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GLOBAL STABILITY, PERIODIC SOLUTIONS, AND OPTIMAL
CONTROL IN A NONLINEAR DIFFERENTIAL DELAY MODEL

ANATOLI F. IVANOV, MUSA A. MAMMADOV

Abstract. A nonlinear differential equation with delay serving as a mathe-
matical model of several applied problems is considered. Sufficient conditions

for the global asymptotic stability and for the existence of periodic solutions

are given. Two particular applications are treated in detail. The first one is a
blood cell production model by Mackey, for which new periodicity criteria are

derived. The second application is a modified economic model with delay due

to Ramsey. An optimization problem for a maximal consumption is stated
and solved for the latter.

1. Introduction

This article has two principal components. The first one is a theoretical part
dealing with the global asymptotic stability and the existence of periodic solutions
in a class of essentially nonlinear differential equations with delay. The second part
concerns two particular applications where those equations appear as mathematical
models of several real life phenomena.

The class of equations can be represented in the form

x′(t) = F (x(t− τ))−G(x(t)) (1.1)

where F and G are continuous real-valued functions. In section 2 we first introduce
and discuss necessary preliminaries and definitions related to the equation. We then
state several results on the global asymptotic stability and the existence of periodic
solutions. One of the new elements in our considerations is that both functions F
and G are generally assumed to be nonlinear. In most of the available literature on
equation (1.1) function G is linear of the form G(x) = bx, b > 0. However, many
recent applications involve cases where function G is essentially nonlinear. One of
such applications is a blood cell production model due to Mackey [12, 13].

Section 3 deals with two instances of application for equation (1.1). The first
one is the above mentioned physiological model by M.C. Mackey, considered in
subsection 3.1. We present explicit sufficient conditions for the global asymptotic
stability and for the existence of periodic solutions in this equation, in terms of the

2000 Mathematics Subject Classification. 34K13, 34K20, 34K35, 91B55, 92C23.
Key words and phrases. Scalar nonlinear differential delay equations; periodic solutions;
global asymptotic stability; Mackey blood cell production model; optimization of consumption;
Ramsey economic model with delay.
c©2010 Texas State University - San Marcos.

Published September 25, 2010.

177



178 A. F. IVANOV, M. A. MAMMADOV EJDE/CONF/19

parameters defining the nonlinearities F and G. Our results for the Mackey model
are new and complementary to those recently obtained in [13].

Subsection 3.2 is devoted to a generalized economic model in the form of equa-
tion (1.1) and to its partial case in the form of a modified Ramsey equation with
delay. The Ramsey model was originally introduced in paper [17], initially as a
system of ordinary differential equations. A modified version in the form of differ-
ential delay equation (1.1) was proposed in [8] where natural delay effects due to
production/investment cycles are taken into account. In subsection 3.2 we consider
an optimal control problem for the generalized economic model subject to spe-
cific control functions, which involves maximizing a consumption functional. As a
consequence, we present a complete solution of the problem for the Ramsey model.

2. Preliminaries and Mathematical Results

We assume that for every initial function φ ∈ C := C([−τ, 0], R+), R+ := {x :
x > 0}, there exists a unique solution x = x(t, φ) of equation (1.1) defined for all
t ≥ 0. We do not address in detail this question of global existence of solutions of
equation (1.1). We only note that the results are well-known and readily available in
the literature (see e.g. [2, 5] and further references therein). One of such conditions
of global existence can be the assumption that G is uniformly Lipschitz continuous,
that is

|G(x)−G(y)| ≤ L|x− y|, ∀x, y ∈ R+,

for some constant L.
In this section we present some basic properties and principal mathematical

results on differential delay equation (1.1) that are needed in the sequel. They are
used to analyze the two applied models considered in section 3. Some of the stated
results can be derived from analogous results for equation (1.1) with G(x) = x,
which were proved in [7]. Other results require certain new considerations and
developments which are somewhat outside the scope of this paper. Detailed proofs
of all statements in this section are rather long; some of them are given in the
forthcoming paper [6].

