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FIRST INTEGRALS FOR THE DUFFING-VAN DER POL TYPE
OSCILLATOR

GUANGYUE GAO, ZHAOSHENG FENG

Abstract. In this article, under certain parametric conditions, we study the

first integrals of the Duffing-van der Pol-type oscillator equations which in-

clude the van der Pol and the Duffing oscillator systems, as particular cases.
After making a series of variable transformations and applying the Preller-

Singer method, we find the first integrals of the simplified equations without

complicated calculations. Through the inverse transformations we obtain the
first integrals of the original equations. Some statements in the literature are

indicated and clarified.

1. Introduction

Many nonlinear differential equations arise in physical, chemical and biological
contexts. Finding innovative methods to solve and analyze these equations has
been an interesting subject in the field of differential equations and dynamical
systems [10, 13]. In these problems, it is not always possible and sometimes not even
advantageous to express exact solutions of nonlinear differential equations explicitly
in terms of elementary functions, but it is possible to find elementary functions
that are constant on solution curves, that is, elementary first integrals. These first
integrals allow us to occasionally deduce properties that an explicit solution would
not necessarily reveal. In the pioneering work [12], Prelle and Singer introduced
a procedure to find the first integrals of first-order ordinary differential equations
(ODEs) of the form y = P (x, y)/Q(x, y), with both P (x, y) and Q(x, y) polynomials
whose coefficients lie in the field of complex numbers C. Duarte et al. [5] extended
this procedure to second-order ODEs which is based on a conjecture that if the
given second-order ODE has an elementary solution, then there exists at least one
elementary first integral I(x, y, y′) whose derivatives are all rational functions of x,
y and y′. Recently, much attention has been received to various nonlinear oscillator
systems for finding the first integrals and obtaining exact solutions [3, 4, 10, 15].
Special types of first integrals and exact solutions are of fundamental importance

2000 Mathematics Subject Classification. 34A25, 34L30.
Key words and phrases. First integral; Duffing oscillator; van der Pol oscillator;

Preller-Singer method; parametric solution.
c©2010 Texas State University - San Marcos.
Published September 25, 2010.
Supported by grant 119100 from UTPA Faculty Research Council.

123



124 G. GAO, Z. FENG EJDE/CONF/19

to our understanding of physical, chemical and biological phenomena modelled
differential equations.

In this article, we consider a more general nonlinear oscillator system of the form

ü + (δ + βum)u̇− µu + αun = 0. (1.1)

where an over-dot represents differentiation with respect to the independent variable
ξ, and all coefficients δ, β, µ and α are real. It is referred as to the Duffing–van der
Pol–type oscillator, since the choices α = 0 and m = 2 lead equation (1.1) to the
van der Pol oscillator

ü + (δ + βu2)u̇− µu = 0, (1.2)

which was originally discovered by the Dutch electrical engineer van der Pol in
electrical circuits [16, 17]. The choices β = 0 and n = 3 lead equation (1.1) to the
damped Duffing equation [6, 8]

ü + δu̇− µu + αu3 = 0. (1.3)

When β = 0 and n = 2, equation (1.1) becomes the damped Helmholtz oscillator
[1, 14]

ü + δu̇− µu + αu2 = 0. (1.4)

It is well known that there are a great number of theoretical works to deal with
equations (1.2)–(1.4) [8, 10], and applications of these three equations and the
related equations can be seen in quite a few scientific areas [7].

In the present paper, we wish to show that under certain parametric conditions
some first integrals of oscillator system (1.1) are established. The paper is organized
as follows. In the next section, in order to make this paper well self-contained, we
summarize the Prelle–Singer procedure developed by Duarte et al. [5] for construct-
ing the first integrals of second-order ODEs. In Section 3, we will show that after
a series of nonlinear transformations, we simplify equation (1.1), then by means
of the Preller–Singer method we derive the first integral of the simplified equation
without complicated calculations. Through the inverse transformations we obtain
the first integral of the original oscillator equation. Some statements in the litera-
ture are indicated and clarified, and some exact solutions of equation (1.1) in the
parametric forms are obtained accordingly. Section 4 is a brief conclusion.

