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STRONG BOUNDED SOLUTIONS FOR NONLINEAR
PARABOLIC SYSTEMS

NSOKI MAVINGA, MUBENGA N. NKASHAMA

Abstract. In this article we study the existence of strong bounded solutions
for nonlinear parabolic systems on a domain which is bounded in space and

unbounded in time (namely the entire real line). We use nonlinear iteration

arguments combined with some a priori estimates to derive the existence re-
sults. We also provide conditions under which we have a positive solution.

Some examples are given to illustrate the results.

1. Introduction

We consider the nonlinear parabolic system
∂u

∂t
(x, t)− L1u(x, t) = f1(x, t, u, v) in Ω× R,

∂v

∂t
(x, t)− L2v(x, t) = f2(x, t, u, v) in Ω× R,

B1u(x, t) = g1(x, t, u, v) on ∂Ω× R,
B2v(x, t) = g2(x, t, u, v) on ∂Ω× R,

sup
Ω×R
{|u(x, t)|, |v(x, t)|} <∞,

(1.1)

where Ω is a bounded, open and connected subset of RN with smooth boundary ∂Ω
and closure Ω. We suppose that Lk are second order, uniformly elliptic differential
operators with time-dependent coefficients and Bk are linear first-order boundary
operators which are either Dirichlet, Neumann or regular oblique type. We suppose
that the coefficients of the operators Lk and Bk are measurable and bounded.
The reaction and the boundary nonlinearities fk and gk are, say, Carathéodory
functions.

We are interested in bounded solutions existing for all time. Steady-state, time-
periodic solutions and (bounded) attractors as well as almost-periodic solutions are
only a few examples of solutions existing for all times, see e.g. [5, 6, 9, 18, 23]. The
study of nonlinear parabolic systems for large time have important applications in
ecology. Full bounded solutions are thus important in both backward and forward
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dynamics. Many papers have been devoted to the study of nonlinear parabolic
systems with given initial conditions. For some recent results in this direction and
bibliography we refer to [2, 3, 14, 19, 4, 9, 18, 23], and others. However, to the best of
our knowledge, not much seems to be done for system (1.1) for the case of nonlinear
boundary conditions and in the unbounded time-domain (namely, the entire real
line). A few results were obtained in the scalar case by the authors [15, 16]. Since we
are dealing with nonlinear parabolic systems with nonlinear boundary conditions
and without initial conditions, many of the tools used for compact or semi-infinite
time interval such as the maximum principle and the fixed-point results are not
directly applicable. Thus, the need to develop new tools for studying the problem.
Moreover, we deduce the comparison principle which is valid on the entire real line
in time and used some nonlinear iteration arguments to obtain the existence results.

The paper is organized as follows. In Section 2, we formulate general assumptions
which are needed throughout, and state our main results concerning the existence
of bounded solutions existing for all times for nonlinear systems with (possibly)
nonlinear boundary conditions. We assume that the nonlinearities in the reaction
and on the boundary satisfy some growth conditions. In Section 3, we state some
results on (scalar) linear parabolic equations which are needed in the proof of our
main results. In Section 4, we prove the main results. We conclude the paper with
some examples which illustrate our results.

2. Assumptions and Main results

All functions in this paper will take values in R and all vector spaces are over
the reals. We assume that Ω is a bounded domain in RN with boundary ∂Ω and
closure Ω. We assume that ∂Ω belongs to C2; µ ∈ (0, 1) and p = (N + 2)/(1− µ).
We consider the second order parabolic operators in Ω× R given by

∂u

∂t
− Lku, (2.1)

where

Lku :=
N∑

i,j=1

a
(k)
ij (x, t)

∂2u

∂xi∂xj
+

N∑
i=1

b
(k)
i (x, t)

∂u

∂xi
+ c(k)(x, t)u, k = 1, 2

with symmetric positive definite coefficient-matrices (a(k)
ij ). We assume that

(i) a
(k)
ij ∈ C(Ω× R) ∩ L∞(Ω× R), b(k)

i , c(k) ∈ L∞(Ω× R).
(ii) There are constants c0 ≥ 0 and γ0 > 0 such that for a.e. (x, t) ∈ Ω × R,

c(k)(x, t) ≤ −c0 and
∑N
i,j=1 a

(k)
ij (x, t)ξiξj ≥ γ0|ξ|2 for all ξ ∈ RN .

Let ε denote a variable which assumes the values 0 and 1 only. We define the
boundary operators Bk,ε by

Bk,εu := ε
∂u

∂ν
+ α(k)(x, t)u, k = 1, 2 (2.2)

where α(k) ∈W 1,1/2
p,loc (∂Ω×R)∩L∞(Ω×R), and for all (x, t) ∈ ∂Ω×R, α(k)(x, t) ≥

α0 ≥ 0. The constant α0 is such that α0 > 0 if ε = 0, and α0 ≥ 0 if ε = 1.
Moreover,

c0 + α0 > 0, (2.3)
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which implies that the coefficients c(k)(x, t) and α(k)(x, t) do not vanish simulta-
neously. Thus, for ε = 0, Bk,0u is a Dirichlet boundary condition whereas for
ε = 1, Bk,1u corresponds to a Neumann or a regular oblique derivative boundary
condition.

In what follows, the inequality (u1, v1) ≤ (u2, v2) means that u1 ≤ u2 and
v1 ≤ v2. The functions fk, gk depend in general on u and v; except for the Dirichlet
boundary condition where gk are independent of u and v; that is, gk(x, t, u, v) =
gk(x, t). The reaction functions fk ∈ L∞car(Ω × R × R × R) are L∞-Carathéodory
functions; that is,

(A1) fk(·, ·, u, v) is measurable; fk(x, t, ·, ·) is continuous for a.e. (x, t) ∈ Ω× R;
and for every r > 0 there is a function Mk,r ∈ L∞(Ω × R) such that
|fk(x, t, u, v)| ≤ Mk,r(x, t) for a.e. (x, t) ∈ Ω × R and all (u, v) ∈ [−r, r] ×
[−r, r].

The boundary functions gk are also L∞-Carathéodory functions; i.e, they sat-
isfy (A1), but in addition if ε = 0 (i.e Dirichlet boundary condition) then gk ∈
W

2−1/p,(2−1/p)/2
p,loc (∂Ω × R) and if ε = 1 (i.e Neumann boundary condition) then

gk(x, t, u, v) satisfy the Lipschitz condition in J1 × J2 ⊂ R2, uniformly in (x, t) ∈
Ω× R, where J1 and J2 are closed intervals in R; that is

(A2) for every J1×J2 ⊂ R×R, there is a constant %k = %k(∂Ω×R×J1×J2) > 0
such that

|gk(x, t, u1, v1)− gk(y, s, u2, v2)|

≤ %k
[
|x− y|2 + |t− s|+ |u1 − u2|2 + |v1 − v2|2

]1/2
for all (x, t, u1, v1), (y, s, u2, v2) ∈ ∂Ω× R× J1 × J2.

(A3) The vector functions f = (f1, f2),g = (g1, g2) are quasimonotone in J1×J2,
that is, they satisfy one of the following quasimonotonicity properties:
(f1, f2), (g1, g2) are quasimonotone nondecreasing (quasimonotone nonin-
creasing) in J1 × J2; i.e.,

for fixed u ∈ J1, f1, g1 are nondecreasing (nonincreasing) in v ∈ J2,

and

for fixed v ∈ J2, f2, g2 are nondecreasing (nonincreasing) in u ∈ J1.

We wish to emphasize the fact that this ‘additional’ local Lipschitz condition
(A2) on the boundary nonlinearities gk(x, t, u, v) is needed to obtain a priori es-
timates for the boundary traces of solutions. It ensures that the boundary su-
perposition (Nemytsǩıi) operator associated with the function gk(x, t, ·, ·) maps
W

1−1/p,(1−1/p)/2
p,loc (∂Ω×R)×W 1−1/p,(1−1/p)/2

p,loc (∂Ω×R) intoW 1−1/p,(1−1/p)/2
p,loc (∂Ω×R);

the latter is the condition needed on the boundary data to get strong solutions, i.e.,
solutions in W 2,1

p,loc(Ω×R)×W 2,1
p,loc(Ω×R). In particular, for gk(x, t, u, v) = gk(x, t)

independent of (u, v), it implies that gk ∈W 1−1/p,(1−1/p)/2
p,loc (∂Ω× R).

Based on the type of quasimonotonicity property, we will use the following defi-
nitions for strong sub and supersolutions.

Definition 2.1. A pair of functions (u, v) and (u, v) in W 2,1
p,loc(Ω×R)×W 2,1

p,loc(Ω×R)
are ordered subsolution and supersolution of the system (1.1) if

(1) (u, v) ≤ (u, v), that is, u ≤ u and v ≤ v, and one of the following conditions
holds.
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(2) When (f1, f2) and (g1, g2) are quasimonotone nondecreasing

∂u

∂t
− L1u− f1(x, t, u, v) ≥ 0 ≥ ∂u

∂t
− L1u− f1(x, t, u, v) in Ω× R,

∂v

∂t
− L2v − f2(x, t, u, v) ≥ 0 ≥ ∂v

∂t
− L2v − f2(x, t, u, v) in Ω× R,

B1u− g1(x, t, u, v) ≥ 0 ≥ B1u− g1(x, t, u, v) on ∂Ω× R,
B2v − g2(x, t, u, v) ≥ 0 ≥ B2v − g2(x, t, u, v) on ∂Ω× R,

sup
Ω×R

(|u|, |v|, |u|, |v|) <∞.

(3) When (f1, f2) and (g1, g2) are quasimonotone nonincreasing

∂u

∂t
− L1u− f1(x, t, u, v) ≥ 0 ≥ ∂u

∂t
− L1u− f1(x, t, u, v) in Ω× R,

∂v

∂t
− L2v − f2(x, t, u, v) ≥ 0 ≥ ∂v

∂t
− L2v − f2(x, t, u, v) in Ω× R,

B1u− g1(x, t, u, v) ≥ 0 ≥ B1u− g1(x, t, u, v) on ∂Ω× R,
B2v − g2(x, t, u, v) ≥ 0 ≥ B2v − g2(x, t, u, v) on ∂Ω× R,

sup
Ω×R

(|u|, |v|, |u|, |v|) <∞.