The following hypotheses on the nonlinearities F and G will be assumed in
different combinations throughout the paper.

(H1) F and G are defined and continuous on the positive semiaxis R+, F,G ∈
C(R+, R+), and G(0) = 0, F (0) ≥ 0.

(H2) F and G satisfy (H1) and there exists M0 ≥ 0 such that G(x) > F (x) and
G(x) is increasing in [M0,∞). In addition, either (i) limx→∞G(x) = +∞
or (ii) limx→∞G(x) = G∞ < ∞ and sup{F (x), x ∈ (0,M0)} < G∞.

(H3) F and G satisfy (H1) and there exists a unique value x = x∗ > 0 such that
F (x∗) = G(x∗). In addition, F (x) > G(x) for x ∈ (0, x∗) and F (x) < G(x)
for x ∈ (x∗,∞).

Hypothesis (H1) is a standard assumption of general type which will be assumed
to hold throughout the remainder of the paper. Its importance is seen from the
following basic property of solutions of equation (1.1).

Propostion 2.1 (Positive invariance). Assume (H1) and let φ ∈ C be arbitrary.
Then the corresponding solution x = x(t, φ) of equation (1.1) satisfies x(t) ≥ 0 for
all t ≥ 0 (∀ τ > 0).

The importance of assumption (H2) is seen from the following statement.
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Propostion 2.2 (Boundedness). Assume (H2) to hold and let φ ∈ C be arbitrary.
Then there exists a positive constant K such that the corresponding solution x =
x(t, φ) of equation (1.1) satisfies

lim sup
t→∞

x(t) ≤ K.

The following statement is useful when F (0) > 0 or when F (0) = 0 and the
steady state x(t) ≡ 0 is unstable. We note that the assumption F (0) = 0 and
F (x) > G(x) for all x ∈ (0, δ0) implies the instability of the trivial solution x(t) ≡ 0;
while F (x) < G(x) for all x ∈ (0, δ0) means it is locally asymptotically stable
(∀ τ > 0).

Propostion 2.3 (Persistence). Assume (H2). Suppose in addition that F (x) >
G(x) for all x ∈ (0, δ0) and some δ0 > 0. Then there exists k > 0 such that for
arbitrary φ ∈ C the corresponding solution x = x(t, φ) of equation (1.1) satisfies
lim inft→∞ x(t) ≥ k.

As an easy consequence of Propositions 2.2 and 2.3 one has the following prop-
erty.

Corollary 2.4 (Permanence). Assume (H2). Suppose in addition that F (x) >
G(x) for all x ∈ (0, δ0) and some δ0 > 0. There exist positive constants k and K
such that for arbitrary initial function φ ∈ C the corresponding solution x = x(t, φ)
of equation (1.1) satisfies

k ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ K.

Under assumption (H3) the constant solution x(t) ≡ x∗ is the only positive
equilibrium of equation (1.1). Note that Corollary 2.4 is valid in this case too.
When F (0) = 0 equation (1.1) also admits the trivial equilibrium x(t) ≡ 0. The
latter will be the case in some actual models from applications considered in this
paper.

Note that there is a trivial possibility for the nonlinearities F and G satisfying
assumption (H2) that F (0) = G(0) = 0 and x ≡ 0 is the only equilibrium of
equation (1.1). The dynamical behavior in equation (1.1) is rather simple then, as
the following statement shows.

Propostion 2.5. Assume (H2) with M0 = 0. Then the trivial solution x(t) ≡ 0 of
(1.1) is globally asymptotically stable. That is, for arbitrary φ ∈ C the corresponding
solution x = x(t, φ) satisfies limt→∞ x(t) = 0 (for all τ > 0).

Notice that the uniqueness of the zero solution (F (0) = G(0) = 0) and the
assumption F (x) > G(x) for all x ∈ R+ result in the fact that limt→∞ x(t) = +∞
for all solutions of equation (1.1). This is a trivial case which does not represent
an interest in real applications.