2. Prelle–Singer Method for Solving Second-Order ODEs

In this section, in order to present our results in a straightforward way, we start
our attention by briefly reviewing the Prelle–Singer procedure for solving second-
order ODEs developed by Duarte et al. [5] and Chandrasekar et al. [3].

Consider the second-order ODE of the rational form

d2y

dx2
= φ(x, y, y′) =

P (x, y, y′)
Q(x, y, y′)

, P, Q ∈ C[x, y, y′]. (2.1)

where y′ denotes differentiation with respect to x, P and Q are polynomials in x, y
and y′ with coefficients in the complex field. Suppose that equation (2.1) admits a
first integral I(x, y, y′) = C, with C constant on the solutions, so we have the total
differential

dI = Ix dx + Iy dy + Iy′ dy′ = 0, (2.2)
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where the subscript denotes partial differentiation with respect to the corresponding
variable. On the solution, since y′ dx = dy and equation (2.1) is equivalent to
P
Q dx = dy′, adding a null term S(x, y, y′)y′ dx− S(x, y, y′) dy to both sides yields(P

Q
+ Sy′

)
dx− S dy − dy′ = 0. (2.3)

From (2.2) and (2.3), one can see that on the solutions, the corresponding coeffi-
cients of (2.2) and (2.3) should be proportional. There exists a proper integrating
factor R(x, y, y′) for expression (2.3), such that on the solutions

dI = R(φ + Sy′) dx− SR dy −R dy′ = 0. (2.4)

Comparing the corresponding terms in (2.2) and (2.4), we have

Ix = R(φ + Sy′),
Iy = −SR,

Iy′ = −R,

(2.5)

and the compatibility conditions Ixy = Iyx, Ixy′ = Iy′x and Iyy′ = Iy′y. Using these
three compatibility conditions respectively, we obtain three equivalent equations as
follows:

D[S] = −φy + Sφy′ + S2,

D[R] = −R(S + φy′),
Ry = Ry′S + Sy′R,

(2.6)

where D is an differential operator

D =
∂

∂x
+ y′

∂

∂y
+ φ

∂

∂y′
.

For the given expression of φ, one can solve the first equation of (2.6) for S. Sub-
stituting S into the second equation of (2.6) one can get an explicit form for R by
solving it. Once a compatible solution R and S satisfying the extra constraint (the
third equation of (2.6)) is derived, integrating (2.5), from (2.2) one may obtain a
first integral of motion as follows

I(x, y, y′)

=
∫

R(φ + Sy′) dx−
∫ [

RS +
∂

∂y

∫
R(φ + Sy′) dx

]
dy

−
∫ {

R +
∂

∂y′

( ∫
R(φ + Sy′) dx−

∫ [
RS +

∂

∂y

∫
R(φ + Sy′) dx

]
dy

)}
dy′.

(2.7)

3. First Integrals of Nonlinear Oscillator Systems

3.1. Nonlinear Transformations. In this subsection, in order to avoid doing
complicated computations, we will make a series of nonlinear transformations to
equation (1.1). For our convenience, we assume α = 1 in equation (1.1) (this can
be easily obtained by re-scaling parameters of equation (1.1)). Namely, we consider
the oscillator equation:

ü + (δ + βum)u̇− µu + un = 0. (3.1)
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Firstly, we make the natural logarithm transformation:

ξ = −1
δ
ln τ ; (3.2)

that is,
∂τ

∂ξ
= −δe−ξδ = −δτ.