For the rest of this article, we assume that the interval [u, u]× [v, v] ⊆ J1 × J2.

Our main result for the system (1.1) is given by the following theorem.

Theorem 2.2. Assume (A1)—(A3) are satisfied and suppose that (1.1) has an or-
dered subsolution (u, v) and supersolution (u, v) and (f1, f2) and (g1, g2) are quasi-
monotone nondecreasing (quasimonotone nonincreasing) in [(u, v), (u, v)]. Then
the system (1.1) has at least one solution (u, v) ∈ W 2,1

p,loc(Ω × R) ×W 2,1
p,loc(Ω × R)

such that

(u, v) ≤ (u, v) ≤ (u, v) in Ω× R.

As an immediate consequence of Theorem 2.2, we have the following corollary
on the existence of positive full bounded solutions.

Corollary 2.3 (Positive Solutions). Assume that the assumptions in Theorem 2.2
are satisfied. Suppose that either (f1, f2) and (g1, g2) are quasimonotone nonde-
creasing and

f1(x, t, 0, 0) ≥ 0, f2(x, t, 0, 0) ≥ 0, g1(x, t, 0, 0) ≥ 0, g2(x, t, 0, 0) ≥ 0.

When either (f1, f2) and (g1, g2) are quasimonotone nonincreasing and

f1(x, t, 0, v) ≥ 0, f2(x, t, u, 0) ≥ 0, g1(x, t, 0, v) ≥ 0, and g2(x, t, u, 0) ≥ 0.

Furthermore, assume that there exists a nonegative supersolution (u, v) of (1.1).
Then the system (1.1) has a nonnegative solution (u, v) ∈W 2,1

p,loc(Ω×R)×W 2,1
p,loc(Ω×

R) such that (u, v) ≤ (u, v).

Indeed, observe that (0, 0) is a subsolution of the system (1.1). Therefore by
Theorem 2.2, the system (1.1) has a nonnegative solution.
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3. Auxiliary results and proof of the main result

To prove the main result stated in the previous section, we need some auxiliary
results on scalar linear parabolic equations in Ω × R. We refer to [15, 16] for the
proof of these results.

Consider the linear boundary value problem

∂u

∂t
− Lu = f in Ω× R,

Bεu = ϕ on ∂Ω× R,
sup
Ω×R
|u(x, t)| <∞,

(3.1)

where L is a second order, time dependent, uniformly elliptic differential operators
and Bε is a first order boundary operator as defined in the previous section.

Proposition 3.1 (A priori estimates). Let u ∈W 2,1
p,loc(Ω× R) be (uniformly)

bounded at −∞. Then there exists a constant K such that

sup
Ω×R
|u±| ≤ K

(
sup
Ω×R

∣∣(∂u
∂t
− Lu

)
±

∣∣+ sup
∂Ω×R

|(Bεu)±|
)

; (3.2)

which implies that

sup
Ω×R
|u| ≤ K

(
sup
Ω×R
|∂u
∂t
− Lu|+ sup

∂Ω×R
|Bεu|

)
.

The constant K depends only on the dimension N , the parabolicity constant γ0,
diam(Ω), and the L∞-bounds of the coefficients of the operators L and Bε.

We deduce from the above proposition the following (weak) maximum type-
comparison principle.

Corollary 3.2. (Weak Maximum/Comparison Principle) Suppose that the condi-
tions of Proposition 3.1 are met. Assume that ∂u

∂t −Lu ≥ 0 a.e. in Ω×R and that
Bεu ≥ 0 on ∂Ω× R. Then u ≥ 0 in Ω× R.

The next proposition deals with the existence result for linear parabolic equa-
tions.

Proposition 3.3. Suppose that f ∈ L∞(Ω× R) and ϕ ∈W
2−ε− 1

p ,(2−ε−
1
p )/2

p,loc (∂Ω×
R) ∩ L∞(∂Ω × R) with p = N+2

1−µ . Then the problem (3.1) has a unique solution
u ∈W 2,1

p,loc(Ω× R) ∩ L∞(Ω× R).

Lemma 3.4 (Interpolation inequalities). Let Ω × I ⊂ Rn × R and 1 ≤ p < ∞.
There is a constant C > 0 such that for all u ∈W 2,1

p (Ω× I) one has

|u|
W

1,1/2
p (Ω×I) ≤ C|u|

1/2

W 2,1
p (Ω×I)|u|

1/2
Lp(Ω×I).

Moreover, for every ε > 0,

|u|
W

1,1/2
p (Ω×I) ≤ C

(
ε|u|W 2,1

p (Ω×I) +
1
4ε
|u|Lp(Ω×I)

)
. (3.3)
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Proposition 3.5. Consider the nonlinear parabolic boundary value problem

∂u

∂t
(x, t)− Lu(x, t) = f(x, t, u) a.e. in Ω× R,

Bu = ϕ(x, t, u) a.e. on ∂Ω× R,
sup
Ω×R
|u(x, t)| <∞.

(3.4)

Suppose that u, u are ordered sub-solution and super-solution of (3.4) and suppose
that f and ϕ are nonincreasing in u, for u ∈ [u, u]. Then (3.4) has at most one
solution u such that u ≤ u ≤ u.

Lemma 3.6. Let f satisfy (A1); that is, f ∈ L∞car(Ω×R×R). Then, for every r ∈ R
with r > 0, there is a continuous function m : [−r, r]× [−r, r]→ R such that m(·, v)
is nondecreasing on [−r, r], m(u, ·) is nonincreasing on [−r, r], m(u, v) = −m(v, u)
on [−r, r]× [−r, r], and

sup
Ω×R
|f(x, t, u)− f(x, t, v)| ≤ m(u, v) (3.5)

for all u, v ∈ [−r, r] with u ≥ v.

Proposition 3.7. Let (A1)–(A3) and the following condition hold,

(LL) The functions fk (k = 1, 2) satisfy the one-sided Lipschitz condition in
J1 × J2 ⊂ R2, uniformly a.e. in (x, t) ∈ Ω×R; that is, there are constants
θk ≥ 0 such that for every (u1, v), (u2, v), (u, v1), (u, v2) in J1 × J2,

f1(x, t, u1, v)− f1(x, t, u2, v) ≥ −θ1(u1 − u2), for u1 ≥ u2,

f2(x, t, u, v1)− f2(x, t, u, v2) ≥ −θ2(v1 − v2), for v1 ≥ v2.

Suppose that (1.1) has an ordered subsolution (u, v) and supersolution (u, v) and
(f1, f2) and (g1, g2) are quasimonotone nondecreasing (quasimonotone nonincreas-
ing) in [(u, v), (u, v)]. Then the system (1.1) has at least one solution (u, v) ∈
W 2,1
p,loc(Ω× R)×W 2,1

p,loc(Ω× R) such that

(u, v) ≤ (u, v) ≤ (u, v) in Ω× R.

Proof. Let δ = max{θ1, θ2, ρ1, ρ2}. Consider the following modified problem.

∂u

∂t
− L1u+ δu = f1(x, t, u, v) + δu in Ω× R,

∂v

∂t
− L2v + δv = f2(x, t, u, v) + δv in Ω× R,

B1u+ δu = g1(x, t, u, v) + δu on ∂Ω× R,
B2v + δv = g2(x, t, u, v) + δv on ∂Ω× R,

sup
Ω×R
{|u(x, t)|, |v(x, t)|} <∞.

(3.6)

To prove the existence of solutions for problem (1.1), it suffices to show that the
modified problem (3.6) has a solution.
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First, we construct a sequence (un, vn) from the (linear) iteration process

∂un
∂t
− L1un + δun = f1(x, t, un−1, vn−1) + δun−1 in Ω× R,

∂vn
∂t
− L2vn + δvn = f2(x, t, un−1, vn−1) + δvn−1 in Ω× R,

B1un + δun = g1(x, t, un−1, vn−1) + δun−1 on ∂Ω× R,
B2vn + δvn = g2(x, t, un−1, vn−1) + δvn−1 on ∂Ω× R,

sup
Ω×R
{|un(x, t)|, |vn(x, t)|} <∞,

(3.7)

where the initial iteration (u0, v0) is determined by the quasimonotonicity property
considered.

(i) If fk and gk are quasimonotone nondecreasing then we take either (u0, v0) =
(u, v) or (u0, v0) = (u, v), and we denote the sequences constructed from the two
initial iterations by (un, vn) and (un, vn), respectively.

(ii) If fk and gk are quasimonotone nonincreasing then we choose either (u0, v0) =
(u, v) or (u0, v0) = (u, v), and we denote the sequences constructed from the two
initial iterations by (un, vn) and (un, vn), respectively. For sake of discussion, we
will present the rest of the proof for the case of quasimonotone nondecreasing
functions. Similar arguments can be used for the quasimonotone nonincreasing
case.

Observe that for each n ∈ N, the above system consists of two linear uncoupled

problems and fk(., ., u0, v0) ∈ L∞(Ω× R) and gk(., ., u0, v0) ∈W
2−ε− 1

p ,(2−ε−
1
p )/2

p,loc

(∂Ω×R)∩L∞(∂Ω×R) whenever (u0, v0) ∈ [u, u]× [u, u]. Set (u0, v0) = (u, v) then
it follows from proposition 3.3 that problem (3.7) has a unique solution (u1, v1) ∈
W2,1
p,loc(Ω× R) ∩ L∞(Ω× R)×W2,1

p,loc(Ω× R) ∩ L∞(Ω× R). Moreover if (u0, v0) =
(u, v) then a similar argument shows that problem (3.7) has a unique solution
(u1, v1) ∈W2,1

p,loc(Ω×R)∩L∞(Ω×R)×W2,1
p,loc(Ω×R)∩L∞(Ω×R). Furthermore,

(u, v) ≤ (u1, v1) ≤ (u1, v1) ≤ (u, v).
Indeed, let w1 = u − u1 and w2 = v − v1. By (A3), (LL) and the definition of

super-solution one gets

∂w1

∂t
− L1w1 + δw1 ≥ 0 in Ω× R,

B1w1 + δw1 ≥ 0 on ∂Ω× R,
sup
Ω×R
{|w1(x, t)|} <∞.

and

∂w2

∂t
− L2w2 + δw2 ≥ 0 in Ω× R,

B2w2 + δw2 ≥ 0 on ∂Ω× R,
sup
Ω×R
{|w2(x, t)|} <∞.