Equation (1.1) can be transformed, via the change of the independent variable
t = τ s, to the form µy′(s) = F (y(s−1))−G(y(s)), where µ = 1/τ and y(s) = x(τs).
It is a standard form of singularly perturbed differential delay equations with the
normalized delay τ = 1 [7]. Therefore, we will also be considering the differential
delay equation

µx′(t) = F (x(t− 1))−G(x(t)), µ =
1
τ

(2.1)

as an equivalent form of equation (1.1).
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The limiting case µ → 0+ (τ →∞) in equation (2.1) corresponds to the implicit
difference equation

F (x(t− 1))−G(x(t)) = 0,

which can also be written in the form

F (xn)−G(xn+1) = 0. (2.2)

Note that in the case of monotone G, when the inverse function G−1 exists, the
latter can be explicitly resolved for xn+1

xn+1 = G−1(F (xn)). (2.3)

In the case of non-monotone G equation (2.2) implicitly defines a multi-valued
difference equation or inclusion. We shall denote it by

xn+1 ∈ Φ(xn), (2.4)

where the scalar function Φ is generally multi-valued. In this paper we shall restrict
our considerations to the case when Φ can assume only a finite number of values.
This restriction results from the case of G being piecewise monotone in R+ with a
finite number of the monotonicity branches.

As usual, a sequence {xn} will be called a solution of difference inclusion (2.4)
if G(xn+1) = F (xn) for all n ∈ Z+ := {0, 1, 2, 3, . . . }. Therefore, the solution {xn}
satisfies all three equations (2.2), (2.4), and (2.3) (if G−1 exists for the latter).
Given xn, due to the non-monotonicity of G, there can be several values of xn+1

which satisfy equation (2.2). They all are incorporated in (2.4) as images of xn

under the multi-valued map Φ.
A fixed point x = x∗ of map Φ (G(x∗) = F (x∗)) is called attracting if there exists

its neighborhood U such that Φ(x) ∈ U and limn→∞Φn(x) = x∗ for all x ∈ U . Here
Φk(x) = Φ(Φk−1(x)) is the kth iteration of the map Φ. Fixed point x∗ is called
globally attracting (on a set S) if the above limit is valid for all x (in S).

As usual, a closed bounded interval I ⊂ R+ is called invariant under map Φ if
for every x ∈ I all values Φ(x) satisfy: Φ(x) ∈ I.

Assume that map Φ has an invariant interval I ⊂ R+, and introduce a subset
CI := C([−τ, 0], I) ⊆ C of initial functions which range is within the interval I. The
following invariance principle holds for solutions of differential delay equation (1.1)
with the initial values in CI .

Propostion 2.6 (Invariance Property). Let I := [a, b] be a closed bounded invariant
interval of the multi-valued map Φ such that G′(a) > 0 and G′(b) > 0. For arbitrary
φ ∈ CI the corresponding solution x = x(t, φ) of equation (1.1) satisfies x(t) ∈
I ∀t ≥ 0 and every τ > 0.

This proposition shows that the set CI is invariant under the action of semiflow
St defined by the differential delay equation (1.1).

Note that the assumption of the differentiability and positiveness of G′(a) and
G′(b) is made in Proposition 2.6 for the sake of simplicity. This can be relaxed to
the requirement that G(x) is increasing in a small vicinity of both points a and b.

Theorem 2.7 (Global Asymptotic Stability). Assume (H3) holds. Suppose that the
fixed point x∗ of map Φ is globally attracting. Then the constant solution x(t) = x∗
of differential delay equation (1.1) is globally asymptotically stable for all values of
τ > 0.
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In section 3 we will use a version of this theorem when the nonlinearity G is
monotone increasing. It is given by the following statement.

Propostion 2.8. Assume (H3) to hold and let function G be monotone increasing
on R+. Suppose x∗ is a globally attracting fixed point of map Φ. Then the constant
solution x(t) ≡ x∗ of differential delay equation (1.1) is globally asymptotically
stable for all values τ > 0.

The proof of Proposition 2.8 is essentially based on the following statement,
which represents an independent interest on its own.