After substituting the following two derivatives into (3.1):

∂u

∂ξ
=

∂u

∂τ
∗ ∂τ

∂ξ
= −δτ

∂u

∂τ
,

∂2u

∂ξ2
= δ2τ

∂u

∂τ
+ δ2τ2 ∂2u

∂τ2
,

then it becomes

δ2τ2 ∂2u

∂τ2
− βδτum ∂u

∂τ
− µu + un = 0. (3.3)

Further, we take the variable transformation as:

q = τκ, u = τ−
1
2 (κ−1)H(q), (3.4)

A direction calculation gives

∂u

∂τ
= −1

2
(κ− 1)q−

κ+1
2κ H(q) + κq

κ−1
2κ

∂H

∂q
,

∂2u

∂τ2
=

1
4
(κ2 − 1)q−

κ+3
2κ H(q) + κ2q

3(κ−1)
2κ

∂2H

∂q2
.

After substituting the above equalities into (3.3), we obtain

∂2H

∂q2
=

β

δκ
q

m−κ(m+2)
2κ Hm ∂H

∂q
− 1

δ2κ2
q
−(3+n)κ+n−1

2κ Hn − 1
2

(κ− 1)β
δκ2

Hm+1q
m−κ(m+4)

2κ ,

(3.5)
where an over-dot represents differentiation with respect to the independent variable
q, and

κ2 =
4µ

δ2
+ 1. (3.6)

3.2. Force-Free Duffing-van der Pol Oscillator. We know that the choices
m = 2 and n = 3 lead equation (1.1) to the standard form of the Duffing-van der
Pol oscillator equation, whose autonomous version (force-free) is:

ü + (δ + βu2)u̇− µu + u3 = 0. (3.7)

Equation (3.7) arises in a model describing the propagation of voltage pulses along
a neuronal axon and has recently received much attention from many authors. A
vast amount of literature exists on this equation; for details and applications, see
[9, 11] and references therein.

From (3.5), one can see that if we take n = 3 and m = 2, then equation (3.5)
can be reduced to a simple form

∂2H

∂q2
= AqpH2 ∂H

∂q
+ Bqp−1H3, (3.8)
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where

p =
1
κ
− 2, A =

β

δκ
,

B = − 1
δ2κ2

− (κ− 1)β
2δκ2

.

Choosing φ(q, H,H ′) = AqpH2 ∂H
∂q + Bqp−1H3 and following the procedure in Sec-

tion 2, we obtain three determining equations:

Sq + ḢSH + φSḢ = −2AqpHḢ + (ASqp − 3Bqp−1)H2 + S2, (3.9)

Rq + RHḢ + φRḢ = −RS −RAqpH2, (3.10)

RH = RḢS + SḢR. (3.11)

In general, it is not easy to solve system (2.6) and get exact solutions (S, R) in the
explicit forms. But in our case of (3.9)-(3.11) we may seek an ansatz for S and R
of the forms as suggested in [5]:

S =
a(q, H) + b(q, H)Ḣ
c(q, H) + d(q, H)Ḣ

, R = e(q, H) + f(q, H)Ḣ, (3.12)

where a, b, c, d, e, f are functions of q, H to be determined. Substituting S into
equation (3.9), we get the equation system

[Ḣ]0 : −3Bc2H2qp−1 + AacqpH2 + a2 = aqc− acq + bcBH3qp−1 − adBH3qp−1,

[Ḣ]1 : −2Ac2qpH − 6BcdH2qp−1 + 2AadqpH2 + 2ab

= aqd + bqc− adq − bcq + aHc− acH ,

[Ḣ]2 : −4AcdqpH − 3Bd2H2qp−1 + AbdqpH2 + b2

= bqd− bdq + aHd + bHc− adH − bcH ,

[Ḣ]3 : −2Ad2qpH = bHd− bdH .

Substituting S and R into equation (3.10), we obtain another equation system:

[Ḣ]0 : eqc + BcfH3qp−1 = −ae−AceqpH2,

[Ḣ]1 : fqc + eHc + 2AfcqpH2 + eqd + BfdH3qp−1 = −be−AdeqpH2 − af,

[Ḣ]2 : fHc + fqd + eHd + 2AfdqpH2 = −bf,

[Ḣ]3 : fHd = 0.