By Corollary 3.2 it follows that w1 ≥ 0 and w2 ≥ 0; that is, u1 ≤ u and v1 ≤ v.
Using the definition of subsolution we show in a similar way that u ≤ u1 and v ≤ v1.
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We now need to prove that u1 ≤ u1 and v1 ≤ v1. Let w1 = u1 − u1 and
w2 = v1 − v1. By (A3), (LL), (3.7), and the quasimonotone property, we have

∂w1

∂t
− L1w1 + δw1 = [f1(x, t, u, v) + δu]− [f1(x, t, u, v) + δu]

= [δ(u− u) + f1(x, t, u, v)− f1(x, t, u, v)]

+ [f1(x, t, u, v)− f1(x, t, u, v)]
≥ 0 in Ω× R,

and

B1w1 + δw1 = [g1(x, t, u, v) + δu]− [g1(x, t, u, v) + δu]

= [δ(u− u) + g1(x, t, u, v)− g1(x, t, u, v)]

+ [g1(x, t, u, v)− g1(x, t, u, v)]
≥ 0 on ∂Ω× R.

Since supΩ×R{|w1(x, t)|} < ∞, it follows from Corollary 3.2 that w1 ≥ 0; that is,
u1 ≤ u1. In a similar way, we prove that v1 ≤ v1.

For n ≥ 2, a similar argument shows that depending on the choice of (u0, v0),
problem (3.7) has solution either (un, vn) or (un, vn)W2,1

p,loc(Ω × R) ∩ L∞(Ω ×
R) ×W2,1

p,loc(Ω × R) ∩ L∞(Ω × R) which is such that (un−1, vn−1) ≤ (un, vn) ≤
(un−1, vn−1).

Indeed, assume by induction that for some n ≥ 2,

un−1 ≤ un ≤ un ≤ un−1,

vn−1 ≤ vn ≤ vn ≤ vn−1

Then, by (A3), (LL) and the quasimonotonicity property, the functions w1 = un+1−
un+1 and w2 = vn+1 − vn+1 satisfy

∂w1

∂t
− L1w1 + δw1 = [f1(x, t, un, vn) + δun]− [f1(x, t, un, vn) + δun] ≥ 0

in Ω× R,
B1w1 + δw1 = [g1(x, t, un, vn) + δun]− [g1(x, t, un, vn) + δun] ≥ 0 on ∂Ω× R,

sup
Ω×R
{|w1(x, t)|} <∞;

∂w2

∂t
− L2w2 + δw2 = [f2(x, t, un, vn) + δvn]− [f2(x, t, un, vn) + δvn] ≥ 0

in Ω× R,
B2w2 + δw2 = [g2(x, t, un, vn) + δvn]− [g2(x, t, un, vn) + δvn] ≥ 0 on ∂Ω× R,

sup
Ω×R
{|w2(x, t)|} <∞.

Using Corollary 3.2 we get that wi ≥ 0 (i = 1, 2); that is, un+1 ≤ un+1 and vn+1 ≤
vn+1. Using a similar argument as above we have that un ≤ un+1, un+1 ≤ un,
vn ≤ vn+1, and vn+1 ≤ vn. Thus,

u = u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ un ≤ · · · ≤ u1 ≤ u0 = u

v = v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0 = v



EJDE-2014/CONF/21 SOLUTIONS FOR NONLINEAR PARABOLIC SYSTEMS 205

Since the sequences {un} and {vn} (where are un represents either un or un and
vn represents either vn or vn) are monotone then the pointwise limits

u∗(x, t) = lim
n→∞

un(x, t) and v∗(x, t) = lim
n→∞

vn(x, t)

both exist and u ≤ u∗ ≤ u, and v ≤ v∗ ≤ v. We now proceed to show that (u∗, v∗)
is a solution of (3.6). For that purpose, consider Q1 = Ω × (−1, 1) and Q2 =
Ω × (−2, 2). For each n ∈ N, define zn(x, t) = ζ(t)un(x, t), wn(x, t) = ζ(t)vn(x, t),
for all (x, t) ∈ Ω × [−2, 2], where ζ ∈ C∞(R), 0 ≤ ζ ≤ 1 and ζ(s) = 0 if s ≤ −2,
ζ(s) = 1 if s ≥ −(2 − δ) with 0 < δ < 1. Observe that zn = un and wn = vn, in
Ω× [−1, 1], and satisfy the linear uncoupled system

∂zn
∂t
− L1zn + δzn =

dζ

dt
un + ζF1n in Ω× (−2, 2],

∂wn
∂t
− L2wn + δwn =

dζ

dt
vn + ζF2n in Ω× (−2, 2],

B1zn + δzn = ζG1n on ∂Ω× (−2, 2],

B2wn + δwn = ζG2n on ∂Ω× (−2, 2],

zn(x,−2) = 0 in Ω,

wn(x,−2) = 0 in Ω,

sup
Ω×R
{|zn(x, t)|, |wn(x, t)|} <∞,

(3.8)

where

F1n = f1(x, t, un−1, vn−1) + δun−1, F2n = f2(x, t, un−1, vn−1) + δvn−1,

G1n = g1(x, t, un−1, vn−1) + δun−1, G2n = g2(x, t, un−1, vn−1) + δvn−1.

By the solvability results on linear IBVPs with smooth coefficients [13, pp. 341-
343], it follows that the linear problem (3.8) have a unique solution (zn, wn) ∈
W2,1
p (Q2)×W2,1

p (Q2) (with p = N+2
1−µ ). Moreover

|zn|W 2,1
p (Q2) ≤ K0

(
|dζ
dt
un + ζF1n|Lp(Q2) + |ζG1n|

W
2−ε− 1

p
,(2−ε− 1

p
)/2

p (∂Ω×(−2,2))

)
(3.9)

|wn|W 2,1
p (Q2) ≤ K0

(
|dζ
dt
vn + ζF2n|Lp(Q2) + |ζG2n|

W
2−ε− 1

p
,(2−ε− 1

p
)/2

p (∂Ω×(−2,2))

)
,

(3.10)

for all n ∈ N, where K0 is a constant which depends on Q2. Set Vn = (zn, wn) with

|Vn|W 2,1
p (Q2) = |zn|W 2,1

p (Q2) + |wn|W 2,1
p (Q2).

Observe that for ε = 0, we get immediately that |Vn|W 2,1
p (Q2) ≤ C, for all n, since ϕ0

does not depend on n. To show that |Vn|W 2,1
p (Q2) ≤ C for all n for ε = 1, we proceed

as follows. Using assumptions (A2) we compute |ζGi n|
W

1− 1
p
,(1− 1

p
)/2

p (∂Ω×(−2,2))
(i =

1, 2) to get that

|ζGi n|
W

1− 1
p
,(1− 1

p
)/2

p (∂Ω×(−2,2))
≤ Ĉ

(
1 + |Vn−1|

W
1− 1

p
,(1− 1

p
)/2

p (∂Ω×(−2,2))

)
, (3.11)
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where Ĉ is independent of n since |ζGi n|Lp(∂Ω×(−2,2)) ≤ const for all n ∈ N.
Combining (3.9), (3.10), (3.11) we obtain

|Vn|W 2,1
p (Q2) ≤ C̃

(
1 + |Vn−1|

W
1− 1

p
,(1− 1

p
)/2

p (∂Ω×(−2,2))

)
,

where C̃ is independent of n, but depends on |dζdt vn+ζFin|Lp(Q2), |ζGin|Lp(∂Ω×(−2,2))

and the set Ω× [−2, 2]. Using the continuity of the trace operator, we deduce that

|Vn|W 2,1
p (Q2) ≤ K

(
1 + |Vn−1|W 1,1/2

p (Ω×(−2,2))

)
, (3.12)

where K does not depend on n. By the interpolation inequality (3.3), we get that

|Vn|W 2,1
p (Q2) ≤ K

(
1 + Cε|Vn−1|W 2,1

p (Q2) +
C

4ε
|Vn−1|Lp(Q2)

)
(3.13)

From (3.12) we deduce that

|V1|W 2,1
p (Q2) ≤ K

(
1 + |ζV |

W
1,1/2
p (Ω×(−2,2))

)
, (3.14)

where V is either (u, v) or (u, v). Combining (3.13) with (3.14) we get

|V2|W 2,1
p (Q2) ≤ K

(
1 + Cε|V1|W 2,1

p (X) +
C

4ε
|V1|Lp(Q2)

)
≤ K

(
1 +KCε+KCε|ζV |

W
1,1/2
p (Q2)

+
C

4ε
|V1|Lp(Q2)

)
Proceeding by induction we have that for every n ∈ N with n ≥ 2,

|Vn|W 2,1
p (Q2) ≤ K

( n−1∑
i=0

(KCε)i + (KCε)n−1|ζV |
W

1− 1
p
,(1− 1

p
)/2

p (∂Ω×(−2,2))

+
MC

4ε

n−2∑
i=0

(KCε)i
)
,

where K is independent of n, and the constant M ≥ |Vn|Lp(Q2) for all n ∈ N.
Therefore, we obtain the following estimate which involves a geometric series

|Vn|W 2,1
p (Q2) ≤

(
K +K|ζV |

W
1− 1

p
,(1− 1

p
)/2

p (∂Ω×(−2,2))
+
MCK

4ε

) ∞∑
i=0

(KCε)i.

Thus, |Vn|W 2,1
p (Q2) ≤ C for all n ∈ N, provided ε is chosen sufficiently small such

that KCε < 1. It follows that |zn|W 2,1
p (Q2) ≤ C, |wn|W 2,1

p (Q2) ≤ C.
Now, we need to show that in Q1, the sequence {Vn} = {(un, vn)} has a

subsequence which converges to a solution of problem (3.6). Indeed, define T :(
W 2,1
p (Q1), |.|W 2,1

p (Q1)

)
→ (Lp(Q1), |.|Lp(Q1)) by

T (v) =
∂v

∂t
− Lv + δv.

Hence, T is (weakly) closed. Since W 2,1
p (Q1) is a reflexive space and |Vn|W 2,1

p (Q1) ≤
C̃ for all n, there exist subsequences {un} and {vn} such that

un ⇀ ũ1 and vn ⇀ ṽ1 in W 2,1
p (Q1).