Propostion 2.9. Assume that functions F and G satisfy (H3) and G is increasing
in R+. Let I0 := [a, b] be arbitrary interval such that x∗ ∈ (a, b). Set I1 := Φ(I0) :=
[a1, b1]. Then for every φ ∈ CI0 there exists a time t0 such that the corresponding
solution x(t) of equation (1.1) satisfies x(t) ∈ I1 for all t ≥ t0.

From Proposition 2.9 one immediately deduces the following

Corollary 2.10. Assume (H3) to hold and let functions F and G be monotone on
R+. Then the constant solution x(t) ≡ x∗ of equation (1.1) is globally asymptoti-
cally stable for all values τ > 0.

As usual, the linearization of differential delay equation (1.1) about x(t) ≡ x∗ is
given by

x′(t) = p x(t− τ)− q x(t), (2.5)
where p = F ′(x∗), q = G′(x∗), while

µx′(t) = p x(t− 1)− q x(t), µ =
1
τ

, (2.6)

is the linearization of equation (2.1).
Let I be an interval containing point x∗, I 3 x∗. We say that equation (1.1) has

a negative feedback (about x∗) on I if the nonlinearities F and G are such that

[F (x)− F (x∗)] · [G(x)−G(x∗)] < 0 for all x ∈ I, x 6= x∗. (2.7)

A solution x(t) of equation (1.1) is called slowly oscillating about the constant
solution x∗ if the distance between any two zeros of the function x(t)−x∗ is greater
than the delay τ . The main result on the existence of periodic solutions in equation
(1.1) which will be used in section 3 is the following

Theorem 2.11 (Existence of periodic solutions). Assume (H3) and that the multi-
valued map Φ has a closed bounded invariant interval I 3 x∗ such that the negative
feedback condition (2.7) is satisfied for all x ∈ I, x 6= x∗. Let in addition the
linearized equation (2.6) be unstable. Then differential delay equation (1.1) has a
slowly oscillating period solution.

The theorem is essentially due to Kuang [9, 10]. It uses the standard techniques
of the ejective fixed point theory [2, 5] along the approach developed by Chow
and Hale [1]. The assumptions in [9] are that G is increasing and F is decreasing
in R+. However, the reasoning there can easily be modified to cover the case of
non-monotone F and G in the presence of the negative feedback. An alternative
approach to prove the existence of periodic solutions when G(x) = bx, b > 0 has
been developed in the original paper [4]. It can also be slightly modified to prove
the periodicity in our case. We refer the reader to both works for the relevant
details of the proofs. See also paper [14] for more of related results.
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3. Applied Models

In this section we apply the theoretical results from the previous section to
several cases of real life models. The first one is a physiological model of Mackey
[12, 13] which describes the blood cell production in human body. The model
fits the differential delay equation (1.1) with essentially nonlinear functions F and
G. We derive sufficient conditions for the global asymptotic stability of its unique
positive equilibrium and for the existence of a periodic solution slowly oscillating
about the equilibrium. The latter complements a recent periodicity result on this
model derived in paper [13]. The second application is an optimization problem of
maximum consumption for an economic model with delay of Ramsey type subject
to control.

3.1. Blood Cell Production Model of Mackey. An essentially nonlinear differ-
ential equation with delay of form (1.1) was proposed in [12, 13] as a mathematical
model of blood cell production for the case of chronic myelogenous leukemia. The
equation reads

dx

dt
= kβ(x(t− τ))x(t− τ)− [β(x(t)) + δ]x(t), (3.1)

where the nonlinear function β is a monotone Hill function

β(x) = β0
1

1 + xn
(3.2)

and β0, k = 2e−γτ , n, δ are all positive constants defined by the physiological
process behind. In this subsection we provide a detailed analysis of model (3.1)
based on the given nonlinearities F and G

F (x) = kβ0
x

1 + xn
, G(x) = x

[
β0

1
1 + xn

+ δ
]

(3.3)

and values of the parameters β0, k, n, δ. We establish sufficient conditions for the
global asymptotic stability of the equilibria and for the existence of slowly oscillating
period solutions. Our results are complementary to those recently obtained in [13].

