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A PRIORI ESTIMATES FOR A CRITICAL
SCHRÖDINGER-NEWTON EQUATION

MARCELO M. DISCONZI

Abstract. Under natural energy and decay assumptions, we derive a priori
estimates for solutions of a Schrödinger-Newton type of equation with criti-

cal exponent. On the one hand, such an equation generalizes the traditional

Schrödinger-Newton and Choquard equations; while, on the other hand, it is
naturally related to problems involving scalar curvature and conformal defor-

mation of metrics.

1. Introduction

We shall study the behavior of positive solutions to the equation

∆u+
( 1
|x|`
∗ u

2n
n−2

)
u
n+2
n−2 − V u = 0 (1.1)

in Rn, n ≥ 3, where ∆ is the Euclidean Laplacian, ∗ means convolution, ` is
a real number, and V is a smooth real valued function. Equation (1.1) will be
referred to as critical Schrödinger-Newton equation. We are concerned with a priori
estimates; i.e., bounds on u and its derivatives, which are necessary conditions for
any (positive) solution of (1.1). Needless to say, not only are a priori estimates
one of the main tools towards an existence theory for a given PDE, but also they
reveal important features about the behavior of solutions. The form of the bounds
one generally seeks to establish depends, of course, on specific characteristics of the
equation, which in the case of (1.1), will be captured by suitable hypotheses on `,
V and asymptotic conditions for u. In order to state natural assumptions for the
critical Schrödinger-Newton equation as well as to highlight why one would consider
(1.1) in the first place, we first turn our attention to some related problems.

Recall that the Schrödinger-Newton equation is

i~
∂Ψ
∂t

= − ~2

2m
∆Ψ−Gm2

( 1
|x|
∗ |Ψ|2

)
Ψ, x ∈ R3, (1.2)

where Ψ = Ψ(t, x) is a function on R× R3, and m, ~ and G are constants. Physi-
cally, Ψ is the wave-function of a self-gravitating quantum system of mass m with
gravitational interaction given by Newton’s law of gravity; ~ and G are Planck’s
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and Newton’s constants, respectively. Equation (1.1) is obtained by considering
the Schrödinger equation

i~
∂Ψ
∂t

= − ~2

2m
∆Ψ +mUΨ (1.3)

with a Newtonian gravitational potential U that is sourced by a distribution of
mass given by Ψ itself,

∆U = 4πGm|Ψ|2. (1.4)

In other words, the mass distribution is given in probabilistic terms, with its prob-
ability amplitude evolving according to the Schrödinger equation, as is usual in
quantum mechanical systems. Writing U in terms of the right hand side of (1.4)
and the fundamental solution of the Laplacian, and using the resulting expression
into (1.3), formally produces (1.2).

The Schrödinger-Newton equation was first introduced by Ruffini and Bonazzola
in their study of equilibrium of self-gravitating bosons and spin-half fermions [60]
and gained notoriety with Penrose’s ideas about the role of gravity in the collapse of
the wave function [55, 56]. More recently, it was used in discussions of semi-classical
quantum gravity [14, 36, 59].

Notice that the power of the convoluted term 1
|x| becomes n − 2 in higher di-

mensions. Parallel to this situation, the following generalization of (1.2) has been
considered,

−i∂ϕ
∂t

= ∆ϕ+ p
( 1
|x|`
∗ |ϕ|p

)
ϕ|ϕ|p−2, x ∈ Rn, (1.5)

where p ≥ 2 and ` ∈ (0, n). For the remainder of the paper, as in (1.5), dimensional
constants such as ~ and G are set to one. Equation (1.5) is used in certain approx-
imating regimes of the Hartree-Fock theory for a one component plasma; see e.g.
[43, 44]. In three spatial dimensions, with ` = 1 and p = 2, equation (1.5) has been
extensively studied, see [7, 15, 33, 35, 45, 46, 58, 64] and references therein.

As in many situations in Physics, one is particularly interested in wave-front-like
solutions of the form ϕ(t, x) = eiωtu(x), ω ∈ R, which, upon plugging into (1.5),
leads to

∆u+ ωu+ p
( 1
|x|`
∗ |u|p

)
u|u|p−2 = 0.