Under the parametric condition

δ =
3
β
− µβ

3
, (3.13)

we solve the above two nonlinear systems for a nontrivial solution with the aid of
Maple, and the corresponding forms of S and R read

S = −1
q
− β

δκ
q

1−2κ
κ H2, R = eln q, (3.14)

which also satisfy equation (3.11).
Substituting the solution set (3.14) into (2.7), we can obtain the first integral of

equation (3.8) immediately:

κδH − κδqḢ +
2

δ(1− κ)
q

(1−κ)
κ H3 = I. (3.15)
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Using the inverse transformations (3.2) and (3.4), and changing to the original
variables, we obtain that under the parametric condition (3.13), the Duffing-van
der Pol equation (3.7) has the first integral of the form[

u̇ +
(

δ − 3
β

)
u +

β

3
u3

]
e

3ξ
β = I1. (3.16)

It is remarkable that in [3, p. 2467], [4, p.4528], and [15, p. 1936], the authors
studied the first integral of the oscillator equation (3.7) by the Lie symmetry method
and claimed that the nontrivial first integral exists only for the parametric choice

δ =
4
β

, µ = − 3
β2

. (3.17)

However, in view of our condition (3.13) and formula (3.16), it shows that our
parametric constraint (3.13) is weaker than the corresponding ones described in the
literature [3, 4, 15], and the first integral presented in [3, 4, 15] is just a particular
case of (3.16).

3.3. Duffing–van der Pol–Type Oscillator. In this subsection, we extend the
technique used in the preceding subsection to a more general oscillator equation in
the case of n = m + 1; that is,

ü + (δ + βum)u̇− µu + um+1 = 0, (3.18)

where an over-dot still denotes differentiation with respect to ξ. Note that the
choice n = m + 1 leads equation (3.5) to a simple form

∂2H

∂q2
=

β

δκ
qpHm ∂H

∂q
+

(
− 1

δ2κ2
− (κ− 1)β

2δκ2

)
Hm+1qp−1, (3.19)

where

p =
m− κ(m + 2)

2κ
.

For the notational convenience, we denote that

A =
β

δκ
, B = − 1

δ2κ2
− (κ− 1)β

2δκ2
,

then equation (3.19) becomes

Ḧ = AqpHmḢ + BHm+1qp−1. (3.20)

Choosing φ(q, H,H ′) = AqpHm ∂H
∂q + Bqp−1Hm+1 and following the procedure

in Section 2, we obtain three determining equations:

Sq + ḢSH + φSḢ = −mAqpHm−1Ḣ + (ASqp − (m + 1)Bqp−1)Hm + S2, (3.21)

Rq + RHḢ + φRḢ = −RS −RAqpHm, (3.22)

RH = RḢS + SḢR. (3.23)
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Here we use the same ansatz for S and R as given in (3.12). Substituting S into
(3.21), we get the system

[Ḣ]0 : −(m + 1)Bc2Hmqp−1 + AacqpHm + a2

= aqc− acq + bcBHm+1qp−1 − adBHm+1qp−1,

[Ḣ]1 : −mAc2qpHm−1 − 2(m + 1)BcdHmqp−1 + AadqpHm + AqpHmbc + 2ab

= aqd + bqc− adq − bcq + aHc− acH + bcAqpHm − adAqpHm,

[Ḣ]2 : −2mAcdqpHm−1 − (m + 1)Bd2Hmqp−1 + AbdqpHm + b2 (3.24)
= bqd− bdq + aHd + bHc− adH − bcH ,

[Ḣ]3 : −mAd2qpHm−1 = bHd− bdH .