We first make several simple observations about the involved nonlinearities F
and G.

For 0 < n ≤ 1 function F is increasing with limx→∞ F (x) = ∞ when n < 1 and
limx→∞ F (x) = kβ0 when n = 1. For n > 1 function F is unimodal with the only
critical point xcr = 1/( n

√
n− 1) and the absolute maximum value Fcr := F (xcr) =

kβ0n/(n− 1). Also, limx→∞ F (x) = 0 when n > 1.
An easy calculation shows that G(x) is either monotone increasing for all x ∈

R+ or it has two local extreme values x1 and x2 such that G(x) in increasing in
[0, x1] ∪ [x2,∞) and decreasing in [x1, x2]. Function G is monotone increasing in
R+ if and only if β0(n − 1)2 ≤ 4nδ. When β0(n − 1)2 > 4nδ it has the two local
extreme points x1 and x2. The values of x1 and x2 are given by

x2,1 =
[ (n− 1)β0 ±

√
(n− 1)2β2

0 − 4nδβ0

2δ
− 1

]1/n

. (3.4)

We shall also need to refer to the respective values of function G : G1 = G(x1), G2 =
G(x2) (these expressions are easily found but are somewhat lengthy to write down
explicitly in terms of the parameters).

Later in this subsection we shall be referring to the respective branches of y =
G(x) (its graph). The first branch is defined on the interval [0, x1] where G(x) is
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monotone increasing with the range [0, G1]. G(x) is decreasing on its second branch
with the domain x ∈ [x1, x2] and the range [G2, G1]. The third branch is defined
for x ∈ [x2,∞) where it is increasing with the range [G2,∞). x1 is the only local
maximum and x2 is the only local minimum of G(x) for x ∈ R+.

Depending on the parameter values model (3.1) admits either one or two steady
states, x(t) ≡ 0 and x(t) ≡ x∗, where

x∗ =
(
β0

k − 1
δ

− 1
)1/n

. (3.5)

Propostion 3.1. The nontrivial equilibrium x∗ exists if and only if k > 1 + δ/β0.
When k ≤ 1 + δ/β0 equation (3.1) has the trivial equilibrium x(t) ≡ 0 only which
is globally asymptotically stable.

The equilibrium x∗ is found from solving the equation F (x) = G(x), and it is
given by formula (3.5). It is easy to check that the condition k ≤ 1 + δ/β0 is
equivalent to F ′(0) ≤ G′(0), and therefore, F (x) < G(x) for all x ∈ R+. The
second part of Proposition 3.1 follows from Proposition 2.5.

In view of Proposition 3.1, for the remainder of this subsection, we will be
considering only the case when the non-trivial equilibrium x∗ exists.

Global asymptotic stability. We describe first the possibilities when the positive
equilibrium x(t) ≡ x∗ of equation (3.1) is globally asymptotically stable.

Propostion 3.2. The positive equilibrium x∗ is globally asymptotically stable if
either one of the following two conditions is satisfied:

(1) F and G are increasing for all x ∈ R+;
(2) x∗ ≤ xcr.

Proof. The proof in all possible subcases follows from Proposition 2.7. We shall
show that the fixed point x∗ of the underlying one-dimensional map Φ is globally at-
tracting. Indeed, in the case of G being monotone it is given by Φ(x) = G−1(F (x)).
When F is also increasing, the map Φ is monotone increasing on R+ with the fixed
point x∗ being globally attracting. The global stability follows from Corollary 2.10.
When F is unimodal and x∗ ≤ xcr, both functions are monotone on [0, xcr], and
the above monotonicity arguments apply there too. For every x > xcr, since F is
decreasing there, one has Φ(x) ∈ [0, xcr]. Therefore, x∗ is globally attracting under
Φ.

The subcase x∗ ≤ xcr allows for two additional possibilities when G is not
monotone: (i) x∗ ∈ [0, x1] or (ii) x∗ ∈ [x2,∞).

