} Note that $f(A)$ and $A^{1+ \delta}$ are defined by the functional calculus for self-adjoint operators that follows from the Spectral Theorem. Set $$\label{g} g(\lambda) = - \lambda + f(\lambda).$$ \begin{lemma}[{\cite[Lemma 1]{AH}}] \label{AHLemma1} For all $t \geq 0$, $\mathrm{e}^{tg(A)} = \mathrm{e}^{-tA}\mathrm{e}^{tf(A)}.$ \end{lemma} We will use this repeatedly in our proofs, together with the fact that this relationship holds for all $\alpha \in \mathbb{C}$: $\mathrm{e}^{\alpha g(A)} = \mathrm{e}^{-\alpha A}\mathrm{e} ^{\alpha f(A)}.$ Recall that $A$ is unbounded and thus not defined everywhere. We need to regularize our data so that it is in the domain of these operators. In Hilbert space, we use the resolution of the identity for this regularization. As mentioned above, we also rely on the functional calculus for unbounded operators that follows from the Spectral Theorem. Before stating our result and its proof, we review these ideas. \begin{theorem} {\rm Spectral Theorem for Unbounded Self-Adjoint Operators \cite[Theorem~XII.2.3]{DS2}} Let $T$ be a self-adjoint operator on a Hilbert space $\mathcal{H}$. Then its spectrum is real and there is a uniquely determined regular countably additive self-adjoint spectral measure $E$ defined on the Borel sets of the plane, vanishing on the complement of the spectrum, and related to $T$ by the equations \begin{itemize} \item[(a)] $\operatorname{Dom}(T) = \{x \in \mathcal{H}: \int_{\sigma (T)} \lambda ^2 d(E(\lambda ) x, x) < \infty \}$, and \item[(b)] $Tx = \lim_{ n \to \infty} \int_{-n}^n \lambda dE(\lambda ) x$, where $x \in \operatorname{Dom}(T)$. \end{itemize} \end{theorem} \begin{definition}[{\cite[Definition~XII.2.4]{DS2}}] \rm The unique spectral measure associated with a self-adjoint operator $T$ as in the above theorem is called the \emph{resolution of the identity} for $T$. \end{definition} \section{Results} We assume that there exists a strong solution $u(t)$ to the ill-posed inhomogeneous problem given in \eqref{inhomCauchyprob}. \begin{theorem} \label{thm2} Let $A$ be a positive self-adjoint operator acting on a Hilbert space $\mathcal{H}$ and let $f$ satisfy Condition ($\mathcal{A}$). Assume that $h(t): [0, T) \to \mathcal{H}$ is continuously differentiable with $h'(t) \in L^1(0, T)$ and $h(t) \in \operatorname{Dom}(\mathrm{e}^{TA})$ for all $t \in [0,T)$. Also, assume that there exists a constant $\gamma$, independent of $\beta$ and $\omega$, such that $(g(A) \psi, \psi) \leq \gamma (\psi, \psi)$, for all $\psi \in \operatorname{Dom}(g(A))$. Further, suppose that $\chi \in \operatorname{Dom}(\mathrm{e}^{TA})$ and $\| e^{TA} \chi\| \leq L$, $\| e^{TA} h(t) \| \leq N$ for all $t \in [0, T)$. Then there exist constants $C$ and $M$, independent of $\beta$, such that for $0 \leq t < T$, $\| u(t) - w(t) \| \leq C\beta^{1 - \frac{t}{T}}M^{t/T}.