
Tenth MSU Conference on Differential Equations and Computational Simulations.

Electronic Journal of Differential Equations, Conference 23 (2016), pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

USING RATIONAL LOGARITHMIC BASIS FUNCTIONS TO
SOLVE SINGULAR DIFFERENTIAL EQUATIONS

JOHN J. GARWOOD, SAMUEL N. JATOR

Abstract. Numerical methods based on polynomial approximation perform

poorly when applied to singular initial value problems (IVPs). Hence, we

are motivated to derive and implement numerical methods involving non-
polynomial basis functions such as logarithmic and rational functions. Specifi-

cally, by imbedding a constant parameter into the logarithmic function, we are

able to improve any discontinuity issues with the natural logarithm approxi-
mant. An efficient method is developed using the Taylor Series expansion to

optimize the imbedded parameter. Numerical experiments performed show

that this method is more accurate than the improved Euler’s method. This
method is implemented as a predictor-corrector method.

1. Introduction

We consider the initial value problem (IVP)

y′ = f(x, y),

y(a) = y0,
(1.1)

where y, f ∈ Rm, x ∈ [a, b], a, b ∈ R.
Most numerical methods proposed in the literature for solving IVPs are based

on polynomial approximation. Nevertheless, methods constructed using polynomial
basis functions perform poorly when applied to singular IVPs. We define singular
IVPs as those whose solution contains a point or points of discontinuity. Hence,
several techniques involving non-polynomial basis functions have been proposed to
cope with singular IVPs (see [1, 3, 4, 5, 6, 7]).

We propose a new method constructed using rational-logarithmic basis functions
which outperforms the Improved Euler Method (IEM). Specifically, by imbedding
a constant into the logarithmic function, we can improve the solutions close to the
point of discontinuity inherent to singular IVPs. An optimized parameter imbedded
in the method is recovered from the principal term of the Local Truncation Error
(LTE). We then compare the performance of the method with the performance of
the IEM.
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The paper is organized as follows. In Section 2 we will examine the method’s
implementation. In Section 3 we will derive the method. In Section 4 we will
display numerical examples. In Section 5 we will discuss the behavior of the imbed-
ded parameter, α, around the point of discontinuity. In Section 6 we will discuss
opportunities for further research.

2. Implementation of method

The method is implemented as a predictor-corrector in a step-by-step fashion on
the partition HN . The approximation at xn is used to obtain the approximation
at xn+1, such that

HN : a = x0 < x1 < · · · < xN = b, xn = x0 + nh, n = 0, . . . , N

where h = (b − a)/N is the constant step-size, N is a positive integer, and n is
the grid index. We note that yn is the numerical approximation to the analytical
solution y(xn), and fn = f(xn, yn) is supplied by the differential equation.

3. Derivation of the method

This method is constructed using rational-logarithmic basis functions rather than
polynomial basis functions.

3.1. Derivation of the corrector. The corrector is derived by assuming that on
the interval [xn, xn+1], the exact solution is approximated by the function

u(x) =
1

a2(ln[x+ α])2 + a1 ln[x+ α] + a0
(3.1)

where a0, a1, a2, are coefficients that are uniquely determined and α is an imbedded
parameter that controls the behavior of the method. We note that ln[x + α] ∈ C
provided x 6= −α. Thus we impose that x 6= −α and it follows that u(x) is
well defined. To determine the coefficients in (3.1), we require that the following
conditions must be satisfied

u(xn) = yn,

u′(xn) = fn,

u′(xn+1) = fn+1,

This leads to a system of three equations and three unknowns, which is solved to
obtain the coefficients in (3.1). Our method is then obtained by evaluating u(x) at
xn+1 leading to the iterative equation

yn+1 =
y2
n

(
2yn+1 − fn+1(h+ αn) ln( αn

h+αn
)
)

yn+1

(
fnαn ln( αn

h+αn
) + 2yn

) . (3.2)

Note in equation this equation, ln( αn

h+αn
) ∈ R provided 0 < αn or αn < −h.

Thus by closure if for all xn, yn, fn, fn+1 ∈ R, then yn+1 ∈ R.
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3.2. Derivation of the predictor. The predictor is derived by assuming that on
the interval [xn, xn+1], the exact solution is approximated by the function

u(x) =
1

a2(ln[x+ α])2 + a1 ln[x+ α] + a0
, (3.3)

where a0, a1, a2, are coefficients that are uniquely determined and α is an imbedded
parameter that controls the behavior of the method. Following the same assump-
tions for α as for the corrector the predictor is well defined. In order to determine
the coefficients in (3.4), we demand that the following conditions must be satisfied

u(xn) = yn,

u′(xn) = fn,

u′′(xn) = gn,

where gn = df(x,y(x))
dx

∣∣
xn

This leads to a system of three equations and three un-
knowns, which is solved to obtain the coefficients in (3.4). The predictor is then
obtained by evaluating u(x) at xn+1 to give

yn+1 = 2y3
n

/(
− αnyn ln(

αn
h+ αn

)
[
fn(ln(

αn
h+ αn

)− 2) + gnαn ln(
αn

h+ αn
)
]

+ 2f2
nα

2
n

(
ln(

αn
h+ αn

)
)2 + 2y2

n

) (3.4)

3.3. Error analysis - local truncation error. We carry out a Taylor series
expansion about the point xn to determine the local truncation error as follows:

LTE(y(xn), h) = y(xn + h)−
y2
n

(
2yn+1 − fn+1(h+ αn) ln( αn

h+αn
)
)

yn+1

(
fnαn ln( αn

h+αn
) + 2yn

)
= Ah3 +O(h4).