By the compact embedding of W 2,1
p (Q1) into C1+µ,(1+µ)/2(Q1), it follows that

there exist subsequences {u1n} and {v1n′} such that u1n → ũ1, v1n′ → ṽ1 in
C1+µ,(1+µ)/2(Q1). Since vn is a monotone sequence, it follows that the sequence
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vn → ṽ1 uniformly in Q1. Therefore, any subsequence of {vn} converges uniformly
in Q1 to ṽ1 in particular {v1n}. Moreover, since T is (weakly) closed and T (u1n) =
F1n → f1(., ., ũ1, ṽ1) +k ũ1 uniformly in Q1, it follows that T (ũ1) = f1(., ., ũ1, ṽ1) +
k ũ1. In addition, B1u1n + εk u1n → B1ũ1 + εk ũ1 in Cµ,µ/2( ¯∂Ω× [−1, 1]), and
B1u1n + εk u1n = G1n → g1(., ., ũ1, ṽ1) + k ũ1 uniformly on ∂Ω × [−1, 1], we get
B1ũ1 + εk ũ1 = g1(., ., ũ1, ṽ1) + k ũ1. Therefore, ũ1 satisfies the following problem

∂ũ1

∂t
− Lũ1 + kũ1 = f1(x, t, ũ1, ṽ1) + k ũ1 in Ω× (−1, 1),

B1ũ1 + εk ũ1 = g1(x, t, ũ1, ṽ1) + k ũ1 on ∂Ω× [−1, 1],

sup
Ω×[−1,1]

|ũ1(x, t)| <∞.

Using similar arguments as above for vn, we obtain

∂ṽ1

∂t
− Lṽ1 + kṽ1 = f2(x, t, ũ1, ṽ1) + k ṽ1 in Ω× (−1, 1),

B1ṽ1 + εk ṽ1 = g2(x, t, ũ1, ṽ1) + k ṽ1 on ∂Ω× [−1, 1],

sup
Ω×[−1,1]

|ṽ1(x, t)| <∞.

For n ≥ 2, let Qn = Ω × (−n, n). Consider the subsequence {(u(n−1)k, v(n−1)k)}
and use similar arguments to the above to extract a subsequence {(unk, vnk)} of
{(u(n−1)k, v(n−1)k)} such that it converges to (ũn, ṽn) in C1+µ,(1+µ)/2(Ω×[−n, n])×
C1+µ,(1+µ)/2(Ω× [−n, n]) which satisfies

∂ũn
∂t
− Lũn + kũn = f1(x, t, ũn, ṽn) + kũn in Ω× (−n, n),

∂ṽn
∂t
− Lṽn + kṽn = f2(x, t, ũn, ṽn) + k ṽn in Ω× (−n, n),

B1ũn + εk ũn = g2(x, t, ũn, ṽn) + kũn on ∂Ω× [−n, n],

B1ṽn + εk ṽn = g2(x, t, ũn, ṽn) + kṽn on ∂Ω× [−n, n],

sup
Ω×[−n,n]

|ũn(x, t), ṽn(x, t)| <∞.

Note that by construction, (un, vn)|Ω×[−(n−1),n−1] = (un−1, vn−1) for all n ≥ 2;
that is, (un, vn) is an extension of (un−1, vn−1). Now, set Vn = {(un, vn)}. By
the diagonalization argument, choose the sequence {Vjj} located on the ‘diagonal’.
Observe that Vjj ∈ {Vnk} = {(unk, vnk)} for every n ≤ j, and hence {Vjj} is a
subsequence of {Vn}. We shall prove that the sequence {Vjj} converges to a solution
V ∗ of problem (3.6). Indeed, let Ω × [−n, n] and ε > 0. Since {Vnk} converges to
Ṽn = (ũn, ṽn) in C1+µ,(1+µ)/2(Ω × [−n, n]), there exists N ∈ N such that for all
k ≥ N, |Vnk − Ṽk|C1+µ,(1+µ)/2(Ω×[−n,n]) < ε. Using the fact that Vjj ∈ {Vnk} for all
j ≥ n, we get that for all j ≥ max{n,N}, |Vjj − Ṽn|C1+µ,(1+µ)/2(Ω×[−n,n]) < ε.

Thus, {Vjj} is subsequence of {Vn} which converges (on every compact set)
to a function Ṽ in C1+µ,(1+µ)/2(Ω × [−n, n]), where Ṽ |Ω×[−n,n] = Ṽn, so that

Ṽ ∈ C1+µ,(1+µ)/2
loc (Ω×R)∩W 2,1

p,loc(Ω×R) and supΩ×R |Ṽ | ≤M . Moreover, Ṽ = (ũ, ṽ)
satisfies the problem (3.6). By uniqueness of the limit we get Ṽ = V ∗=(u∗, v∗).
Thus, (u∗, v∗) is a solution of problem (1.1) and (u, v) ≤ (u∗, v∗) ≤ (u, v). The
proof is complete. �
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To prove Theorem 2.2, we will use (an improved version of) a nonlinear approxi-
mation argument inspired by the one considered in [15] (see also [1]). However, the
main difficulty lies in the obtainment of required a priori estimates since there is a
lack of compactness herein. We will therefore need the preliminary lemmas that as
proved below. For sake of discussion, we will present the rest of the proof for the
quasimonotone nonincreasing case.

Lemma 3.8. Let f1, f2 satisfy (A1); that is, f1, f2 ∈ L∞car(Ω× R× R). Then, for
every r ∈ R with r > 0, there are continuous functions m1,m2 : [−r, r]×[−r, r]→ R
such that mi(·, v) is nondecreasing on [−r, r], mi(u, ·) is nonincreasing on [−r, r],
mi(u, v) = −mi(v, u) on [−r, r]× [−r, r], and

sup
Ω×R
|f1(x, t, u, w)− f1(x, t, v, w)| ≤ m1(u, v) (3.15)

for all u, v ∈ [−r, r] with u ≥ v, and

sup
Ω×R
|f2(x, t, w, u)− f2(x, t, w, v)| ≤ m2(u, v) (3.16)

for all u, v ∈ [−r, r] with u ≥ v.

The proof of Lemma 3.6 is similar to [15, Lemma 3.4]. Setting (for instance)

r = max
(
|u|

L∞(Ω×R) , |u|L∞(Ω×R) , u|L∞(Ω×R) , u|L∞(Ω×R)

)
+ 2,

it follows from the Stone-Weierstrass Approximation Theorem that for every n ∈ N
there is a Lipschitz continuous function mi,n : [−r, r]× [−r, r]→ R such that

|mi(u, v)−mi,n(u, v)| < 1
n

(3.17)

for all (u, v) ∈ [−r, r]× [−r, r].
Now, consider the modified problems

∂u

∂t
(x, t)− Lu(x, t) = f1(x, t, u, v) +m1(u, u) a.e. in Ω× R,

∂v

∂t
(x, t)− Lv(x, t) = f2(x, t, u, v) +m2(v, v) a.e. in Ω× R,

Bεu = g1(x, t, u, v) + ρ1(u− u) on ∂Ω× R,
Bεv = g2(x, t, u, v) + ρ2(v − v) on ∂Ω× R,

sup
Ω×R
{|u(x, t)|, |v(x, t)|} <∞,

(3.18)

and
∂u

∂t
(x, t)− Lu(x, t) = f1(x, t, u, v) +m1(u, u) a.e. in Ω× R,

∂v

∂t
(x, t)− Lv(x, t) = f2(x, t, u, v) +m2(v, v) a.e. in Ω× R,

B1u = g1(x, t, u, v) + %1(u− u) on ∂Ω× R,
B2v = g2(x, t, u, v) + %2(v − v) on ∂Ω× R,

sup
Ω×R
{|u(x, t)|, |v(x, t)|} <∞.

(3.19)

Define the functions f̂i, f̌i ∈ L∞car(Ω× R× [u, u]) (i = 1, 2) by

f̂1(x, t, u, v) := f1(x, t, u, v) +m1(u, u);
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f̂2(x, t, u, v) := f2(x, t, u, v) +m2(v, v)

f̌1(x, t, u, v) := f1(x, t, u, v) +m1(u, u);

f̌2(x, t, u, v) := f2(x, t, u, v) +m2(v, v).

Define the functions ĝi ǧi, which satisfy condition (A2), by

ĝ1(x, t, u, v) := g1(x, t, u, v) + ρ1(u− u);

ĝ2(x, t, u, v) := g2(x, t, u, v) + ρ2(v − v)

ǧ1(x, t, u, v) := g1(x, t, u, v) + %1(u− u);

ǧ2(x, t, u, v) := g2(x, t, u, v) + %2(v − v).

Observe that f̂1, ĝ1 (f̂2, ĝ2) are nonincreasing in u ∈ (−∞, u] (in v ∈ (−∞, v]), and
f̌1, ǧ1 (f̌2, ǧ2) are nonincreasing in u ∈ [u,∞) (in v ∈ [v,∞)). Moreover, by using
Lemma 3.6, (3.15) and (3.16), they satisfy the following inequalities:

f̂1(x, t, ·, v) ≤ f1(x, t, ·, v) ≤ f̌1(x, t, ·, v);

ĝ1(x, t, ·, v) ≤ g1(x, t, ·, v) ≤ ǧ1(x, t, ·, v)

on [u, u].

f̂2(x, t, u, ·) ≤ f̂2(x, t, u, ·) ≤ f̌2(x, t, u, ·);
ĝ2(x, t, u, ·) ≤ ĝ2(x, t, u, ·) ≤ ǧ2(x, t, u, ·)

on [v, v].
We will show that problem (3.18) and problem (3.19) have unique solutions in

[(u, v), (u, v)]. In order to accomplish this, we first need the following lemma.

