Electronic Journal of Differential Equations Vol. **1995**(1995), No. 04, pp. 1-5. Published April 3, 1995. ISSN 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp (login: ftp) 147.26.103.110 or 129.120.3.113

THE HARNACK INEQUALITY FOR ∞ -HARMONIC FUNCTIONS

Peter Lindqvist and Juan J. Manfredi

ABSTRACT. The Harnack inequality for nonnegative viscosity solutions of the equation $\Delta_{\infty} u = 0$ is proved, extending a previous result of L.C. Evans for smooth solutions. The method of proof consists in considering $\Delta_{\infty} u = 0$ as the limit as $p \to \infty$ of the more familiar *p*-harmonic equation $\Delta_p u = 0$.

The purpose of this note is to present a proof of the Harnack inequality for nonnegative viscosity solutions of the ∞ -harmonic equation

$$\sum_{i=1,j=1}^{n} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \frac{\partial^2 u}{\partial x_i \partial x_j} = 0$$
(1)

where $u = u(x_1, \dots, x_n)$. For classical C^2 -solutions this has recently been obtained by Evans, see [E]. While Evans works directly with equation (1), we approximate it by the *p*-harmonic equation

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = 0 \tag{2}$$

and let $p \to \infty$. (See [A], [K], and [BDMB] for background and information about the ∞ -Laplacian.)

The Harnack inequality for nonnegative p-harmonic functions can be proved by the now standard iteration methods of DeGiorgi and Moser, see [S] and [DB-T]. Unfortunately, in both of these methods the Harnack constants blow up as $p \to \infty$. Another approach to the Harnack inequality, valid only when p > n, follows from energy bounds for $\nabla(\log u)$, see [M] and [KMV]. We begin with a well known estimate:

1991 Mathematics Subject Classifications: 35J70, 26A16.

Key words and phrases: Harnack inequality, p-harmonic equations.

^{©1995} Southwest Texas State University and University of North Texas. Submitted: February 22, 1995.

Lemma. Suppose that u_p is a nonnegative weak solution of (2) in a domain $\Omega \subset \mathbb{R}^n$. Then, we have

$$\int_{\Omega} |\zeta \nabla \log u_p|^p dx \leq \left(\frac{p}{p-1}\right)^p \int_{\Omega} |\nabla \zeta|^p dx \tag{3}$$

whenever $\zeta \in C_0^{\infty}(\Omega)$.

Proof. We may assume that $u_p > 0$. (Consider $u_p(x) + \varepsilon$ and let $\varepsilon \to 0^+$.) Use the test function $|\zeta|^p u_p^{1-p}$ in the weak formulation of (2). This simple calculation is given in [L, Corollary 3.8]. \Box

Our main result states that one can take the limit as $p \to \infty$ in (3).

Theorem. Suppose that u is a nonnegative viscosity solution of (1) in a domain $\Omega \subset \mathbb{R}^n$. Then we have

$$\|\zeta \nabla \log u\|_{\infty,\Omega} \leq \|\nabla \zeta\|_{\infty,\Omega} \tag{4}$$

whenever $\zeta \in C_0^{\infty}(\Omega)$.

Proof. Select a bounded smooth domain D such that

$$\operatorname{supp} \zeta \subset D \subset \overline{D} \subset \Omega.$$

By a fundamental result of Jensen $u \in W^{1,\infty}(D)$ and it is the unique viscosity solution of (1) with boundary values $u|_{\partial D}$. For these results and the definition of viscosity solutions we refer to [J].

For p > n let u_p be the solution to the problem

$$\begin{cases} \operatorname{div}(|\nabla u_p|^{p-2}\nabla u_p) = 0 & \text{in } D\\ u_p - u \in W_0^{1,p}(D). \end{cases}$$

By the results of [BDBM, Section I], there exists a sequence $p_j \to \infty$ such that u_{p_j} tends to a viscosity solution v of (1) in $C^{\alpha}(\overline{D})$ for any $\alpha \in [0,1)$ and weakly in $W^{1,m}(D)$ for any finite m. Since u and v have the same boundary values, the uniqueness theorem of Jensen [J] implies that $u \equiv v$. Note, in addition, that any other subsequence of u_p has a subsequence converging to a viscosity solution of (1) and that this limit is u. We conclude that

$$u_p \to u$$
 in $C^{\alpha}(\overline{D})$ for any $\alpha \in [0, 1)$ (5)

and

$$u_p \rightharpoonup u$$
 in $W^{1,m}(D)$ for any finite m (6)

as $p \to \infty$.

Fix $m \ge n$ and consider p > m. We have

$$\int_{D} |\zeta \nabla \log u_p|^m dx \leq \left(\int_{D} |\zeta \nabla \log u_p|^p dx \right)^{m/p} |D|^{(p-m)/p}$$
$$\leq \left(\frac{p}{p-1} \right)^m \left(\int_{D} |\nabla \zeta|^p dx \right)^{m/p} |D|^{(p-m)/p},$$

EJDE-1995/04 The Harnack inequality for ∞ -harmonic functions

where we have used the Lemma in the second inequality. Therefore, we get

$$\left(\int_{D} |\zeta \nabla \log u_p|^m dx\right)^{1/m} \leq \frac{p}{p-1} \left(\int_{D} |\nabla \zeta|^p dx\right)^{1/p} |D|^{(p-m)/pm}.$$
 (7)

Assume momentarily that $\zeta \nabla \log u_p$ converges weakly to $\zeta \nabla \log u$ in $L^m(D)$. By the weak lower semi-continuity of the norm we obtain

$$\left(\int_{D} |\zeta \nabla \log u|^{m} dx\right)^{1/m} \leq \|\nabla \zeta\|_{\infty, D} |D|^{1/m}.$$
(8)

Observe that (7) holds for the translated functions $u_p(x) + \varepsilon$, where $\varepsilon > 0$ is fixed, in place of u_p . Since these functions are bounded away from zero, it is elementary to check that $\zeta \nabla \log(u_p + \varepsilon)$ converges weakly to $\zeta \nabla \log(u + \varepsilon)$ in $L^m(D)$. It now follows from (5) and (6) that estimate (8) holds for $u(x) + \varepsilon$.

