Mihai Bostan
Abstract:
We study the existence and uniqueness of periodic solutions for evolution equations. First we analyze the one-dimensional case. Then for arbitrary dimensions (finite or not), we consider linear symmetric operators. We also prove the same results for non-linear sub-differential operators \(A = \partial \varphi\) where \(\varphi\) is convex.
Submitted May 14, 2002. Published August 23, 2002.
Math Subject Classifications: 34B05, 34G10, 34G20.
Key Words: maximal monotone operators, evolution equations,
Hille-Yosida's theory.
DOI: https://doi.org/10.58997/ejde.mon.03
Show me the PDF file (351K), TEX file, and other files for this article.
Mihai Bostan Universite de Franche-Comte 16 route de Gray F-25030 Besancon Cedex, France mbostan@math.univ-fcomte.fr |
Return to the EJDE web page