$ \end{theorem} As discussed above, since $A$ is unbounded we need to regularize our data so that it is in the domain of the operators with which we are working. We use the resolution of the identity for this regularization. Let $\{E (\cdot)\}$ represent the resolution of the identity for the linear operator $A$. Set $e_n = \{ \lambda \in [0, \infty) : |g(\lambda)| \leq n \}$. Using the definition of $g$ given above in \eqref{g}, where $f$ satisfies Condition ($\mathcal{A}$), we see that $e_n$ is a bounded set since \begin{align*} e_n &= \{ \lambda \in [0, \infty) : |g(\lambda)| \leq n \} \\ &\subseteq \{ \lambda : 0 \leq \lambda \leq n + \omega \}. \end{align*} Let $E_n = E(e_n)$. The following lemma is used repeatedly throughout this work. \begin{lemma} \label{E_n_lemma} Let $A$ be a self-adjoint operator with $E$ the resolution of the identity for $A$ and $e_n = \{ \lambda \in [0, \infty) : |g(\lambda)| \leq n \}$. Let $\tau \in \mathcal{H}$. Then $E_n \tau \in \operatorname{Dom}(f(A))$, where $f$ is a complex Borel function defined $E$-almost everywhere on the real axis and bounded on bounded sets. \end{lemma} Our proof begins with approximations $u_n(t)$ and $w_n(t)$. Set $\chi_n = E_n \chi$ and $h_n(s) = E_n h(s)$. Note that $f(\lambda) = \mathrm{e}^{t\lambda}$ is a Borel function bounded on bounded sets, so by Lemma~\ref{E_n_lemma} $\chi_n$, $h_n \in \operatorname{Dom}(A) \cap \operatorname{Dom}(\mathrm{e}^{tA})$. Define \begin{gather*} u_n(t) = E_n u(t), \\ w_n(t) = E_n w(t). \end{gather*} \begin{lemma}[{\cite[Lemma~9]{Campbell_nonlin}}] \label{u_n(t)} $u_n(t) = \mathrm{e}^{tA} \chi_n + \int_0^t \mathrm{e}^{(t-s)A} h_n (s) ds.$ \end{lemma} We have an analogous result for $w_n$: \begin{lemma} \label{w_n(t)} $w_n(t) = \mathrm{e}^{(t-T)A} \Big( \mathrm{e}^{Tf(A)} \chi_n + \int_0^T \mathrm{e}^{(T-s) f(A)} h_n(s) \, ds \Big) - \int_t^T \mathrm{e}^{(t-s)A} h_n(s) \, ds.$ \end{lemma} \begin{proof} Note that we may write the final value problem given in \eqref{FVP} as an initial value problem by replacing $t$ with $T-t$. Then the differential equation becomes $\frac{dw}{dt} = - Aw(t) + h(t).$ Since $-A$ is bounded above, $-A$ generates a $C_0$ semigroup. Then by Corollary~\ref{bddabove_solution}, the problem given in \eqref{FVP} has a unique solution given by $w(t) = \mathrm{e}^{(t-T)A} \Big( \mathrm{e}^{Tf(A)} \chi + \int_0^T \mathrm{e}^{(T-s) f(A)} h(s) \, ds \Big) - \int_t^T \mathrm{e}^{(t-s)A} h(s) .$ Thus \begin{align*} E_n w(t) &= E_n \Big[\mathrm{e}^{(t-T)A} \Big( \mathrm{e}^{Tf(A)} \chi + \int_0^T \mathrm{e}^{(T-s) f(A)} h(s) \, ds \Big) - \int_t^T \mathrm{e}^{(t-s)A} h(s) \Big] \\ &= \mathrm{e}^{(t-T)A} \Big( \mathrm{e}^{Tf(A)} \chi_n + \int_0^T \mathrm{e}^{(T-s) f(A)} h_n(s) \, ds \Big) - \int_t^T \mathrm{e}^{(t-s)A} h_n(s) , \end{align*} so $w_n(t) = \mathrm{e}^{(t-T)A} \Big( \mathrm{e}^{Tf(A)} \chi_n + \int_0^T \mathrm{e}^{(T-s) f(A)} h_n(s) \, ds \Big) - \int_t^T \mathrm{e}^{(t-s)A} h_n(s).