In case (i), if G(x2) > Fcr then Φ([0, xcr]) ⊂ [0, xcr] and Φ([xcr,∞) ⊂ [0, xcr].
Therefore Φ(R+) ⊂ [0, xcr] and x∗ is globally attracting. If G(x2) < Fcr then
there exists a positive integer N = N(F,G) such that ΦN (x) ∈ [0, xcr] for every
x ∈ [xcr,∞). Therefore, ΦN ([xcr,∞)) ⊂ [0, xcr]. As before, Φ([0, xcr]) ⊂ [0, xcr].
Thus, x∗ is globally attracting fixed point for map Φ.

In case (ii), G is non-monotone on the interval (0, x∗) but F is monotone there
with F (x) > G(x). Both functions F and G are monotone on the interval [x2, xcr].
Therefore, like in the monotonicity case above, the fixed point x∗ is globally attract-
ing on the interval [x2, xcr]. For every x ∈ [xcr,∞) its image satisfies Φ(x) ∈ (0, ccr)
and Φi(x) ∈ (0, xcr) for all i ≥ 1. It is easily seen that for every x ∈ (0, x1) there
exists positive integer N that ΦN (x) ∈ [x2, x∗]. Therefore, x∗ is globally attracting
in this subcase too. �
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Existence of periodic solutions. The existence of nontrivial slowly oscillating
periodic solutions is deduced by applying Theorem 2.11. The following statement
describes possible cases for this to happen.

Propostion 3.3. Equation (3.1) has a slowly oscillating periodic solution if any
one of the following conditions is satisfied:

(1) G is increasing for all x ∈ R+, x∗ > xcr, F (Φ2(xcr)) > F (x∗), and x(t) ≡
x∗ is unstable;

(2) x∗ > xcr, G2 > G(x∗), F (Φ2(xcr)) > F (x∗), and x(t) ≡ x∗ is unstable;
(3) x∗ > xcr, G1 < G(x∗), F (Φ2(xcr)) > F (x∗), and x(t) ≡ x∗ is unstable.

Proof. For each of the listed cases (1)-(3) we shall indicate an invariant interval I0

on which the negative feedback condition (2.7) holds. Together with the instability
assumption of the steady state x(t) ≡ x∗, and in view of Theorem 2.11, this implies
the existence of periodic solutions.

In case (1), given xcr and Fcr = F (xcr), let u1 > x∗ be such value of x that
G(x) = F (xcr). Thus u1 = G−1F (xcr) = Φ(xcr). Let u2 < x∗ be such value of x
that G(x) = F (u1). Therefore, u2 = G−1(F (u1)) = Φ2(xcr). One now can see that
if F (u2) > F (x∗) then F (x) > F (x∗) for all x ∈ [u2, x∗) and F (x) < F (x∗) for all
x ∈ (x∗, u1]. Since G is increasing in [u2, u1] the negative feedback condition (2.7)
holds for all x ∈ [u2, u1] := I0. Interval I0 is also invariant under Φ = G−1 ◦ F .
The other two cases are treated similar. We leave the details to the reader.

All three cases assume the instability of the constant solution x(t) ≡ x∗ of
equation (1.1). It follows from the instability of the zero solution of the linearized
about x∗ equation (2.5) (or (2.6)) [2, 5]:

x′(t) = p x(t− τ)− q x(t), where p = F ′(x∗), q = G′(x∗).

Since F ′(x∗) and G′(x∗) are readily found from the value of x∗ given by (3.5)
the coefficients p and q are easily evaluated in terms of the parameters defining
functions F and G (they are too large and cumbersome, however, to be written
explicitly here). We note that G′(x∗) > 0 in case (1), since G is increasing. In case
(2), x∗ belongs to the first branch of G. In case (3), x∗ belongs to the third branch
of G. Therefore, G′(x∗) > 0 for both. F ′(x∗) < 0 in all three cases since x∗ > xcr.
Thus, p < 0 and q > 0 for the linearized equation in all three cases.