Considering the more general situation where ω 7→ −V = −V (x) and dropping the
factor p in front of the convolution, we find

∆u− V u+
( 1
|x|`
∗ |u|p

)
u|u|p−2 = 0, (1.6)

which is referred to as generalized non-linear Choquard equation. A detailed study
of (1.6), including existence results, has been recently carried out by Ma and Zhao
[49]; Cingolani, Clapp and Secchi [19]; Clapp and Salazar [20]; and Moroz and van
Schaftingen [53]. These works deal with the case where the exponent p is sub-
critical, i.e., p < 2n

n−2 , while the case p = 2n
n−2 is called critical. Criticality is here

understood in the usual sense of the Sobolev embedding theorems. We recall that,
roughly speaking, equations with sub-critical non-linearity are suited for treatment
via calculus of variation techniques (see e.g. [5]), provided that the equation can
be derived from an action principle — which is the case for (1.6), see the above
references.
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Equations with critical exponent appear in several situations in Physics and
Mathematics (see e.g. [5, 18, 40] and references therein). One important case is
the Yamabe equation

∆gu−
n− 2

4(n− 1)
Rgu+Ku

n+2
n−2 = 0, u > 0, (1.7)

where ∆g and Rg are, respectively, the Laplace-Beltrami operator and the scalar
curvature of a given metric g, and K is a constant. Equation (1.7) figures in the
famous Yamabe problem [66]. We recall that this corresponds to finding a constant
scalar curvature metric in the conformal class of a given closed1 n dimensional
(n ≥ 3) Riemannian manifold. The complete solution of the Yamabe problem
through the works of Yamabe [66], Trudinger [65], Aubin [6] and Schoen [62] was
probably the first instance of a satisfactory existence theory for equations with
critical non-linearity (see [42] for a complete overview). The analogous equation for
the Euclidean metric was studied in great detail by Caffarelli, Gidas and Spruck
[13].

Interest in the Yamabe problem has not faded with its resolution. On the con-
trary, the discovery of Pollack, that it is possible to find an arbitrary large number
of solutions to the Yamabe equation on manifolds with positive Yamabe invariant,
has led to an intensive investigation of the properties of the space Φ of solutions
to (1.7) — see [42] for a definition of the Yamabe invariant and [57] for a precise
statement of Pollack’s result. A quite satisfactory account of the topology of Φ was
given through the combined works of Khuri, Marques and Schoen [41]; Brendle [9];
and Brendle and Marques [11] (see also [22, 47, 48, 52, 61, 63] for earlier results).
These results imply that Φ is compact in the C2,α topology for n ≤ 24 and non-
compact otherwise2. Such results were extended to manifolds with boundary in
[21].

From an analytic perspective, the richness surrounding equation (1.7), including
the surprising cut-off in dimension n = 24, is a direct consequence of the critical
exponent. It should be expected, therefore, that allowing p = 2n

n−2 in (1.5) will lead
to many interesting new phenomena, adding to the already sophisticated nature
of the generalized non-linear Choquard equation. A contribution in this direction
is the goal of the present work. In order not to lose sight of the relation between
what has been just described and our objectives in the rest of the manuscript,
notice that from the point of view of the theory of partial differential equations,
the aforementioned compactness of Φ corresponds to a priori bounds for solutions
of (1.7). The reader should also notice the similarities between (1.1) and (1.7),
specially if we are given a metric g in Rn, with ∆g replacing ∆ and V being the
scalar curvature.

We shall present a priori estimates for positive solutions to (1.1). Such estimates
constitute the first step towards an existence theory for this equation. They also
provide insight on the structure of the space of solutions to (1.1), at least for
those solutions satisfying some additional requirements. We also give an account

1The Yamabe problem for manifolds with boundary was studied in [2, 3, 4, 10, 16, 21, 26, 27,

28, 31, 32, 37, 38, 50, 51].
2This under the assumption that the Yamabe invariant is positive, and the underlying manifold

is not conformally equivalent to the round sphere. The cases of negative and zero Yamabe invariant
are trivial. The geometric reasons for singling out the sphere, and the relation between the

compactness of Φ and the geometry of the manifold, are discussed in [12, 54].
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of the profile of blowing-up solutions. We point out that since, to the best of our
knowledge, equation (1.1) has not been considered before in the literature, we shall
not attempt to derive very general results; rather, our focus will be on conditions
that allow, on one hand, a good grasp on the behavior of u without, on the other
hand, rendering the problem uninteresting. We also stress that our methods may
shed new light in the study of equations (1.2) and (1.5), in that we investigate the
pointwise behavior of solutions as opposed to the L2 techniques previously employed
to deal with these equations. We make some general comments on the pointwise
blow-up techniques we employ in section 4.