$ \end{proof} \begin{proof}[Proof of Theorem \ref{thm2}] To obtain our result we use the Three Lines Theorem (cf. \cite[p. 33]{RS2}), which requires us to extend $u_n$ and $w_n$ into the complex strip $\{ \alpha = t + \mathrm{i} \eta : 0 \leq t \leq T, \eta \in \mathbb{R} \}$. To do so, set \begin{gather*} u_n (\alpha ) = \mathrm{e}^{\mathrm{i} \eta A} u_n(t) \\ w_n (\alpha ) = \mathrm{e}^{\mathrm{i} \eta A} w_n(t), \end{gather*} Note that the complex-valued function $u_n - w_n$ is analytic and continuous on the strip. Define $\phi_n (\alpha) = (u_n(\alpha) - w_n (\alpha), \tau),$ where $(\cdot, \cdot)$ is the inner product in $\mathcal{H}$ and $\tau$ is an arbitrary element in $\mathcal{H}$. To use the Three Lines Theorem, we must show that $\phi_n (\alpha)$ is bounded in the strip. For $\alpha = t + \mathrm{i} \eta$ we have \newpage \begin{align*} & \| \phi_n (\alpha) \|\\ &\leq \| u_n (\alpha) - w_n (\alpha) \| \|\tau \| \\ &= \| \mathrm{e}^{\mathrm{i} \eta A} \| \| u_n (t) - w_n (t) \| \|\tau \| \\ &= \left \| \Big(\mathrm{e}^{tA}\chi_n + \int_0^t \mathrm{e}^{(t-s)A} h_n(s) ds \Big) - \Big( \mathrm{e}^{tA} \mathrm{e}^{T(-A +f(A))} \chi_n \right. \\ &\quad \left. + \mathrm{e}^{(t-T)A} \int_0^T \mathrm{e}^{(T-s)f(A)} h_n(s) ds - \int_t^T \mathrm{e}^{(t-s)A} h_n(s) ds \Big) \right \|\, \|\tau \| \\ &\leq \left \| \big(I - \mathrm{e}^{T (-A + f(A))} \big) \mathrm{e}^{tA} \chi_n + \int_0^T \left ( \mathrm{e}^{(t-s)A} - \mathrm{e}^{(t-T)A} \mathrm{e}^{(T-s)f(A)} \right ) h_n(s) \, ds \right \|\, \|\tau \| \\ &\leq \left ( \| \big (I - \mathrm{e}^{T g(A)} \big) \mathrm{e}^{tA} \chi_n \| + \left \| \int_0^T \left ( \mathrm{e}^{(t-s)A} - \mathrm{e}^{(t-s+s-T)A} \mathrm{e}^{(T-s)f(A)} \right ) h_n(s) \, ds \right \| \right) \|\tau \| \\ &\leq \left ( \| \big (I - \mathrm{e}^{T g(A)} \big) \mathrm{e}^{tA} \chi_n \| + \left \| \int_0^T \mathrm{e}^{(t-s)A} \left (I - \mathrm{e}^{(T-s)(-A + f(A))} \right ) h_n(s) \, ds \right \| \right) \|\tau \| \\ &\leq \left ( \| \big (I - \mathrm{e}^{T g(A)} \big) \mathrm{e}^{tA} \chi_n \| + \left \| \int_0^T \left (I - \mathrm{e}^{(T-s) g(A)} \right ) \mathrm{e}^{(t-s)A} h_n(s) \, ds \right \| \right ) \|\tau \|. \end{align*} Recall that $(g(A) \psi, \psi) \leq \gamma (\psi, \psi)$ for all $\psi \in \operatorname{Dom}(g(A))$, and so $g(A)$ is the generator of a strongly continuous semigroup $\{\mathrm{e}^{tg(A)} \}_{t \geq 0}$ of bounded operators with $\| \mathrm{e}^{tg(A)} \| \leq \mathrm{e}^{\gamma t}$. Thus $\| \left ( I - \mathrm{e}^{t g(A)} \right ) \psi \| \leq K \| \psi \|$ for all $t \in [0, T]$, where $K$ is a constant. Using our assumptions that $\| \mathrm{e}^{TA} \chi \| \leq L$ and $\| \mathrm{e}^{TA} h(t) \| \leq N$, we have \begin{align} \nonumber \| \phi_n (\alpha) \| &\leq \left ( \| \big (I - \mathrm{e}^{T g(A)} \big) \mathrm{e}^{tA} \chi_n \| + \left \| \int_0^T \left (I - \mathrm{e}^{(T-s) g(A)} \right ) \mathrm{e}^{(t-s)A} h_n(s) \, ds \right \| \right) \|\tau \| \\ \nonumber &\leq \left (K \| \mathrm{e}^{tA} \chi_n \| + K \int_0^T \| \mathrm{e}^{(t-s)A} h_n(s) \| \, ds \right ) \|\tau \| \\ &\leq K \left ( \| \mathrm{e}^{TA} \chi_n \| + \int_0^T \| \mathrm{e}^{TA} h_n(s) \| \, ds \right ) \|\tau \| \label{phi_bound} \\ \nonumber &\leq K ( L + TN) \| \tau \|, \end{align} and thus $\phi_n$ is bounded. Hence we may apply the Three Lines Theorem to this inner product. By the Three Lines Theorem, $|(\phi_n(t), \tau) | \leq M(0)^{1 - \frac{t}{T}} M(T)^{t/T}$ for $0 \leq t \leq T$, where $M(t) = \max_{\alpha = t + \mathrm{i} \eta, \eta \in \mathbb{R}} | (\phi_n(\alpha), \tau) |.$ Using properties of semigroups and Condition ($\mathcal{A}$), we have \begin{align*} M(0) &\leq \left ( \| \big (I - \mathrm{e}^{T g(A)} \big) \chi_n \| + \left \| \int_0^T \left (I - \mathrm{e}^{(T-s) g(A)} \right ) \mathrm{e}^{(-s)A} h_n(s) \, ds \right \| \right) \|\tau \| \\ &\leq \left ( \left \| \int_0^T \mathrm{e}^{\sigma g(A)} g(A) \chi_n \, d\sigma \right \| + \int_0^T \| \left ( I - \mathrm{e}^{(T-s) g(A)} \right ) \mathrm{e}^{(-s)A} h_n(s) \| \, ds \right) \|\tau \| \\ &\leq \left ( \mathrm{e}^{\gamma T} \int_0^T \| g(A) \chi_n \| \, d\sigma + \int_0^T \left \| \int_0^{T-s} \mathrm{e}^{\sigma g(A)} g(A) \mathrm{e}^{(-s)A} h_n(s) \, d\sigma \right \| ds \right) \|\tau \| \\ &\leq \Big( \beta T \mathrm{e}^{\gamma T} \|A^{1 + \delta} \chi_n \| + \int_0^T \int_0^{T-s} \mathrm{e}^{\gamma \sigma} \| g(A) \mathrm{e}^{(-s)A} h_n(s) \| \, d\sigma ds \Big) \|\tau \| \\ &\leq \Big( \beta T \mathrm{e}^{\gamma T} \|A^{1 + \delta} \chi_n \| + \int_0^T \mathrm{e}^{\gamma (T-s)} \int_0^{T-s} \beta \| A^{1 + \delta} \mathrm{e}^{(-s)A} h_n(s) \| \, d\sigma ds \Big) \|\tau \| \\ &\leq \Big( \beta T \mathrm{e}^{\gamma T} \|A^{1 + \delta} \chi_n \| + \int_0^T \mathrm{e}^{\gamma (T-s)} \beta (T-s) \| A^{1 + \delta} \mathrm{e}^{(-s)A} h_n(s) \| \, ds \Big) \|\tau \| \\ &\leq \beta T \mathrm{e}^{\gamma T} \Big( \|A^{1 + \delta} \chi_n \| + \int_0^T \| A^{1 + \delta} \mathrm{e}^{(-s)A} h_n(s) \| \, ds \Big) \|\tau \| \\ &\leq \beta T \mathrm{e}^{\gamma T} \Big( \|A^{1 + \delta} \chi_n \| + \int_0^T \| A^{1 + \delta} h_n(s) \| \, ds \Big) \|\tau \| \\ &\leq k \beta T \mathrm{e}^{\gamma T} \Big( \|\mathrm{e}^{TA} \chi_n \| + \int_0^T \|\mathrm{e}^{TA} h_n(s) \| \, ds \Big) \|\tau \|, \end{align*} where $k$ is