(3.5)

This yields a principal truncation error of Ah3, where

A = −y(xn)2y(3)(xn)
6

− y(xn)2y′′(xn)
2α

− y(xn)2y′(xn)
6α2

+
y(xn)y′(xn)2

α
− y′(xn)3 + y(xn)y′(xn)y′′(xn)

(3.6)

Thus, the method is order p = 2.

3.4. Optimization of α. To optimize α, we utilize the principal truncation error.
By setting A = 0 and solving for α we obtain

αn =
−3y2

ny
′′
n + 6yn(y′n)2 ±

√
9y4
n(y′′n)2 + 12y2

n(y′n)4 − 4y(3)
n y4y′n − 12y3

n(y′n)2y′′n

2
(
y2
ny

(3)
n + 6(y′n)3 − 6yny′ny′′n

) ,

where αn is the value of α(xn). This method yields two possible solutions for αn.
Taking the harmonic mean of the two terms yields

αn =
2fnyn

6f2
n − 3gnyn

. (3.7)

Note the arithmetic mean can be calculated as (a + b)/2 and the harmonic mean,
2ab/(a + b), is the reciprocal of the arithmetic mean multiplied by ab. The opti-
mization of the Rational-Logarithmic Method (RLM) is found via the reciprocal of
the optimization of the logarithmic method, which utilizes the arithmetic mean.
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4. Numerical Examples

In this section, we give numerical examples to illustrate the accuracy of the
method. All computations were carried out using our written code in Mathematica
10.0. For the sake of brevity we will not include all evaluated points, but will
include many to show the overall trend of the approximation.

Let y(xn) be the exact solution and yn the approximate solution on the partition
HN . We find the error of the approximate solution as |y(xn)−yn|. We define EN =
|y(xn)− yn| as the maximum absolute error on HN , and En as the error at xn. We
calculate the rate of convergence (ROC) using the formula ROC = log2(EN/E2N ).

Example 4.1. We consider the non-singular IVP

y′ =
1
2
− x+ 2y,

y(0) = 1,

where x ∈ [0, 1] and N = 20. The exact solution is

y(x) = e2x +
x

2
In our first example we will compare the performance of the rational-logarithmic

method (RLM) with the improved Euler method (IEM). This is a continuous ex-
ample with no discontinuous points. Since both methods are of order p = 2, we
may consider this a fair comparison. Table 1 highlights the results of this simula-
tion. It contains the values of α, the approximate solutions given by both methods,
the exact value, and the error at each step of the approximation. Notice that the
improved euler method (IEM) initially outperforms this method, but as x→ 1 the
method becomes more accurate. In this example the difference in accuracy be-
tween the two methods is marginal and there is no clear advantage in this method
as compared with the improved Euler method (IEM).

Since Example 4.1 is continuous on [0, 1] we may consider the rate of convergence
of the rational-logarithmic method (RLM). In Table 2 we compare the rate of
convergence of this method with that of improved Euler method (IEM). Notice
that this method converges to two confirming that it is of order p = 2. Though
both converge to two it is clear from the table that this method converges more
quickly than the improved Euler method (IEM). Also this method’s convergence
exceeds two and then converges from the right instead of the left.

Example 4.2. We consider the singular IVP

y′ = 1 + y2,

y(0) = 1,

where x ∈ [0, 1] and N = 20. The exact solution is

y(x) = tan
(
x+

π

4
)
.

In Example 4.2 we consider a singular example. It follows that x 6= π/4 since
tan(π/2) is undefined. For this example we will compare the rational-logarithmic
method (RLM) with both the improved Euler method (IEM) and Runge-Kutta
of order 4 (RK4). In Table 3 we see the rational-logarithmic Method’s (RLM)
performance separate from the other methods. In Table 4 we see only the error
of each method’s approximation. We note that until the discontinuous point this
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xn αn RLM IEM Exact RLM En IEM En