Substituting S and R into (3.22), we obtain another system,

[Ḣ]0 : eqc + BcfHm+1qp−1 = −ae−AceqpHm,

[Ḣ]1 : fqc + eHc + 2AfcqpHm + eqd + BfdHm+1qp−1 = −be−AdeqpHm − af,

[Ḣ]2 : fHc + fqd + eHd + 2AfdqpHm = −bf,

[Ḣ]3 : fHd = 0.
(3.25)

We solve the nonlinear systems (3.24) and (3.25), for a nontrivial solution, with the
aid of Maple and find that under the parametric conditions

m =
(1− κ)βδ

2
− 1, κ2 =

4µ

δ2
+ 1, (3.26)

the three determining equations (3.21)–(3.23) have the solution of the form

S = −1
q
− β

δκ
q

m(1−κ)
2κ −1Hm, R = eln q. (3.27)

After substitution of the solution set (3.27) into (2.7), we derive the first integral
of (3.20) as follows

κδH − κδqḢ +
2

δ(1− κ)
q

m(1−κ)
2κ Hm+1 = I,

where I is an arbitrary integration constant. By virtue of the inverse transforma-
tions (3.2) and (3.4), and changing to the original variables, we obtain that under
the parametric condition (3.26), the Duffing-van der Pol–type equation (3.18) has
the first integral of the form[

u̇ +
δ(κ + 1)

2
u +

2
δ(1− κ)

um+1

]
e

1
2 δ(1−κ)ξ = I2. (3.28)

It is remarkable that the first integral of the Duffing-van der Pol oscillator equa-
tion (3.7) obtained in Section 3.2 is just a particular case of formula (3.28). In
the recently published Handbooks of ODEs such as [2, 13, 18], there are quite a
few first integrals (conservation laws) collected for ordinary differential equations
of the type y′′ = c1x

l1ym1(y′)k1 + c1x
l2ym2(y′)k2 , but our formulas of first integrals

of equation (3.18) or (3.19) described herein are not presented there.
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3.4. Solutions in the Parametric Forms. In this subsection, by virtue of the
first integral (3.28), we may choose a proper value for I2 and consider three partic-
ular cases where exact solutions of the oscillator equation (3.18) can be expressed
in the parametric forms.
Case 1: Assume that m 6= −1 and κ 6= −1, and

m = − 2κ

κ + 1
,

β

δκ
=

1
δ2κ2

+
(κ− 1)β

2δκ2
,

(3.29)

where
κ2 =

4µ

δ2
+ 1.

In this case, (3.19) takes the form

Ḧ = Aq−m−2HmḢ −AHm+1q−m−3. (3.30)

From the first integral (3.28), taking I2 = 0, we know that the solution of equation
(3.30) can be expressed in the parametric form [13]:

q = aCm
1

( ∫
dt

1± tm+1
+ C2

)−1

,

H = bCm+1
1 t

( ∫
dt

1± tm+1
+ C2

)−1

,

(3.31)

where C1 and C2 are arbitrary constants, a and b are also arbitrary but satisfy
β

δκ
= ∓(m + 1)am+1b−m. (3.32)

Applying the inverse transformation of (3.4) to formula (3.31), namely

τ = q
1
κ , H = uτ

1
2 (κ−1),

we have

τ = a
1
κ C

m/κ
1

( ∫
dt

1± tm+1
+ C2

)−1/κ

,

u = τ−(κ−1)/2bCm+1
1 t

( ∫
dt

1± tm+1
+ C2

)−1

.