a positive constant. Also, from \eqref{phi_bound} we have \begin{align*} M(T) &\leq \left (\| \big (I - \mathrm{e}^{T g(A)} \big) \mathrm{e}^{TA} \chi_n \| + \left \| \int_0^T \left (I - \mathrm{e}^{(T-s) g(A)} \right ) \mathrm{e}^{(T-s)A} h_n(s) \, ds \right \| \right) \|\tau \| \\ &\leq K \Big( \| \mathrm{e}^{TA} \chi_n \| + \int_0^T \| \mathrm{e}^{TA} h_n(s) \| \, ds \Big) \|\tau \|. \end{align*} Thus by the Three Lines Theorem, \begin{align*} |\phi_n(t)| &\leq \Big\{ k \beta T \mathrm{e}^{\gamma T} \Big( \|\mathrm{e}^{TA} \chi_n \| + \int_0^T \|\mathrm{e}^{TA} h_n(s) \| \, ds \Big) \Big\}^{1-\frac{t}{T}} \\ &\quad\times \Big\{K \Big( \| \mathrm{e}^{TA} \chi_n \| + \int_0^T \| \mathrm{e}^{TA} h_n(s) \| \, ds \Big) \Big\}^{t/T} \|\tau \|. \end{align*} Letting $n \to \infty$ and using our stability assumptions, we have $|\phi(t)| \leq \{ k \beta T \mathrm{e}^{\gamma T} ( L + TN ) \}^{1-\frac{t}{T}} \left \{ K \left ( L + TN \right ) \right \}^{t/T} \|\tau \| \\ \leq C \beta^{1- \frac{t}{T}} M^{t/T},$ where $C$ and $M$ are computable constants independent of $\beta$ and $\phi (t) = (u(t) - w(t), \tau).$ Taking the supremum over all $\tau \in \mathcal{H}$ with $\|\tau \| \leq 1$, we have $\|u(t) - w(t)\| \leq C \beta^{1- \frac{t}{T}} M^{t/T},$ our desired result. \end{proof} \subsection*{Acknowledgments} The author gratefully acknowledges the support and guidance of Professor Rhonda Hughes. \begin{thebibliography}{00} \bibitem{Adelson} Adelson, L.; \emph{Singular perturbation of an improperly posed Cauchy problem}, SIAM J. Math. Anal. {\bf 5} (1974), 417--424. \bibitem{Ames} Ames, K. A.; \emph{On the comparison of solutions of related properly and improperly posed Cauchy problems for first order operator equations}, SIAM J. Math. Anal. {\bf 13} (1982), 594--606. \bibitem{AmesLecture} Ames, K. A.; \emph{Some remarks on ill-posed problems for partial differential equations}, Alabama J. Math. {\bf 15} 1991, 3--11. \bibitem{Ames_etal} Ames, K. A., Clark, G. W., Epperson, J. F., and S. F. Oppenheimer; \emph{A comparison of regularizations for an ill-posed problem}, Math. Comp. {\bf 67} (1998), 1451--1471. \bibitem{AHb} Ames, K. A. and R. J. Hughes; \emph{Continuous dependence results for ill-posed problems}, Semigroups of Operators: Theory and Applications, Second International Conference, Rio de Janeiro, Brazil, September 10-14, 2001, Optimization Software, Inc. Publications, New York-Los Angeles, 2002, 1--8. \bibitem{AH} Ames, K. A. and R. J. Hughes; \emph{Structural stability for ill-posed problems in Banach space}, Semigroup Forum {\bf 70} (2005), 127--145. \bibitem{Campbell_nonlin} Campbell Hetrick, B. M. and R. J. Hughes; \emph{Continuous dependence on modeling for nonlinear ill-posed problems}, J. Math. Anal. Appl. {\bf 349} (2009), 