2. Setting and statement of the results

Notation 2.1. From now on, u will denote a positive solution of (1.1).

The first thing we investigate is the range of ` values which will be allowed. For
the integral

1
|x|`
∗ u

2n
n−2 =

∫
Rn

1
|y|`

u
2n
n−2 (x− y) dy (2.1)

to be finite near the origin without expecting any vanishing of u in the neighborhood
of zero, we must have ` ∈ (0, n). Next, we ask what kind of asymptotic behavior
should be required for u. Experience with equations with critical exponent [13, 42]
suggests that we should adopt

u = O(|x|2−n) as |x| → ∞. (2.2)

Then (2.2) and ` ∈ (0, n) guarantee that the integral (2.1) is finite.

Definition 2.2. Given real numbers % > 0 and L > 0, we say that u has (%, L)-
decay if it satisfies

u(x) ≤ L|x|2−n, for |x| ≥ %.
Denote by C%,L the set of solutions u with (%, L)-decay.

We shall also need some energy conditions. In order to motivate them, multiply
(1.1) by u, integrate by parts, and assume that all the integrals are finite. Then∫

Rn

(
|∇u|2 + V u2

)
=
∫

Rn

∫
Rn

1
|y|`

u
2n
n−2 (x− y)u

2n
n−2 (x) dy dx. (2.3)

The left-hand side is just the energy associated with the linear operator ∆− V . If
we had a constant rather than 1

|x|` ∗ u
2n
n−2 , the above expression would produce the

analogue of the Yamabe quotient for our equation. This motivates the following.

Definition 2.3. We call the convolution qu(x) := 1
|x|` ∗ u

2n
n−2 the quotient of u

(which is always non-negative). For a given real number K > 0, denote by QK the
set of solutions u whose quotient is less than or equal to K. More precisely

QK :=
{
u : qu(x) ≤ K for all x ∈ Rn

}
.

Remark 2.4. Since qu is related to the energy on the left-hand side of (2.3),
u ∈ QK can be thought of as an energy-type of condition. This should not be
confused, however, with the more physically appealing notion of energy for (1.5)
used in [19, 20, 49, 53].
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To motivate the extra hypotheses that will be needed, we have to say a few
words about the general situation that will be investigated. We shall employ blow-
up techniques to study sequences {ui} of C2,α solutions to (1.1), and we are pri-
marily concerned with the constraints that the equation imposes on blow-up up
sequences. Understanding how a sequence {ui} can be unbounded in, say, the C0-
norm, is important not only because such families of solutions are obstructions to
the application of standard compactness arguments, but also because this type of
behavior is expected for many critical equations (see [1, 8, 17, 23, 24, 29, 30, 39]
and references therein).

Whenever blow-up occurs, i.e., ‖ui‖C0(Rn) → ∞ as i → ∞, condition (2.2)
restricts the blow-up to within a compact set, in which case, we can assume ui
to diverge along a sequence of points xi → x̄. An analysis of the sequence {ui} is
carried out by rescaling the solutions and the coordinates, leading to an appropriate
blow-up model for equation (1.1). In this situation, one expects that the blow up
of ui, together with {ui} ⊂ QK , implies that the rescaled qui ’s are very close to a
constant in the neighborhood of x̄. But in order to avoid substantial extra work
that would distract us from the main goals of the paper, we shall simply assume
that qui has this desired property. Moreover, although our analysis will be local
in nature, to avoid the introduction of further cumbersome hypotheses, such an
assumption will be taken to hold on a big compact set. The precise behavior of
qu has to be ultimately determined by a more refined analysis of the solutions to
equation (1.1), what is beyond the scope of this paper. A technical condition on the
rate at which qui approaches a constant will also be assumed, although probably
this can be relaxed. With this in mind we now state our results, whose essence is
that control over the convolution qu yields uniform control over the solutions. From
elliptic theory, one would expect that the required control on qu should be in the
C0,α topology, and that turns out to be in fact the case.