We now let $\varepsilon \to 0$. By the Monotone Convergence theorem, we obtain estimate (8) for u.

Finally, letting $m \to \infty$ we finish the proof of (4). \Box

If B_r and R_R are two concentric balls in Ω with radius r and R, the usual choice of a radial test function ζ ($0 \leq \zeta \leq 1$, $\zeta = 1$ in B_r , $\zeta = 0$ outside B_R) in (4) yields the estimate

$$\|\nabla \log u\|_{\infty, B_r} \le \frac{1}{R-r} \tag{11}$$

provided that $B_R \subset \Omega$. In particular, we obtain the following result.

Corollary 1. (a) If u is a nonnegative viscosity solution of (1) in a domain $\Omega \subset \mathbb{R}^n$, then for a. e. $x \in \Omega$

$$|\nabla u(x)| \leq \frac{u(x)}{d(x,\partial\Omega)}.$$
(12)

(b) If u is a bounded viscosity solution of (1) in a domain $\Omega \subset \mathbb{R}^n$, then for a. e. $x \in \Omega$ we have

$$|\nabla u(x)| \le \frac{2\|u\|_{\infty}}{d(x,\partial\Omega)}.$$
(13)

Proof. It remains to consider only the second case, which follows from the first by considering $v = u + ||u||_{\infty}$. \Box

Next, we state the Harnack inequality, which follows from (11).

Corollary 2. Suppose that u is a nonnegative viscosity solution of (1) in $B_R(x_0)$. Then if $x, y \in B_r(x_0), 0 \leq r < R$, we have

$$u(x) \leq e^{|x-y|/(R-r)}u(y).$$
 (14)

Proof. By integrating (11) on a line segment from x to y we obtain

$$|\log u(x) - \log u(y)| \le \frac{|x-y|}{R-r},$$

from which (14) follows by exponentiating. \Box

Remarks.

§1. The Lemma holds for nonnegative super-solutions of the p-Laplacian by exactly the same proof. Thus for p > n we get an estimate like (10) with m replaced by p, from which a Harnack inequality follows easily. This suggests the possibility that corollary 2 holds, indeed, for nonnegative viscosity super-solutions of (1).

 $\S2$. If one uses the estimate in [L, (4.10)]

$$\int_{\Omega} |\nabla u_p|^p u_p^{-1-\varepsilon} \zeta^p dx \leq \left(\frac{p}{\varepsilon}\right)^p \int_{\Omega} u_p^{p-1-\varepsilon} |\nabla \zeta|^p dx$$

where $0 < \varepsilon < p - 1$ instead of (3), we obtain the estimate

$$\|\zeta u^{-\alpha} \nabla u\|_{\infty,\Omega} \leq \frac{1}{\alpha} \|u^{1-\alpha} \nabla \zeta\|_{\infty,\Omega}$$

for any $\alpha > 0$ and for any nonnegative viscosity solution u of (1) in Ω . Roughly speaking, estimates for the p-Laplacian that are independent of p, always yield estimates for ∞ -harmonic functions.

References

- [A] Aronsson, G., On the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0$, Arkiv für Matematik 7 (1968), 395–425.
- [BDBM] Batthacharya, T., Di Benedetto, E. and Manfredi, J., Limits extremal problems, Classe Sc. Math. Fis. Nat., Rendiconti del Sem. Mat. Fascicolo Speciale Non Linear PDE's, Univ. de Torino, 1989, pp. 15–68.
- [DB-T] Di Benedetto, E and Trudinger, N., *Harnack inequalities for quasiminima of variational integrals*, Analyse nonlinéaire, Ann. Inst. Henri Poincaré **1** (1984), 295–308.
- [E] Evans, L., Estimates for smooth absolutely minimizing Lipschitz extensions, Electronic Journal of Differential Equations 1993 No. 3 (1993), 1–10.
- Jensen, R., Uniqueness of Lipschitz extensions: Minimizing the sup-norm of the gradient, Arch. for Rational Mechanics and Analysis 123 (1993), 51–74.
- [K] Kawohl, B., On a family of torsional creep problems, J. Reine angew. Math. 410 (1990), 1–22.
- [KMV] Koskela, P., Manfredi, J. and Villamor, E., Regularity theory and traces of A-harmonic functions, to appear, Transactions of the American Mathematical Society.
- [L] Lindqvist, P., On the definition and properties of p-superharmonic functions, J. Reine angew. Math. 365 (1986), 67–79.
- [M] Manfredi, J. J., Monotone Sobolev functions, J. Geom. Anal. 4 (1994), 393–402.
- [S] Serrin, J., Local behavior of solutions of quasilinear elliptic equations, Acta Math. 111 (1964), 247–302.

Department of Mathematics Norwegian Institute of Technology N-7034 Trondheim Norway *E-mail address*: lqvist@imf.unit.no

DEPARTMENT OF MATHEMATICS UNIVERSITY OF PITTSBURGH PITTSBURGH, PA 15260 USA *E-mail address*: juanjo@na0b.math.pitt.edu