420--435. \bibitem{Campbell} Campbell Hetrick, B. M. and R. J. Hughes; \emph{Continuous dependence results for inhomogeneous ill-posed problems in Banach space}, J. Math. Anal. Appl. {\bf 331} (2007), 342--357. \bibitem{CO} Clark, G. W. and S. F. Oppenheimer; \emph{Quasireversibility methods for non-well-posed problems}, Electron. J. Differential Equations {\bf 1994} (1994), 1--9. \bibitem{DS1} Dunford, N. and J. Schwartz; Linear Operators, Part I," John Wiley and Sons, Inc., New York, 1957. \bibitem{DS2} Dunford, N. and J. Schwartz; Linear Operators, Part II," John Wiley and Sons, Inc., New York, 1963. \bibitem{Fattorini} Fattorini, H. O.; The Cauchy Problem," Addison-Wesley, Reading, 1983. \bibitem{Goldstein} Goldstein, J. A.; Semigroups of Linear Operators and Applications," Oxford University Press, New York, 1985. \bibitem{Hille} Hille, E., Functional Analysis and Semi-groups," AMS Colloquium Publications Vol. 31, AMS, New York, 1948. \bibitem{John} John, F.; \emph{Continuous dependence on data for solutions of partial differential equations with a prescribed bound}, Comm. Pure Appl. Math. {\bf 13} (1960), 551--585. \bibitem{LL} Lattes, R. and J. L. Lions; The Method of Quasi-Reversibility, Applications to Partial Differential Equations," American Elsevier, New York, 1969. \bibitem{Mel} Melnikova, I. V. and A. I. Filinkov, Abstract Cauchy Problems: Three Approaches," Chapman \& Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 120, Chapman \& Hall, Boca Raton, FL, 2001. \bibitem{Miller1} Miller, K.; \emph{Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed problems}, Symposium on Non-Well-Posed Problems and Logarithmic Convexity," 161--176, Springer Lecture Notes in Mathematics {\bf 316}, Springer, Berlin, 1973. \bibitem{Miller} Miller, K.; \emph{Logarithmic convexity results for holomorphic semigroups}, Pacific J. Math. {\bf 58} (1975), 549--551. \bibitem{Payne1} Payne, L. E.; Improperly Posed Problems in Partial Differential Equations'', CBMS Regional Conference Series in Applied Mathematics, 22, Society for Industrial and Applied Mathematics, Philadelphia, 1975. \bibitem{Payne2} Payne, L. E.; \emph{On stabilizing ill-posed problems against errors in geometry and modeling}, Inverse and Ill-Posed Problems, Academic Press, San Diego, 1987, 399--416. \bibitem{Pazy} Pazy, A.; Semigroups of Linear Operators and Applications to Partial Differential Equations'', Springer-Verlag, New York, 1983. \bibitem{RS2} Reed, M. and B. Simon; Methods of Modern Mathematical Physics, Vol. II: Fourier Analyis, Self-Adjointness'', Academic Press, New York, 1975. \bibitem{Showalter} Showalter, R. E.; \emph{The final value problem for evolution equations}, J. Math. Anal. Appl. {\bf 47} (1974), 563--572. \end{thebibliography} \end{document}