Lemma 3.9. Assume that (A1)–(A3) are satisfied and that (u, v) and (u, v) are
subsolution and supersolution of problem (1.1) with u ≤ u and v ≤ v . Let δ > 0
and uδ := u+ δz, uδ := u− δz, vδ := v + δz, vδ := v − δz, where z is the (unique)
solution of the linear boundary value problem

∂u

∂t
(x, t)− Lu(x, t) = 1 a.e in Ω× R, Bu = 1 + ε on ∂Ω× R, (3.20)

and supΩ×R |u(x, t)| <∞. Then the boundary value problems

∂u

∂t
(x, t)− Lu(x, t) = f(x, t, u, v) +m1(uδ, u) a.e. in Ω× R,

∂v

∂t
(x, t)− Lv(x, t) = f(x, t, u, v) +m2(vδ, v) a.e. in Ω× R,

B1u = g1(x, t, u, v) + %1(uδ − u) on ∂Ω× R,
B2v = g2(x, t, u, v) + %2(vδ − v) on ∂Ω× R,

sup
Ω×R
{|u(x, t)|, |v(x, t)|} <∞,

(3.21)
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and

∂u

∂t
(x, t)− Lu(x, t) = f(x, t, u, v) +m1(uδ, u) a.e. in Ω× R,

∂v

∂t
(x, t)− Lv(x, t) = f(x, t, u, v) +m2(vδ, v) a.e. in Ω× R,

B1u = g1(x, t, u, v) + %1(uδ − u) on ∂Ω× R,
B2v = g2(x, t, u, v) + %2(vδ − v) on ∂Ω× R,

sup
Ω×R
{|u(x, t)|, |v(x, t)|} <∞,

(3.22)

have unique solutions (ûδ, v̂δ) and (ǔδ, v̌δ) respectively such that

uδ ≤ ûδ ≤ ǔδ ≤ uδ and vδ ≤ v̂δ ≤ v̌δ ≤ vδ.

Proof. Let us define the functions

f̂1δ(x, t, u, v) := f1(x, t, u, v) +m1(uδ, u);

f̂2δ(x, t, u, v) := f2(x, t, u, v) +m2(vδ, v)

f̌1δ(x, t, u, v) := f1(x, t, u, v) +m1(uδ, u);

f̌2δ(x, t, u, v) := f2(x, t, u, v) +m2(vδ, v).

ĝ1δ(x, t, u, v) := g1(x, t, u, v) + ρ1(uδ − u);

ĝ2δ(x, t, u, v) := g2(x, t, u, v) + ρ2(vδ − v);

ǧ1δ(x, t, u, v) := g1(x, t, u, v) + %1(uδ − u);

ǧ2δ(x, t, u, v) := g2(x, t, u, v) + %2(vδ − v).

From the monotonicity properties of mi, one has that f̂1δ, ĝ1δ (f̂2δ, ĝ2δ) are non-
increasing functions of u for u ≥ uδ (of v for v ≥ vδ), and f̌1δ, ǧ1δ (f̌2δ, ǧ2δ) are
nonincreasing functions of u for u ≤ uδ (of v for v ≤ vδ).

Using the definitions and the monotonicity properties of mi, the quasimono-
tonicity property of fi, and the fact that f̂1(x, t, ·, v) ≤ f̌1(x, t, ·, v) on [u, u] and
f̂2(x, t, u, ·) ≤ f̌2(x, t, u, ·) on [v, v], it follows that

f̂1δ(x, t, u, v) ≤ f̌1δ(x, t, u, v) for all u ∈ [uδ, uδ] (3.23)

and

f̂2δ(x, t, u, v) ≤ f̌2δ(x, t, u, v) for all v ∈ [vδ, vδ]. (3.24)

Now, by using (3.20) and the fact that (u, v) and (u, v) are sub- and super-solutions,
it is seen that

∂uδ
∂t

(x, t)− Luδ(x, t)− f̂1δ(x, t, uδ, v) ≤ −δ a.e. in Ω× R,

∂vδ
∂t

(x, t)− Lvδ(x, t)− f̂2δ(x, t, u, vδ) ≤ −δ a.e. in Ω× R,

B1uδ − ĝ1δ(x, t, uδ, v) ≤ −2δ on ∂Ω× R,
B2vδ − ĝ2δ(x, t, u, vδ) ≤ −2δ on ∂Ω× R,

sup
Ω×R
{|uδ(x, t)|, |vδ(x, t)|} <∞,

(3.25)



EJDE-2014/CONF/21 SOLUTIONS FOR NONLINEAR PARABOLIC SYSTEMS 211

and
∂uδ
∂t

(x, t)− Luδ(x, t)− f̌1δ(x, t, uδ, v) ≥ δ a.e. in Ω× R,

∂vδ
∂t

(x, t)− Lvδ(x, t)− f̌2δ(x, t, u, vδ) ≥ δ a.e. in Ω× R,

B1uδ − ǧ1δ(x, t, uδ, v) ≥ 2δ on ∂Ω× R,
B2vδ − ǧ2δ(x, t, u, vδ) ≥ 2δ on ∂Ω× R,

sup
Ω×R
{|uδ(x, t)|, |vδ(x, t)|} <∞.

(3.26)

Therefore (uδ, vδ) is a strict subsolution of problem (3.21) and (uδ, vδ) is a strict
supersolution of problem (3.22). The functions f̂1, f̂2, f̌1, f̌2, ĝ1, ĝ2, ǧ1, and ǧ2 de-
fined on Ω×R× [uδ, uδ]× [vδ, vδ] may be approximated, for n ∈ N, by the following
functions

f̂1n(x, t, u, v) := f1(x, t, u, v) +m1n(uδ, u);

f̂2n(x, t, u, v) := f2(x, t, u, v) +m2n(vδ, v)

f̌1n(x, t, u, v) := f1(x, t, u, v) +m1n(uδ, u);

f̌2n(x, t, u, v) := f2(x, t, u, v) +m2n(vδ, v).

ĝ1n(x, t, u, v) := g1(x, t, u, v) + ρ1n(uδ − u);

ĝ2n(x, t, u, v) := g2(x, t, u, v) + ρ2n(vδ − v)

ǧ1n(x, t, u, v) := g1(x, t, u, v) + %1n(uδ − u);

ǧ2n(x, t, u, v) := g2(x, t, u, v) + %2n(vδ − v),

where min are the Lipschitz approximation of mi satisfying (3.17). Moreover, it
is easy to check that (uδ, vδ) and (uδ, vδ) are still supersolution and subsolution of
the following approximating equations

∂u

∂t
(x, t)− Lu(x, t) = f1(x, t, u, v) +m1n(uδ, u) a.e. in Ω× R,

∂v

∂t
(x, t)− Lv(x, t) = f2(x, t, u, v) +m2n(vδ, v) a.e. in Ω× R,

B1u = g1(x, t, u, v) + %1(uδ − u) on ∂Ω× R,
B2v = g2(x, t, u, v) + %2(vδ − v) on ∂Ω× R,

sup
Ω×R
{|u(x, t)|, |v(x, t)|} <∞,

(3.27)

and
∂u

∂t
(x, t)− Lu(x, t) = f1(x, t, u, v) +m1n(uδ, u) a.e. in Ω× R,

∂v

∂t
(x, t)− Lv(x, t) = f2(x, t, u, v) +m2n(vδ, v) a.e. in Ω× R,

B1u = g1(x, t, u, v) + %1(uδ − u) on ∂Ω× R,
B2v = g2(x, t, u, v) + %2(vδ − v) on ∂Ω× R,

sup
Ω×R
{|u(x, t)|, |v(x, t)|} <∞.

(3.28)

Since (uδ, vδ) ≤ (uδ, vδ) and the functions f̂in and f̌in satisfy the (LL)-condition in
[uδ, uδ]× [vδ, vδ], it follows from Proposition 3.7 that there is a solution (ûδ,n, v̂δ,n)
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of problem (3.27) and a solution (ǔδn, v̌δn) of problem (3.28) such that (uδ, vδ) ≤
(ûδn, v̂δn) ≤ (uδ, vδ) and (uδ, vδ) ≤ (ǔδn, v̌δn) ≤ (uδ, vδ).

Now we proceed to show that (a relabeled subsequence of) (ûδn, v̂δn) converges
(uniformly on compact sets) to a solution (ûδ, v̂δ) of problem (3.21) with (uδ, vδ) ≤
(ûδ, v̂δ) ≤ (uδ, vδ).

For that purpose, consider Q1 = Ω × (−1, 1) and Q2 = Ω × (−2, 2). For each
n ∈ N, define ẑn(x, t) = ζ(t)ûδ,n(x, t), ŵn(x, t) = ζ(t)v̂δ,n(x, t), for all (x, t) ∈
Ω × [−2, 2], where ζ ∈ C∞(R), 0 ≤ ζ ≤ 1 and ζ(s) = 0 if s ≤ −2, ζ(s) = 1 if
s ≥ −(2 − δ) with 0 < δ < 1. Observe that zn = un and wn = vn, in Ω × [−1, 1],
and satisfy the linear uncoupled system

∂ẑn
∂t
− L1ẑn =

dζ

dt
ûδn + ζf̂1n in Ω× (−2, 2],

∂ŵn
∂t
− L2ŵn =

dζ

dt
v̂δn + ζf̂2n in Ω× (−2, 2],

B1ẑn = ζĝ1n on ∂Ω× (−2, 2],

B2ŵn = ζĝ2n on ∂Ω× (−2, 2],

ẑn(x,−2) = 0 in Ω,

ŵn(x,−2) = 0 in Ω,

sup
Ω×R
{|ẑn(x, t)|, |ŵn(x, t)|} <∞.

(3.29)

Using arguments similar to the proof of Proposition 3.7 we show that (a subse-
quence relabeled as) (ûδn, v̂δn) converges (on compact sets) to a solution (ûδ, v̂δ)
of problem (3.21) with (uδ, vδ) ≤ (ûδ, v̂δ) ≤ (uδ, vδ). Likewise, (a subsequence of)
(ǔδn, v̌δn) converges (on compact sets) to a solution (ǔδ, v̌δ) of problem (3.21) with
(uδ, vδ) ≤ (ǔδ, v̌δ) ≤ (uδ, vδ). Observe that, by (3.23) and (3.24), f̌1δ(x, t, ǔδ, v) ≥
f̂1δ(x, t, ǔδ, v), f̌2δ(x, t, u, v̌δ) ≥ f̂2δ(x, t, v, v̌δ), ǧ1δ(x, t, ǔδ, v) ≥ ĝ1δ(x, t, ǔδ, v), and
ǧ2δ(x, t, u, v̌δ) ≥ ĝ2δ(x, t, v, v̌δ). Therefore,

∂(ǔδ − ûδ)
∂t

− L(ǔδ − ûδ) ≥ f̂1δ(x, t, ǔδ, v)− f̂1δ(x, t, ûδ, v) a.e. in Ω× R,

Bε(ǔδ − ûδ) ≥ ĝ1δ(x, t, ǔδ, v)− ĝ1δ(x, t, ûδ, v) on ∂Ω× R,
∂(v̌δ − v̂δ)

∂t
− L(v̌δ − v̂δ) ≥ f̂2δ(x, t, u, v̌δ)− f̂2,δ(x, t, v, v̂δ) a.e. in Ω× R,

Bε(v̌δ − v̂δ) ≥ ĝ2δ(x, t, u, v̌δ)− ĝ2δ(x, t, v, v̂δ) on ∂Ω× R.