Theorem 2.5. Fix positive numbers %, L and K. Let ui be a sequence of C2,α

positive solutions to (1.1), 0 < α < 1, satisfying

{ui}∞i=1 ⊂ C%,L ∩QK ,
and suppose that there exists a constant Q such that

qui → Q > 0 in C0,α(Br(0)) as i→∞,
for some r > %. Suppose further that n ≥ 6.

If ‖ui‖C0(Rn) →∞ and ‖qui −Q‖C0,α(Br(0))‖ui‖n−2
C0(Rn) → 0 as i→∞, then, up

to a subsequence, the following holds. There exist x̄ ∈ B%(0), a sequence xi → x̄
and a positive number σ such that

‖ui‖C0(Rn) = ui(xi),

‖(ui(xi))−1u− (ui(xi))−1zi‖C0(Bσ(x̄)) → 0 as i→∞,
where

zi(x) := (ui(xi))−1
(

(ui(xi))−
4

n−2 − Q

n(n− 2)
|x− xi|2

) 2−n
2
.

Furthermore, the following estimate holds

‖(ui(xi))−1u− (ui(xi))−1zi‖C0(Bσ(x̄)) ≤ C(ui(xi))−
4

n−2 ,

where C = C(L, %,K,Q, r, n, α, ‖V ‖C0,α(Br(0))).
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Remark 2.6. The restriction to n ≥ 6 is used to obtain the most direct proof
without considering variations of (2.2). We believe that this can be removed by a
more careful application of the techniques here presented.

Theorem 2.5 identifies a blow-up model for equation (1.1). In other words, it
states that under suitable energy and decay conditions, and up to a subsequence,
any family of solutions that blows up is approximated, after rescaling and near the
blow up point x̄, by the radially symmetric functions zi. The following corollary
says that if we also rescale the coordinates, then the C0 convergence of theorem 2.5
is improved to C2 convergence.

Theorem 2.7. Assume the same hypotheses and notation of theorem 2.5. If
‖ui‖C0(Rn) → ∞ and ‖qui − Q‖C0,α(Br(0))‖ui‖n−2

C0(Rn) → 0 as i → ∞, letting xi
and x̄ be as in the conclusion of theorem 2.5, the following holds. Define

vi(y) := (ui(xi))−1ui(xi + (ui(xi))
2

2−n y),

Zi(y) := (ui(xi))−1zi(xi + (ui(xi))
2

2−n y).

Then Zi(y) = (1 + Q
n(n−2) |y|

2)
2−n

2 ≡ Z(y) for every i, and

‖vi − Z‖C2(Bλi (0)) → 0 as i→∞,

where λi = (ui(xi))
2

n−2 η, with η a small positive number. Furthermore, the follow-
ing estimate holds

‖vi − Z‖C2(Bλi (0)) ≤ C(ui(xi))−
4

n−2 ,

where C = C(L, %,K,Q, r, n, α, ‖V ‖C0,α(Br(0))).

The function Z in theorem 2.7 is well known in conformal geometry. The metric
on the sphere written in a coordinate chart via stereographic projection is conformal
to the Euclidean metric, with the conformal factor being a multiple of Z. Z has
also been extensively used in the study of the Yamabe problem.

One naturally wonders about the boundedness of families of solutions to (1.1)
as well as the possibility that sequences ui > 0 degenerate in the limit; i.e., points
where limi→∞ ui(x) = 0. The next theorem gives some sufficient conditions for
bounds from above and below on u.

Theorem 2.8. Assume the same hypothesis of theorem 2.5, suppose that V 6= 0
and that it does not change sign in Br(0). A sufficient condition for the existence
of a constant C = C(L, %,K,Q, r, n, α, ‖V ‖C0,α(Br(0))) such that the inequalities

‖u‖C0(Rn) + ‖u‖C2,α(B%(0)) ≤ C,

‖u‖C0(B%(0)) ≥
1
C

hold for any u ∈ C%,L ∩ QK , is that the inequality of theorem 2.7 be true in the
C0-norm with (ui(xi))−

4
n−2 replaced by (ui(xi))−

4
n−2−δ, for some δ > 0.