0 0.196078 1 1 1 0 0

0.1 0.224511 1.27088 1.27103 1.2714 5.21362×10−4 3.77758×10−4

0.2 0.250209 1.59069 1.5909 1.59182 1.13924×10−3 9.22647×10−4

0.3 0.272716 1.97021 1.97043 1.97212 1.90678×10−3 1.69012×10−3

0.4 0.291788 2.42266 2.42279 2.42554 2.88351×10−3 2.752×10−3

0.5 0.307406 2.96414 2.96408 2.96828 4.14095×10−3 4.20098×10−3

0.6 0.319753 3.61435 3.61396 3.62012 5.76783×10−3 6.15636×10−3

0.7 0.329155 4.39732 4.39643 4.4052 7.87584×10−3 8.77127×10−3

0.8 0.336024 5.34243 5.34079 5.35303 1.06064×10−2 1.22418×10−2

0.9 0.340797 6.48551 6.48283 6.49965 1.41389×10−2 1.68186×10−2

1. 0.343899 7.87036 7.86623 7.88906 1.87011×10−2 2.28213×10−2

Table 1. Results for example 4.1

method outperforms IEM by at least an order of magnitude. RK4 outperforms this
method until the point of discontinuity. However, when xn > π

2 this method is able
to accurately step over the discontinuity with En ≈ 10−1. This is a clear advantage
over both of the other methods. This is because the other two methods diverge at
the point of discontinuity. This method not only outperforms another method of
order p = 2, but furthermore it outperforms a method of order p = 4.

N IEM EN ROC RLM EN ROC

20 7.86623 2.28213×10−2 - 7.87036 1.87011×10−2 -

40 7.88313 5.92887×10−3 1.94455 7.88435 4.71061×10−3 1.98914

80 7.88755 1.51066×10−3 1.97258 7.88788 1.17902×10−3 1.99832

160 7.88867 3.81247×10−4 1.98638 7.88876 2.94705×10−4 2.00025

320 7.88896 9.57612×10−5 1.99321 7.88898 7.36551×10−5 2.00042

640 7.88903 2.39966×10−5 1.99661 7.88904 1.84102×10−5 2.00028

Table 2. Rate of convergence for example 4.1

5. Behavior of α about the discontinuity

The method’s ability to step over the discontinuity is due to the imbedded pa-
rameter α. By examining Figure 1 it is clear that the method is able to accurately
step over the point of discontinuity. If we note the optimized function

αn =
2fnyn

6f2
n − 3gnyn

immediately prior to the point of discontinuity, the evaluation of gn is sufficient to
change αn from a positive value to a negative value. That is 3gnyn > 6f2

n. This is
confirmed in the αn column of Table 3.

Hence, the behavior or the imbedded constant α controls the behavior of the
method about the point of discontinuity, permitting it to move from a relatively
large positive function value to a relatively large negative function value.
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xn αn RLM Exact Method En

0 0.333333 1 1 0

0.1 0.407675 1.22303 1.22305 2.36822×10−5

0.2 0.50283 1.50849 1.5085 7.68901×10−6

0.3 0.631945 1.89584 1.89577 7.13438×10−5

0.4 0.821748 2.46525 2.46496 2.82619×10−4

0.5 1.13636 3.40907 3.40822 8.50248×10−4

0.6 1.77821 5.33462 5.33186 2.76644×10−3

0.65 2.44873 7.3462 7.34044 5.76176×10−3

0.7 3.89891 11.6967 11.6814 1.53674×10−2

0.75 9.44124 28.3237 28.2383 8.54765×10−2

0.8 -22.8622 -68.5866 -68.4797 1.06918×10−1

0.85 -5.14964 -15.4489 -15.4579 8.96374×10−3

0.9 -2.89397 -8.6819 -8.68763 5.72979×10−3

0.95 -2.00545 -6.01636 -6.0203 3.9352×10−3

1. -1.52837 -4.58511 -4.58804 2.92595×10−3

Table 3. Results for example 4.2

xn RLM En IEM En RK4 En

0 0 0 0

0.1 2.36822×10−5 2.73043×10−4 2.15331×10−8

0.2 7.68901×10−6 9.50794×10−4 2.79710×10−8

0.3 7.13438×10−5 2.68231×10−3 5.21260×10−7

0.4 2.82619×10−4 7.56687×10−3 3.63068×10−6

0.5 8.50248×10−4 2.42079×10−2 2.59756×10−5

0.6 2.76644×10−3 1.05272×10−1 2.91448×10−4

0.65 5.76176×10−3 2.77873×10−1 1.46124 ×10−3

0.7 1.53674×10−2 1.01467 1.33594×10−2

0.75 8.54765×10−2 7.94846 5.4355×10−1

0.8 1.06918×10−1 140.98 1392.15

0.85 8.96374×10−3 3031.14 1.39964×1026

0.9 5.72979×10−3 5.23821×109 2.69341×10394

0.95 3.93520×10−3 4.70556×1034 9.52550 ×106286

1. 2.92595×10−3 3.06426 ×10134 5.70492 ×10100567

Table 4. Results for example 4.2

Conclusion. The rational-logarithmic method (RLM) is an efficient method which
yields more accurate results than the improved Euler’s method. It is able to ac-
curately and efficiently overcome points of discontinuity in the resultant functions.
Also, the method is able to outperform methods of higher order in overcoming
these discontinuous points. In future papers we will consider implementing this
method in singular partial differential equations and systems of singular first order
differential equations.
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Figure 1. Graph of exact solution with the approximate solutions
of the Rational-Logarithmic Method
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