The monotonicity of the functions f̂iδ, ĝiδ, f̌iδ and ǧiδ, and an argument similar to
the one used in the proof of [15, Proposition 2.7] imply that ûδ ≤ ǔδ and v̂δ ≤ v̌δ
in Ω× R. The proof is complete. �

Lemma 3.10. Assume that (A1)–(A3) are satisfied and that (u, v) and (u, v) are
subsolution and supersolution of problem (1.1) with u ≤ u and v ≤ v. Then there
exist unique solutions (û, v̂), (ǔ, v̌) ∈W 2,1

p,loc(Ω×R)∩L∞(Ω×R)×W 2,1
p,loc(Ω×R)∩

L∞(Ω× R) to the respective problems (3.18) and (3.19) such that

u ≤ û ≤ ǔ ≤ u and v ≤ v̂ ≤ v̌ ≤ v.

Proof. Since the systems (3.18) and (3.19) are uncoupled, we have that the unique-
ness follows from the (nonincreasing) monotonicity of the nonlinearities involved
and Proposition 3.4. For n ∈ N, let un = u − 1

nz, vn = v − 1
nz, un = u + 1

nz,
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and vn = v + 1
nz, where z is defined in Lemma 3.9. Consider the boundary value

problems (3.21) and (3.22) where the right hand sides are replaced by

f̂1n(x, t, u, v) := f1(x, t, u, v) +m1(un, u);

f̂2n(x, t, u, v) := f2(x, t, u, v) +m2(vn, v)

f̌1n(x, t, u, v) := f1(x, t, u, v) +m1(un, u);

f̌2n(x, t, u, v) := f2(x, t, u, v) +m2(vn, v)

ĝ1n(x, t, u, v) := g1(x, t, u, v) + ρ1(un − u);

ĝ2n(x, t, u, v) := g2(x, t, u, v) + ρ2(vn − v)

ǧ1n(x, t, u, v) := g1(x, t, u, v) + %1(un − u);

ǧ2n(x, t, u, v) := g2(x, t, u, v) + %2(vn − v),

respectively. By applying Lemma 3.9 with δ = 1
n , we get that, for each n ∈ N there

exist unique solutions (ûn, v̂n), (ǔn, v̌n) ∈W 2,1
p,loc(Ω×R)∩L∞(Ω×R)×W 2,1

p,loc(Ω×
R) ∩ L∞(Ω× R) of these corresponding problems such that

un ≤ ûn ≤ ǔn ≤ un and vn ≤ v̂n ≤ v̌n ≤ vn.

Next, we show that the sequences {ûn}, {v̂n}, {ǔn}, and {v̌n} are monotone and
converge to unique solutions of (3.18) and (3.19), respectively. From the definitions
of un, vn, un, and vn we have that the functions f̂1n(x, t, ·, v) and ĝ1n(x, t, ·, v) are
nonincreasing for u ∈ [un,∞), and f̂2n(x, t, u, ·) and ĝ2n(x, t, u, ·) are nonincreasing
for v ∈ [vn,∞), and that they are nondecreasing with respect to n. Similarly,
the functions f̌1n(x, t, ·, v) are nonincreasing for u ∈ (−∞, vn], and ǧ1n(x, t, ·, v) are
nonincreasing for f̌2n(x, t, u, ·) and ǧ2n(x, t, u, ·) are nonincreasing for v ∈ (−∞, vn],
and they are nonincreasing with respect to n. Therefore,

∂(ûn − ûn−1)
∂t

− L(ûn − ûn−1) ≥ f̂1(n−1)(x, t, ûn, v)− f̂1(n−1)(x, t, ûn−1, v),

Bε(ûn − ûn−1) ≥ ĝ1(n−1)(x, t, ûn, v)− ĝ1(n−1)(x, t, ûn−1, v),

∂(v̂n − v̂n−1)
∂t

− L(v̂n − v̂n−1) ≥ f̂2(n−1)(x, t, u, v̂n)− f̂2(n−1)(x, t, u, v̂n−1),

Bε(v̂n − v̂n−1) ≥ ĝ2(n−1)(x, t, u, v̂n)− ĝ2(n−1)(x, t, u, v̂n−1).

By the monotonicity of f̂1n(x, t, ·, v), ĝ1n(x, t, ·, v), f̂2n(x, t, u, ·), ĝ2n(x, t, u, ·) and
Corollary 3.2, we show as in the proof of Lemma 3.9 that ûn−1 ≤ ûn and v̂n−1 ≤ v̂n.
Similarly, we get that ǔn ≤ ǔn−1 and v̌n ≤ v̌n−1. Therefore,

u1 ≤ û1 ≤ û2 ≤ · · · ≤ ûn−1 ≤ ûn ≤ . . . ≤ ǔn ≤ ǔn−1 ≤ . . . ≤ ǔ2 ≤ ǔ1 ≤ u1.

v1 ≤ v̂1 ≤ v̂2 ≤ · · · ≤ v̂n−1 ≤ v̂n ≤ . . . ≤ v̌n ≤ v̌n−1 ≤ . . . ≤ v̌2 ≤ v̌1 ≤ v1.

It follows that {(ûn, v̂n)} and {(ǔn, v̌n)} converge (pointwise) to (û, v̂) and (ǔ, v̌),
respectively, with (u, v) ≤ (û, v̂) ≤ (ǔ, v̌) ≤ (u, v). Now, we will show that v
and v are respective solutions of (3.18) and (3.19). Consider Q1 = Ω × (−1, 1)
and Q2 = Ω × (−2, 2). For each n ∈ N, define ẑn(x, t) = ζ(t)ûn(x, t), ŵn(x, t) =
ζ(t)v̂n(x, t), for all (x, t) ∈ Ω × [−2, 2], where ζ ∈ C∞(R), 0 ≤ ζ ≤ 1 and ζ(s) = 0
if s ≤ −2, ζ(s) = 1 if s ≥ −(2 − δ) with 0 < δ < 1. Observe that ẑn = ûn and
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ŵn = v̂n, in Ω× [−1, 1], and satisfy the linear uncoupled system

∂ẑn
∂t
− L1ẑn =

dζ

dt
ûn + ζf̂1n(x, t, ûn, v) in Ω× (−2, 2],

∂ŵn
∂t
− L2ŵn =

dζ

dt
v̂n + ζf̂2n(x, t, u, v̂n) in Ω× (−2, 2],

B1ẑn = ζĝ1n(x, t, ûn, v) on ∂Ω× (−2, 2],

B2ŵn = ζĝ2n(x, t, u, v̂n) on ∂Ω× (−2, 2],

ẑn(x,−2) = 0 in Ω,

ŵn(x,−2) = 0 in Ω,

sup
Ω×R
{|ẑn(x, t)|, |ŵn(x, t)|} <∞.

(3.30)

Arguments similar to those used in the proof of Proposition 3.7 show that (û, v̂)
and (ǔ, v̌) ∈W 2,1

p,loc(Ω×R)∩L∞(Ω×R)×W 2,1
p,loc(Ω×R)∩L∞(Ω×R) are solutions

of (3.18) and (3.19), respectively, with (u, v) ≤ (û, v̂) ≤ (ǔ, v̌) ≤ (u, v). The proof
is complete. �

Proof of Theorem 2.2. We construct two sequences {(ûn, v̂n)} and {(ǔn, v̌n)} suc-
cessively from the nonlinear iteration processes

∂ûn
∂t

(x, t)− Lûn(x, t) = f1(x, t, ûn−1, v̂n−1) +m1(ûn−1, ûn) a.e. in Ω× R,

∂v̂n
∂t

(x, t)− Lv̂n(x, t) = f2(x, t, ûn−1, v̂n−1) +m2(v̂n−1, v̂n) a.e. in Ω× R,

B1ûn = g1(x, t, ûn−1, v̂n−1) + %1(ûn−1 − ûn) on ∂Ω× R,
B2v̂n = g2(x, t, ûn−1, v̂n−1) + %2(v̂n−1 − v̂n) on ∂Ω× R,

sup
Ω×R
{|ûn(x, t)|, |v̂n(x, t)|} <∞,

(3.31)
and

∂ǔn
∂t

(x, t)− Lǔn(x, t) = f1(x, t, ǔn−1, v̌n−1) +m1(ǔn−1, ǔn) a.e. in Ω× R,

∂v̌n
∂t

(x, t)− Lv̌n(x, t) = f2(x, t, ǔn−1, v̌n−1) +m2(v̌n−1, v̌n) a.e. in Ω× R,

B1ǔn = g1(x, t, ǔn−1, v̌n−1) + %1(ǔn−1 − ǔn) on ∂Ω× R,
B2v̌n = g2(x, t, ǔn−1, v̌n−1) + %2(v̌n−1 − v̌n) on ∂Ω× R,

sup
Ω×R
{|ǔn(x, t)|, |v̌n(x, t)|} <∞.