3. Proof of theorems

The hypotheses and notation of theorem 2.5 will be assumed throughout this
section. Let {ui} be such that ‖ui‖C0(Rn) →∞ as i→∞. Since u has (%, L)-decay,
we can assume that for large i

‖ui‖C0(Rn) = ‖ui‖C0(B%(0)).
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Letting xi be such that ‖ui‖C0(B%(0))
= u(xi), and passing to a subsequence we can

assume that xi → x̄ for some x̄ ∈ B%(0), and taking i sufficiently large if necessary
we can also suppose that xi and x̄ are interior points. Define a sequence of real
numbers {εi}∞i=1 by

ε
2−n

2
i := ui(xi).

Notice that εi → 0 when i → ∞. εi measures the rate at which ui blows-up. For
each fixed i, consider the change of coordinates

y = ε−1
i (x− xi),

and define the rescaled functions

vi(y) := ε
n−2

2 ui(xi + εiy).

Then 0 is a local maximum for vi with vi(0) = 1 and

0 < vi ≤ 1. (3.1)

A direct computation shows that vi satisfies

∆vi + q̃iv
n+2
n−2
i − ε2

i Ṽ vi = 0, (3.2)

where q̃i(y) = qui(xi+εiy) and Ṽ (y) = V (xi+εiy). Let zi and Z be as in theorems
2.5 and 2.7. In the sequel, we shall evoke several standard estimates of elliptic
theory. A full account of these results can be found in [34].

Lemma 3.1. With the above definitions, up to a subsequence, it holds that vi → Z
in C2

loc(Rn).

Proof. Fix R > 0 and d > 0, and set R′ = R+ d, R′′ = R+ 2d. For any p > 1, we
have by Lp estimates that

‖vi‖W 2,p(BR′ (0)) ≤ C
(
‖vi‖Lp(BR′′ (0)) + ‖q̃iv

n+2
n−2
i ‖Lp(BR′′ (0)) + ε2

i ‖Ṽ vi‖Lp(BR′′ (0))

)
,

where C = C(n, p,R′, R′′) and W 2,p is the usual Sobolev space of functions with 2
weak derivatives in Lp. From (3.1) and our hypothesis it follows that

‖vi‖W 2,p(BR′ (0)) ≤ C(1 + ε2
i ) ≤ 2C,

for large i, where C = C(n, p,R′, R′′,K, ‖Ṽ ‖C0(BR′′ (0))). Choosing p such that
2 > n/p, we then obtain by the Sobolev embedding theorem that vi is bounded
in C1,α′(BR′(0)), for some 0 < α′ < 1, therefore there exists a subsequence, still
denoted vi, which converges in C1,α(BR′(0)), 0 < α < α′, to a limit v∞.

Next, evoke Schauder estimates to obtain

‖vi‖C2,α(BR(0))

≤ C
(
‖vi‖C0(BR′ (0)) + ‖q̃iv

n+2
n−2
i ‖C0,α(BR′ (0)) + ε2

i ‖Ṽ vi‖C0,α(BR′ (0))

)
,

where C = C(n, α,R,R′). Combining this inequality, the interpolation inequality,
the previous bound on the C1,α-norm of vi and the hypotheses of theorem 2.5, we
conclude that

‖vi‖C2,α(BR(0)) ≤ C,
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with C = C(n, α, p,R, d,K,Q, ‖Ṽ ‖C0(BR′′ (0))). As a consequence, up to a subse-
quence and decreasing α if necessary, the above C1,α convergence is in fact C2,α

convergence, and we can pass to the limit in (3.2) to conclude that v∞ satisfies

∆v∞ +Qv
n+2
n−2
∞ = 0 in BR(0).

Take now a sequence Rj → ∞. Using the above argument on each BRj (0) along
with a standard diagonal subsequence construction produces a subsequence vi that
converges to a limit v∞ satisfying

∆v∞ +Qv
n+2
n−2
∞ = 0 in Rn, (3.3)

with the convergence being in C2,α on each fixed BRj (0). Therefore v → v∞ in
C2,α

loc (Rn). Solutions to (3.3) have been studied by Caffarelli, Gidas and Spruck in
[13]. From their results and the fact v∞(0) = 1, we obtain

v∞(y) =
(

1 +
Q

n(n− 2)
|y|
) 2−n

2 ≡ Z(y).