The exact stability/instability conditions for the linear equation (2.5) in terms
of the coefficients p, q and delay τ are well known. We refer the reader to the four
references [2, 4, 5, 9] on our list, in addition to many others not included here. �

We note that our periodicity results supplement those recently obtained in paper
[13]. The latter treats the case when the equilibrium x(t) ≡ x∗ belongs to the second
branch of y = G(x). The authors in particular consider the case when n →∞ (while
the other parameters of F and G are fixed). It can be verified that G′(x∗) < 0 in
this case. In the limiting case the nonlinearity F is given by F (x) = 0 for x ≥ 1
and F (x) = β0 for x < 1.

Open cases. There are several remaining cases for the parameter values defining
F and G when our results do not apply to make a conclusion on either the global as-
ymptotic stability or the existence of periodic solutions. The first such case is when
G is monotone increasing in R+, ccr > x∗, and x(t) ≡ x∗ is locally asymptotically
stable. The other cases are when x∗ belongs to either branch one or branch three of
function G and the equilibrium x(t) ≡ x∗ is also locally asymptotically stable. In
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the general situation of arbitrary F and G the global dynamics of equation (1.1) in
any of the three cases can be complicated. However, for the particular nonlinearities
F and G of the Mackey model (3.1) it looks like the corresponding one-dimensional
map Φ can have x∗ as a globally attracting fixed point. This would imply the global
asymptotic stability for the differential delay equation (3.1). Therefore, we come
up with the following

Conjecture 3.4. The positive equilibrium x(t) ≡ x∗ of equation (3.1) is globally
asymptotically stable whenever it is locally asymptotically stable.

The other case when our approaches and results cannot be applied is when the
equilibrium x(t) ≡ x∗ belongs to the interval [x1, x2] (i.e., the second branch of
G). As it was mentioned above, this case was treated in paper [13] for a piece-wise
constant nonlinearity F . The case of general F represents a difficult challenge for
which new related approaches need to be developed.

3.2. An Optimal Control Problem. Many economic models lead to differential
delay equations of the form (1.1). We refer the reader to a partial list of economic
applications given in papers [3, 11, 15]. In this subsection we consider an optimiza-
tion problem for equation (1.1) as a general model of several economical processes,
which in particular includes the modified Ramsey model with delay [8].

We study the global dynamics of the following optimal control model described
by the differential equation (1.1) with delay and control

x′(t) = u(t)F (x(t− τ))−G(x(t)), (3.6)

where x(t) is the capital, u(t) is a control with values within some interval [α, 1],
and τ > 0 is the length of the production (investment) cycle. The component
F (x(t− τ)) describes a general commodity being produced at time t and the part
G(x(t)) stands for the ”amortization” of the capital. After each cycle of production
a certain part of the commodity (capital) is used for the investment while the
remaining part is consumed. We shall assume that, at any time t ≥ 0, the part
u(t) · F (x(t − τ)) is assigned for the production purposes (investment) while the
part

C(t) = [1− u(t)] · F (x(t− τ)) (3.7)

is consumed. The optimality is defined by the following functional:

J(x(·)) .= lim inf
t→∞

C(t) =⇒ max . (3.8)

This functional aims to maximize the minimal possible consumption when t →∞.
It can be considered as an analogue of the terminal functional for infinite time
horizon. We refer to [16] for more information about the results on the stability of
optimal solutions in terms of this functional.

As before, both nonlinearities F and G satisfy the hypothesis (H1). However,
instead of (H3) the following modified hypothesis will be used.

(H3 ′) (1) G and F are strictly increasing in R+;
(2) For each u ∈ [α, 1], α ≥ 0, there exists a unique point xu ≥ 0 such that

uF (xu) = G(xu);
(3) α ≥ 0 is the minimal point satisfying (2), and xu = 0 if u = α;
(4) uF (x) > G(x) if x ∈ (0, xu) and uF (x) < G(x) if x > xu.
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These assumptions are justified by economic’s interpretations of the involved
nonlinearities [3, 17]. In particular, it is clear that the hypothesis (H3 ′) holds for
the generalized Ramsey model (3.13) considered below.