(3.32)
We show that these sequences are well defined and that they converge monotonically
to a solution of (1.1). Indeed, set

f̂1n(x, t, u, v̂n−1) = f1(x, t, ûn−1, v̂n−1) +m1(ûn−1, u),

f̂2n(x, t, ûn−1, v) = f2(x, t, ûn−1, v̂n−1) +m2(v̂n−1, v),

ĝ1n(x, t, u, v̂n−1) = f1(x, t, ûn−1, v̂n−1) +m1(ûn−1, u),

ĝ2n(x, t, ûn−1, v) = f2(x, t, ûn−1, v̂n−1) +m2(v̂n−1, v),
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f̌1n(x, t, u, v̌n−1) = f1(x, t, ǔn−1, v̌n−1) +m1(ǔn−1, u),

f̌2n(x, t, ǔn−1, v) = f2(x, t, ǔn−1, v̌n−1) +m2(v̌n−1, v),

ǧ1n(x, t, u, v̌n−1) = f1(x, t, ǔn−1, v̌n−1) +m1(ǔn−1, u),

ǧ2n(x, t, ǔn−1, v) = f2(x, t, ǔn−1, v̌n−1) +m2(v̌n−1, v),

where (û0, v̂0) = (u, v) and (ǔ0, v̌0) = (u, v). It follows immediately from Lemma
3.10 that the first iterations (û1, v̂1) in (3.31) and (ǔ1, v̌1) in (3.32) exist and satisfy
the inequalities (u, v) ≤ (û1, v̂1) ≤ (ǔ1, v̌) ≤ (u, v), when one starts with (û0, v̂0) =
(u, v) and (ǔ0, v̌0) = (u, v). For n ≥ 2, we use an induction argument to show
that (ûn−1, v̂n−1) ≤ (ûn, v̂n) ≤ (ǔn−1, v̌n−1) ≤ (ǔn, v̌n). However, in order to apply
Lemma 3.10 inductively, we need to show that, at each iteration, the functions
(ûn−1, v̂n−1) and (ǔn−1, v̌n−1) are ordered subsolution and supersolution of problem
(1.1). By using (3.15), (A2), quasimonotonicity decreasing and the equations (3.31)
and (3.32), we get

∂ûn−1

∂t
− Lûn−1 − f1(x, t, ûn−1, v̂n−1)

= f1(x, t, ûn−2, v̂n−2) +m1(ûn−2, ûn−1)− f1(x, t, ûn−1, v̂n−1) ≤ 0,
∂v̂n−1

∂t
− Lv̂n−1 − f2(x, t, ûn−1, v̂n−1)

= f2(x, t, ûn−2, v̂n−2) +m2(v̂n−2, v̂n−1)− f2(x, t, ûn−1, v̂n−1) ≤ 0,

Bûn−1 − g1(x, t, ûn−1, v̂n−1)

= g1(x, t, ûn−2, v̂n−2) + %(ûn−2 − ûn−1)− g1(x, t, ûn−1, v̂n−1) ≤ 0,

Bv̂n−1 − g2(x, t, ûn−1, v̂n−1)

= g2(x, t, ûn−2, v̂n−2) + %(v̂n−2 − v̂n−1)− g2(x, t, ûn−1, v̂n−1) ≤ 0,

sup
Ω×R
{|ûn−1(x, t)|, |v̂n−1(x, t)|} <∞,

and
∂ǔn−1

∂t
− Lǔn−1 − f1(x, t, ǔn−1, v̌n−1)

= f1(x, t, ǔn−2, v̌n−2) +m1(ǔn−2, ǔn−1)− f1(x, t, ǔn−1, v̌n−1) ≥ 0,
∂v̌n−1

∂t
− Lv̌n−1 − f2(x, t, ǔn−1, v̌n−1)

= f2(x, t, ǔn−2, v̌n−2) +m2(v̂n−2, v̂n−1)− f2(x, t, ǔn−1, v̌n−1) ≥ 0,

Bǔn−1 − g1(x, t, ǔn−1, v̌n−1)

= g1(x, t, ǔn−2, v̌n−2) + %1(ǔn−2 − ǔn−1)− g1(x, t, ǔn−1, v̌n−1) ≥ 0,

Bv̌n−1 − g2(x, t, ǔn−1, v̌n−1)

= g2(x, t, ǔn−2, v̌n−2) + %2(v̌n−2 − v̌n−1)− g2(x, t, ǔn−1, v̌n−1) ≥ 0,

sup
Ω×R
{|ǔn−1(x, t)|, |v̌n−1(x, t)|} <∞,

which shows that, for n ≥ 2, the functions (ûn−1, v̂n−1) and (ǔn−1, v̌n−1) are or-
dered subsolution and supersolution of (1.1). Since f̂1n, f̂2n, f̌1n, f̌2n, and ĝ1n, ĝ2n,
ǧ1n, ǧ2n satisfy the conditions of Lemma 3.10 with (ûn−1, v̂n−1) as subsolution and
(ǔn−1, v̌n−1) as supersolution, the existence of solutions (ûn, v̂n) to Eq.(3.31) and
(ǔn, v̌n) to Eq.(3.32) such that (ûn−1, v̂n−1) ≤ (ûn, v̂n) ≤ (ǔn, v̌n) ≤ (ǔn−1, v̌n−1)
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is ensured by Lemma 3.10. We therefore have that

u1 ≤ û1 ≤ û2 ≤ · · · ≤ ûn−1 ≤ ûn ≤ . . . ≤ ǔn ≤ ǔn−1 ≤ . . . ≤ ǔ2 ≤ ǔ1 ≤ u1,

v1 ≤ v̂1 ≤ v̂2 ≤ · · · ≤ v̂n−1 ≤ v̂n ≤ . . . ≤ v̌n ≤ v̌n−1 ≤ . . . ≤ v̌2 ≤ v̌1 ≤ v1.

It follows that {(ûn, v̂n)} and {(ǔn, v̌n)} converge (pointwise) to (û, v̂) and (ǔ, v̌),
respectively, with (u, v) ≤ (û, v̂) ≤ (ǔ, v̌) ≤ (u, v). Consider Q1 = Ω × (−1, 1)
and Q2 = Ω × (−2, 2). For each n ∈ N, define ẑn(x, t) = ζ(t)ûn(x, t), ŵn(x, t) =
ζ(t)v̂n(x, t), for all (x, t) ∈ Ω × [−2, 2], where ζ ∈ C∞(R), 0 ≤ ζ ≤ 1 and ζ(s) = 0
if s ≤ −2, ζ(s) = 1 if s ≥ −(2 − δ) with 0 < δ < 1. Observe that ẑn = ûn and
ŵn = v̂n, in Ω× [−1, 1] and (zn, wn) satisfies the following uncouple system

∂ẑn
∂t
− L1ẑn =

dζ

dt
ûn + ζf̂1n(x, t, ûn, v̂n−1) in Ω× (−2, 2],

∂ŵn
∂t
− L2ŵn =

dζ

dt
v̂n + ζf̂2n(x, t, ûn−1, v̂n) in Ω× (−2, 2],

B1ẑn = ζĝ1n(x, t, ûn, v̂n−1) on ∂Ω× (−2, 2],

B2ŵn = ζĝ2n(x, t, ûn−1, v̂n) on ∂Ω× (−2, 2],

ẑn(x,−2) = 0 in Ω,

ŵn(x,−2) = 0 in Ω,

sup
Ω×R
{|ẑn(x, t)|, |ŵn(x, t)|} <∞,

where (zn, wn) ∈W2,1
p (Q2)×W2,1

p (Q2) (with p = N+2
1−µ ). Moreover

|zn|W 2,1
p (Q2) ≤ K0

(
|dζ
dt
ûn + ζf̂1,n|Lp(Q2) + |ζĝ1,n|

W
2−ε− 1

p
,(2−ε− 1

p
)/2

p (∂Ω×(−2,2))

)
,

|wn|W 2,1
p (Q2) ≤ K0

(
|dζ
dt
v̂n + ζf̂2,n|Lp(Q2) + |ζĝ2n|

W
2−ε− 1

p
,(2−ε− 1

p
)/2

p (∂Ω×(−2,2))

)
,

for all n ∈ N, where K0 is a constant which depends on Q2. Set Vn = (zn, wn)
with |Vn|W 2,1

p (Q2) = |zn|W 2,1
p (Q2) + |wn|W 2,1

p (Q2). Observe that for the Dirichlet
boundary condition, we get immediately that |Vn|W 2,1

p (Q2) ≤ C, for all n. To show
that |Vn|W 2,1

p (Q2) ≤ C for all n for the Neumann boundary condition, we proceed
as follows. Using assumptions (A2) we compute |ζĝi n|

W
1− 1

p
,(1− 1

p
)/2

p (∂Ω×(−2,2))
(i =

1, 2) to obtain

|ζĝi n|
W

1− 1
p
,(1− 1

p
)/2

p (∂Ω×(−2,2))

≤ Ĉ(1 + |Vn|
W

1− 1
p
,(1− 1

p
)/2

p (∂Ω×(−2,2))
+ |Vn−1|

W
1− 1

p
,(1− 1

p
)/2

p (∂Ω×(−2,2))
),

where Ĉ is independent of n since |ζĝi,n|Lp(∂Ω×(−2,2)) ≤ const for all n ∈ N. Using
the continuity of the trace operator and the fact that ûn, v̂n and f̂i,n are (uniformly)
bounded, we get that

|Vn|W 2,1
p (Q2) ≤ K̃

(
1 + |Vn|W 1,1/2

p (Q2)
+ |Vn−1|W 1,1/2(Q2)

p

)
,

where K is independent of n. Using the interpolation inequality (3.3), we obtain

|Vn|W 2,1
p (Q2) ≤

K

1− εK

(
1 +

1
ε
|Vn|Lp(Q2) + |Vn−1|W 1,1/2

p (Q2)

)
,
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where εK̃ < 1. Since Vn is (uniformly) bounded, we deduce that

|Vn|W 2,1
p (Q2) ≤ C

(
1 + |Vn−1|W 1,1/2

p (Q2)

)
,

where C is a constant independent of n. Using the same reasoning as in the proof
of Proposition 3.7, one shows that {Vn} converges to a solution (û, v̂) of (1.1) with
(û, v̂) ∈ W 2,1

p,loc(Ω× R) ∩ L∞(Ω× R)×W 2,1
p,loc(Ω× R) ∩ L∞(Ω× R). An analogous

argument shows also that (ǔ, v̌) ∈ W 2,1
p,loc(Ω × R) ∩ L∞(Ω × R) ×W 2,1

p,loc(Ω × R) ∩
L∞(Ω× R) is a solution of (1.1), and that (u, v) ≤ (û, v̂) ≤ (ǔ, v̌) ≤ (u, v). �

4. Examples

In this section, we illustrate our results with the following examples.