(3.33)

Further, applying the inverse transformation of (3.2) to formula (3.33), under the
given parametric condition (3.29), we obtain the solution for equation (3.18) in the
parametric form as follows:

ξ =
− ln

(
a

1
κ C

m/κ
1

( ∫
dt

1±tm+1 + C2

)−1/κ)
δ

,

u = eδ(κ−1)/2ξbCm+1
1 t

( ∫
dt

1± tm+1
+ C2

)−1

,

(3.34)

where a and b are arbitrary constants, and satisfy condition (3.32).
Case 2: Assume that

m = −2, κ = −2, βδ = −2. (3.35)

So (3.19) takes the form

Ḧ = Aq1/2H−2Ḣ −AH−1q−1/2, (3.36)

where A = −β/(2δ).
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Using the first integral (3.28) again, we know that the solution of equation (3.36)
can be expressed in the parametric form:

q = aC4
1F−2,

H = bC3
1 t−1EF−2,

(3.37)

where a and b are also arbitrary but satisfy
β

2δ
= a−3/2b2, (3.38)

and

E =
√

t(t + 1)− ln(
√

t +
√

t + 1) + C2, F = E

√
t + 1

t
− t. (3.39)

Applying the inverse transformation of (3.4) to formula (3.37), namely

τ = q−1/2, H = uτ−3/2,

we have
τ = a−1/2C−2

1 F,

u = τ
3
2 bC3

1 t−1EF−2.
(3.40)

Further, applying the inverse transformation of (3.2) to formula (3.40), under the
given parametric condition (3.35), we obtain the solution for equation (3.18) in the
parametric form as follows:

ξ =
ln

(
aC4

1F−2
)

2δ
,

u = e−
3
2 δξbC3

1 t−1EF−2,

where a and b are arbitrary constants, and satisfy condition (3.38).
Case 3: Assume that

m = −3, κ = −3, βδ = −1. (3.41)

In this case, (3.19) takes the form

Ḧ = AqH−3Ḣ −AH−2, (3.42)

where A = − β
3δ .

We know that the solution of equation (3.42) can be expressed in the parametric
form

q = aC3
1F−1

√
t + 1

t
,

H = bC2
1F−1,

(3.43)

where F is the same as that in (3.39), C1 and C2 are arbitrary constants, a and b
are also arbitrary but satisfy

β

3δ
= 2a−2b3. (3.44)

Applying the inverse transformation of (3.4) to formula (3.43), namely

τ = q−1/3, H = uτ−2,

we have
τ = a−1/3C−1

1 F 1/3
( t + 1

t

)−1/6
,

u = τ2bC2
1F−1.

(3.45)
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Further, applying the inverse transformation of (3.2) to formula (3.45), under the
given parametric condition (3.41), we obtain the solution for equation (3.18) in the
parametric form as follows:

ξ =
ln

(
aC3

1F−1
√

t+1
t

)
3δ

,

u = e−2δξbC2
1F−1,

where a and b are arbitrary constants, and satisfy condition (3.44).

4. Conclusion

Finding first integrals (conservation laws) and exact solutions for various non-
linear differential equations has been an interesting subject in mathematical and
physical communities. Since 1983, Prelle and Singer presented a deductive method
for solving first–order ODEs that presents a solution in terms of elementary func-
tions if such a solution exists. This technique has attracted many researchers from
diverse groups and has been extended to autonomous systems of ODEs of higher
dimensions for finding the first integrals and exact solutions under certain assump-
tions. From illustrative examples in these works, the obtained first integrals of
autonomous systems are usually of rational or quasi-rational forms and searching
for solution sets (S, R) usually involves complicated calculations. However, the
generalization of this procedure to autonomous/nonautonomous systems of higher
dimensions to find elementary first integrals in an effective manner is still an inter-
esting and important subject.

In this paper, we showed that under certain parametric conditions, some new
first integrals of the Duffing–van der Pol–type oscillator equation (1.1) could be
established. To reach our goal, we first made a series of nonlinear transformations
to simplify equation (1.1) to a simple form, then by means of the Preller–Singer
method we derived the first integral of the resultant equation. Through the inverse
transformations we obtain the first integrals of the original oscillator equations.
Finally, using the established first integral, we obtain exact solutions of equation
(1.1) in the parametric forms. Some statements in the literature are corrected and
clarified.
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