Note that the generic case F ′(0) > G′(0) > 0 results in the range [α, 1] for the
values of control u(t), where α := G′(0)/F ′(0). If F ′(0) = ∞ and G′(0) is finite,
which are the commonly used assumptions in the literature, then we have α = 0.

When α > 0, the zero solution of equation (3.6) is globally asymptotically stable
in the class of solutions corresponding to control u < α.

Note that xu1 < xu2 when u1 < u2. The point xu that corresponds to u = 1 will
be denoted by M ; that is,

F (M)−G(M) = 0 and F (x)−G(x) < 0,∀x > M. (3.9)

It is assumed that xu = 0 if u = α. The interval [0,M ] will be refereed to as the
set of stationary points.

Introduce the notation

x∗ = argmax{F (x)−G(x) : x ≥ 0} (3.10)

and
c∗ = F (x∗)−G(x∗). (3.11)

The following hypothesis will also be used in this subsection.
(H4) c∗ > 0 and x∗ is unique; that is,

F (x)−G(x) < c∗, for all x 6= x∗. (3.12)

Note that this hypothesis implies M > x∗, as it can be seen from (3.9).
It is easy to see that (H4) holds for monotone functions F and G which do not

have inflection points. In particular, this applies to the modified Ramsey model
with delay (3.13) where G(x) = bx, b > 0 and F (x) = Bxp, 0 < p < 1.

3.3. Fixed/steady controls. In this subsection we consider the case when the
proportion between investment and consumption is taken fixed for all t ≥ 0. That
is, we consider scalar control functions u(t) ≡ u, t ≥ 0, where u ∈ [α, 1].

Theorem 3.5. Assume (H3 ′). There exists an optimal control u∗ to the problem
(3.6)-(3.7)-(3.8) in the class of scalar control functions. In addition if (H4) holds
then the control u∗ is unique.

Proof. Let a control u(t) ≡ u0 be given, and consider equation (3.6). Since both F
and G are increasing, and in view of Corollary 2.10, its constant solution x(t) = xu0

is globally asymptotically stable. That is, for arbitrary initial function φ ∈ C one
has limt→∞ x(t, φ) = xu0 . Therefore, the corresponding value of the functional
J(x(·)) is given by

J(x(·), u0) = (1− u0) · F (xu0) := J(u0),

which is dependent on u0 only (and independent of the choice of the initial function
φ).

Since xu0 is continuous in u0, and xu0 = 0 at u0 = α one has that J(u0) is also
continuous in u0 and satisfies

J(α) = J(1) = 0 and J(u0) > 0, u0 ∈ (α, 1).

Therefore, there exists a point u∗ ∈ (α, 1) where the maximum value is achieved:
J(u∗) = max{J(u), u ∈ [0, 1]}. Then u(t) ≡ u∗ is an optimal control. Note that in
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general u∗ does not have to be unique (appropriate non-uniqueness examples are
readily constructed).

Suppose next that F and G are monotone and satisfy (H4). We claim that the
above optimal control u(t) ≡ u∗ is unique then. Indeed, the value of the functional
J with the constant control u is

J(x(·), u) = (1− u)F (xu) =
[
1− G(xu)

F (xu)
]
· F (xu) = F (xu)−G(xu),

which assumes the unique maximum value at xu∗ when u = u∗. �

Example 3.6. Controlled Ramsey model with delay.

The differential equation
dK(t)

dt
= BKp(t− τ)− bK(t) . (3.13)

was proposed as a modified Ramsey economic model with delay [8, 17]. Consider
here the respective control problem (3.6)-(3.7)-(3.8)

dK(t)
dt

= u(t)BKp(t− τ)− bK(t) ,

where B > 0, b > 0, 0 < p < 1 and u(t) ≡ u ∈ [0, 1] is a constant control. It is easy
to check that assumptions (H3 ′) and (H4) hold with α = 0.

One readily finds the steady state xu and the respective value of the functional
J(xu) as

xu =
(B

b

)1/(1−p)

· u1/(1−p), J(u) =
(B

b

)p/(1−p)

· (1− u) · up/(1−p).

The unique maximum value of J(u) is achieved when u = p.
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