�

Proposition 3.2. There exists a constants C > 0, independent of i, such that

|vi − Z|(y) ≤ Cε2
i for every |y| ≤ ε−1

i ,

possibly after passing to a subsequence.

Proof. Set
Ai = max

|y|≤ ε−1
i

|vi − Z| = |vi − Z|(yi),

where yi is defined by this relation as a point where the maximum of |vi − Z| is

achieved for |y| ≤ ε−1
i . Suppose first that, up to a subsequence, |yi| ≤

ε−1
i

2 . If the
result is not true, then there exists a subsequence such that

ε2
i

Ai
→ 0 as i→∞. (3.4)

Define wi(y) = A−1
i (vi − Z)(y). Then it satisfies

∆wi + aiwi =
ε2
i

Ai

(
Ṽ vi +

Q− q̃i
ε2
i

v
n+2
n−2
i

)
, (3.5)

where

ai = Q
v
n+2
n−2
i − Z

n+2
n−2

vi − Z
.

By Taylor’s theorem,

v
n+2
n−2
i − Z

n+2
n−2 =

n+ 2
n− 2

Z
4

n−2 (vi − Z) +O(Z
6−n
n−2 |vi − Z|2). (3.6)

From our hypotheses, expansion (3.6), the (%, L)-decay of u, lemma 3.1, (3.4)
and equation (3.5), it follows by an argument similar to the proof of lemma 3.1,
that wi is bounded in C2

loc(Rn) and

|ai(y)| ≤ C

(1 + |y|)4
, (3.7)
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for some constant C > 0 independent of i. Passing to a subsequence, we see that
wi → w∞ in C2

loc(Rn), and that w∞ satisfies

∆w∞ +
n+ 2
n− 2

QZ
4

n−2w∞ = 0. (3.8)

On the other hand, using the Green’s function for the Laplacian with Dirichlet
boundary condition, the representation formula and (3.7) show that for |y| ≤ ε−1

i

2 ,

|wi(y)| ≤ C

1 + |y|
+ C

ε2
i

Ai
, (3.9)

for some constant C > 0 independent of i. In particular, w∞ has the property that

lim
|y|→∞

w∞(y) = 0. (3.10)

Up to a harmless rescaling, solutions to (3.8) with the property (3.10) have also
been studied by Caffarelli, Gidas and Spruck in [13]. They have the property
that w∞ ≡ 0 if w∞(0) = 0 = |∇w∞(0)|. Recalling that vi(0) = 1 and that 0
is a local maximum of vi, and noticing that Z(0) = 1, ∇Z(0) = 0, we see that
wi(0) = 0 = |∇wi(0)|. Therefore, w∞(0) = 0 = |∇w∞(0)| holds, and hence w∞
vanishes identically. Since wi(yi) = 1 by construction, we must have |yi| → ∞, but
this contradicts (3.9) because of (3.4) and wi(yi) = 1.

It remains to prove the proposition in the case when |yi| >
ε−1
i

2 . Notice that from
the (%, L)-decay of u, we obtain that vi(y) ≤ C|y| 2−n2 for |y| ≥ %ε−1

i , while Z obeys
the estimate Z(y) ≤ C(1+|y|)2−n. From these we get |vi−Z|(yi) ≤ C|yi|

2−n
2 ≤ Cε2

i

if |yi| >
ε−1
i

2 . �

Proof of theorem 2.5. Notice that

zi(x) = ε
2−n

2
i Z(ε−1

i x).

Writing the estimate of proposition 3.2 in x-coordinates and recalling the definition
of εi, we obtain

‖(ui(xi))−1u− (ui(xi))−1zi‖C0(B1(xi)) ≤ Cε
2
i .