Example 4.1. (Cooperative Model) Consider the system
∂u

∂t
−4u = u(a1(x, t)− b1(x, t)u+ c1(x, t)v) in Ω× R,

∂v

∂t
−4v = v(a2(x, t) + b2(x, t)u− c2(x, t)v) in Ω× R,

u = 0 = v on ∂Ω× R,
sup
Ω×R
{|u|, |v|} <∞,

(4.1)

where ai : Ω × R → R, bi : Ω × R → R, ci : Ω × R → R are in C
µ,µ/2
loc (Ω × R).

The coefficients satisfy the following conditions: For all (x, t) ∈ Ω × R, λ1 < αi ≤
ai(x, t) ≤ Ai, 0 < βi ≤ bi(x, t) ≤ Bi,

0 < γi ≤ ci(x, t) ≤ Ci, and
B2

β1
<
γ2

C1
.

Here, λ1 is the first eigenvalue of the Laplacian, and αi, βi, γi, Ai, Bi, Ci ∈ R. Ob-
serve that the presence of the u−population species encourages the growth of the
v−population species and vice versa. So, the reaction functions f1(x, t, u, v) =
u(a1(x, t)− b1(x, t)u+ c1(x, t)v) and f2(x, t, u, v) = v(a2(x, t)+ b2(x, t)u− c2(x, t)v)
are quasimonotone nondecreasing in [0,∞) × [0,∞). In order to apply Theorem
2.2, we need to have an ordered sub-solution (u, v) and super-solution (u, v) of (4.1)
that satisfy the following inequalities

∂u

∂t
−4u ≤ u(a1(x, t)− b1(x, t)u+ c1(x, t)v) in Ω× R,

∂v

∂t
−4v ≤ v(a2(x, t) + b2(x, t)u− c2(x, t)v) in Ω× R,

∂u

∂t
−4u ≥ u(a1(x, t)− b1(x, t)u+ c1(x, t)v) in Ω× R,

∂v

∂t
−4v ≥ v(a2(x, t) + b2(x, t)u− c2(x, t)v in Ω× R,

u ≤ 0 ≤ u on ∂Ω× R,
v ≤ 0 ≤ v on ∂Ω× R,

sup
Ω×R
{|u|, |u|, |v|, |v|} <∞.

Choose (u, v) = (εϕ, εϕ) with 0 < ε < min{α1−λ1
B1

, α2−λ1
B2
} where 0 < ϕ is the

eigenfunction associated with λ1. Pick (u, v) = (M1,M2), where M1 = τ A1γ2+A2C1
β1γ2−B2C1
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and M2 = τ A2β1+A1B2
β1γ2−B2C1

. The positive constant τ is chosen so that (εϕ, εϕ) ≤
(M1,M2). Then by Theorem 2.2, there exists a positive solution (u, v) such that
(εϕ, εϕ) ≤ (u, v) ≤ (M1,M2) in Ω×R. Thus, (u, v) does not tend to zero as t tends
to ±∞, for each x ∈ Ω.

Example 4.2. (Generalized Cooperative Model with nonlinear Boundary condi-
tions)

∂u

∂t
−4u = um(a1(x, t)− b1(x, t)u+ c1(x, t)v) in Ω× R,

∂v

∂t
−4v = vm(a2(x, t) + b2(x, t)u− c2(x, t)v) in Ω× R,

∂u

∂ν
= un (δ1 − u+ σ1v) on ∂Ω× R,

∂v

∂ν
= vn (δ2 − v + σ2u) on ∂Ω× R,

sup
Ω×R
{|u|, |v|} <∞,

(4.2)

where n,m ∈ N, 0 < δi ∈ R, 0 < σi < 1,

ai : Ω× R→ R, bi : Ω× R→ R, ci : Ω× R→ R are in C
µ, µ/2
loc (Ω× R).

For all (x, t) ∈ Ω × R, 0 < αi ≤ ai(x, t) ≤ Ai, 0 < βi ≤ bi(x, t) ≤ Bi, 0 < γi ≤
ci(x, t) ≤ Ci, where αi, βi, γi, Ai, Bi, Ci ∈ R. Note that the nonlinearities satisfy
the quasimonotone nondecreasing property. Choose (u, v) = (D,D), where D > 0
is very small such that D < min{δ1, δ2}. Pick (u, v) = (M,M), where M is a
constant such that M > max

{
δ1

1−σ1
, δ2

1−σ2

}
.

Then it follows from Theorem 2.2 that the system (4.2) has a positive solution (u, v)
such that (D,D) ≤ (u, v) ≤ (M,M) in Ω × R. Thus, (u, v) does not tend to zero
as t tends to ±∞.

Example 4.3. (Competitive Model)

∂u

∂t
−4u = u(a1(x, t)− b1(x, t)u− c1(x, t)v) in Ω× R,

∂v

∂t
−4v = v(a2(x, t)− b2(x, t)v − c2(x, t)u) in Ω× R,

∂u

∂ν
= 0 =

∂v

∂ν
on ∂Ω× R,

sup
Ω×R
{|u|, |v|} <∞,

(4.3)

where ai : Ω×R→ R, bi : Ω×R→ R, ci : Ω×R→ R are in Cµ, µ/2loc (Ω×R). For all
(x, t) ∈ Ω×R, 0 < αi ≤ ai(x, t) ≤ Ai, 0 < βi ≤ bi(x, t) ≤ Bi, 0 < γi ≤ ci(x, t) ≤ Ci,
where αi, βi, γi, Ai, Bi, Ci ∈ R. Observe that under competition, the growth of
each population is reduced at a rate proportional to the size of the population of
its competitor. We are concerned with the existence of positive solutions for the
problem (4.3), which can be translated as the co-existence of the two populations
without asymptotic extinction.

Note that the reaction functions are quasimonotone nonincreasing in [0,∞) ×
[0,∞). To apply Theorem 2.2, we need to have an ordered sub-solution (u, v) and
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super-solution (u, v) of (4.3). As in Definition 2.1, they need to satisfy the following
inequalities

∂u

∂t
−4u ≤ u(a1(x, t)− b1(x, t)u− c1(x, t)v) in Ω× R,

∂v

∂t
−4v ≥ v(a2(x, t)− b2(x, t)v − c2(x, t)u) in Ω× R,

∂u

∂t
−4u ≥ u(a1(x, t)− b1(x, t)u− c1(x, t)v) in Ω× R,

∂v

∂t
−4v ≤ v(a2(x, t)− b2(x, t)v − c2(x, t)u) in Ω× R,

∂u

∂ν
≤ 0 ≤ ∂u

∂ν
on ∂Ω× R,

∂v

∂ν
≤ 0 ≤ ∂v

∂ν
on ∂Ω× R,

sup
Ω×R
{|u|, |u|, |v|, |v|} <∞.

(4.4)

Choose (u, v) = (M1,M2) such that Mi ≥ Ai
βi

(i = 1, 2). Pick (u, v) = (ε1, ε2) such

that εi ≤ αiβj−AjCi
βjBi

with Ci <
αiβj
Aj

for i, j = 1, 2 and (i 6= j). With this choice of
sub- and super-solutions, one can see that (u, v) ≤ u, v) and inequalities in (4.4) are
satisfied. Therefore, it follows from Theorem 2.2 that problem 4.3 has a positive
solution (u, v) such that (ε1, ε2) ≤ (u, v) ≤ (M1,M2) in Ω × R. Thus, (u, v) does
not tend to zero as t tends to ±∞, for each x ∈ Ω.

Example 4.4. (Competitive Model with Nonlinear Boundary Conditions)

∂u

∂t
−4u = u(a1(x, t)− b1(x, t)u− c1(x, t)v) in Ω× R,

∂v

∂t
−4v = v(a2(x, t)− b2(x, t)v − c2(x, t)u) in Ω× R,

∂u

∂ν
= um(δ1 − u− σ1v) on ∂Ω× R,

∂v

∂ν
= vm(δ2 − v − σ2u) on ∂Ω× R,

sup
Ω×R
{|u|, |v|} <∞.

(4.5)

where 0 < δi, σi ∈ R, ai : Ω × R → R, bi : Ω × R → R, ci : Ω × R → R are in
C
µ,µ/2
loc (Ω×R). For all (x, t) ∈ Ω×R, 0 < αi ≤ ai(x, t) ≤ Ai, 0 < βi ≤ bi(x, t) ≤ Bi,

0 < γi ≤ ci(x, t) ≤ Ci, where αi, βi, γi, Ai, Bi, Ci ∈ R.

Note that the nonlinearities satisfy the quasimonotone nondecreasing property.
Choose (u, v) = (M1,M2) with Mi ≥ δi + Ai

βi
(i = 1, 2), and pick (u, v) = (ε1, ε2),

where 0 < εi < min{δi − σiMj , αi − CiMj} with Ci <
αj

δj+
Aj
βj

(i, j = 1, 2 with

i 6= j). Then by Theorem 2.2, the system (4.5) has a positive solution (u, v) such
that (ε1, ε2) ≤ (u, v) ≤ (M1,M2) in Ω× R. Thus, (u, v) does not tend to zero as t
tends to ±∞.
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Example 4.5. (Nonlinearities with no one-sided Lipschitz conditions)
∂u

∂t
−4u = f1(x, t, u, v) in Ω× R,

∂v

∂t
−4v = f2(x, t, u, v) in Ω× R,

∂u

∂ν
= 0 =

∂v

∂ν
on ∂Ω× R,

sup
Ω×R
{|u|, |v|} <∞.

(4.6)

where

f1(x, t, u, v) =

{
−b1(x, t)uµv if 0 ≤ u, v <∞, for some 0 < µ < 1
0 if −∞ ≤ u, v ≤ 0

where

f2(x, t, u, v) =

{
−b2(x, t)vµu if 0 ≤ u, v <∞, for some 0 < µ < 1
0 if −∞ ≤ u, v ≤ 0

and bi ∈ L∞(Ω× R) such that 0 < β ≤ bi(x, t) ≤ B for a.e (x, t) ∈ Ω × R, where
β,B ∈ R.

It is easily seen that (u, v) = (0, 0) and (u, v) = (K,K) (where 0 < K ∈ R) are
ordered subsolution and supersolution of problem (4.6). Therefore, by Theorem 2.2,
there exists a solution (u, v) of problem (4.6) such that (0, 0) ≤ (u, v) ≤ (K,K).
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