Since xi → x̄, choosing σ > 0 small and i large, we obtain the result. �

Proof of theorem 2.7. For the C0-norm this is simply the estimate of proposition
3.2 written in x-coordinates. From the C0 bound, we obtain the C2 bound by
standard elliptic estimates, after considering a smaller ball via the introduction of
η. �

Proof of theorem 2.8. We shall first show that ‖ui‖C0(Rn) ≤ C for a constant inde-
pendent of i. If this is not the case, then we can find a sequence ui that blows up
as in the assumptions of theorem 2.5. In light of elliptic theory and shrinking η if
necessary, we obtain that the hypothesis on the C0 decay of vi −Z then yields the
estimate

‖vi − Z‖C2(Bλi (0)) ≤ Cε2+δ
i ,

which then gives

ε
n−2

2
i ‖∇m(ui − zi)‖C0(Bη(xi)) ≤ Cε

2+δ−m
i , m = 0, 1, 2. (3.11)
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Notice that

ε
n−2

2
i ∆(ui − zi) +Qε

n−2
2

i

(
u
n+2
n−2
i − z

n+2
n−2
i

)
+ ε

n−2
2

i

(
qui −Q

)
u
n+2
n−2
i = ε

n−2
2

i V ui. (3.12)

From (3.11), and the hypotheses on qui we conclude that

ε
n−2

2
i Q

(
u
n+2
n−2
i − z

n+2
n−2
i

)
(xi) + ε

n−2
2

i

(
qui −Q

)
(xi)u

n+2
n−2
i (xi)→ 0 as i→∞. (3.13)

Inequality (3.11) also gives

ε
n−2

2
i ∆(ui − zi)(xi)→ 0 as i→∞. (3.14)

But (3.13) and (3.14) yield a contradiction with (3.12) since

ε
n−2

2
i ui(xi) = 1 for every i,

and V is bounded away from zero in B%(0).
This establishes a bound on the C0-norm of ui. Restricting the problem to

Br(0) and using standard elliptic estimates, produces a bound on the C2-norm
within B%(0). With the C2 bound at hand, we write

u
n+2
n−2
i = u

4
n−2
i ui,

and consider u
4

n−2
i as a given coefficient. In this case, we can treat the equation as a

linear equation (for ui) for which the Harnack inequality can be applied, producing
the desired bound from below on ui. �

4. Discussion

The use of blow-up techniques has a long history in PDE theory (see e.g. [25] for
a general theory, and references therein for further applications). Such techniques
provide a powerful tool to analyze the singular behavior of solutions of a given
PDE. Singular behavior, in this context, generally means the existence of a point
x̄ such that u(x) → ∞, in some appropriate topology, as x → x̄. More generally,
singular behavior can also be understood as the existence of a family of solutions
ui such that ui →∞, again in some suitable topology, as i→∞.

In order to analyze these singularities, the conventional wisdom consists of find-
ing the natural scaling symmetry for the equation. One then carries out a suitable
rescale of all quantities — this is the so-called a blow-up of, say, the coordinates —
in such a way that, in the limit, a singular model can be extracted from the rescaled
equation. In many instances, the singular model is simple, yet retains much of the
essential singular behavior of the original equation. When this is the case, a careful
analysis of the singular model unveils important features of the singular structure
of the problem under consideration.

In our case, we have applied these ideas to understand properties of singular, or
blow-up, solutions of (1.1), for the reasons discussed in detail in the introduction.
We finish by briefly mentioning how one can try to apply a similar set of ideas to
the time-dependent problem (1.5), of which (1.2) is a particular case.

From the point of view of the time dependence, a blow-up behavior u → ∞ is
expected when t→ T , if the solution is defined on a time interval [0, T ), and cannot
be extended pass T . Hence, the type of blow-up analysis mentioned above should
capture some of the essential characteristics of the solution near T . Furthermore,
this can provide us with explicit breakdown criteria that can be applied to particular
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examples when investigating the question of long-time existence to equation (1.5).
Since the scaling properties of a singular equation are dictated essentially by its non-
linear part, we expect that many of the arguments here presented can be adapted
to the time-dependent setting.

Finally, our estimates can be also understood as describing the behavior of sta-
tionary solutions to (1.5) when these exist. As in many physical models, stationary
solutions arise in the limit t→∞. Understanding the properties that such solutions
ought to have (when they exist) can provide insights in the more difficult question
of the long-time behavior of equation (1.5).
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