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INITIAL VALUE PROBLEMS FOR NONLINEAR

NONRESONANT DELAY DIFFERENTIAL EQUATIONS WITH

POSSIBLY INFINITE DELAY

LANCE D. DRAGER AND WILLIAM LAYTON

Abstract. We study initial value problems for scalar, nonlinear, delay dif-
ferential equations with distributed, possibly infinite, delays. We consider the
initial value problem


x(t) = ϕ(t), t ≤ 0

x′(t) +

∫ ∞
0
g(t, s, x(t), x(t− s)) dµ(s) = f(t), t ≥ 0,

where ϕ and f are bounded and µ is a finite Borel measure. Motivated by the
nonresonance condition for the linear case and previous work of the authors,
we introduce conditions on g. Under these conditions, we prove an existence
and uniqueness theorem. We show that under the same conditions, the solu-

tions are globally asymptotically stable and, if µ satisfies an exponential decay
condition, globally exponentially asymptotically stable.

1. Introduction

In this paper we will study the initial value problem for scalar, nonlinear, delay
differential equations with possibly infinite delay. We will consider problems of the
form 


x(t) = ϕ(t), t ≤ 0

x′(t) +

∫ ∞
0

g(t, s, x(t), x(t − s)) dµ(s) = f(t), t ≥ 0.
(1.1)

We assume that ϕ is bounded and continuous on (−∞, 0], f is bounded and contin-
uous on [0,∞), and that µ is a positive, finite Borel measure on [0,∞). As usual,
x′(0) in (1.1) is to be interpreted as a right-hand derivative. In all the cases we
consider, g will be continuous.
In this paper, we will give conditions on g that will ensure that the initial value

problem (1.1) has a unique maximally defined solution, which is defined on the
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entire real line R. We will show that the same conditions on g ensure that the
solutions of (1.1) are asymptotically stable, i.e., if x1 and x2 are solutions of (1.1)
for different initial conditions ϕ1 and ϕ2 (but with the same forcing function f), then
x1(t)−x2(t)→ 0 as t→∞. We will also show that if (1.1) has exponentially fading
memory, i.e., µ decays exponentially, then every solution of (1.1) is exponentially
asymptotically stable, i.e., if x1 and x2 are solutions of (1.1) for different initial
conditions, then

|x1(t)− x2(t)| ≤ Ce
−λt, t ≥ 0,

for some constants C and λ > 0.
In the rest of this introduction, we will describe the conditions that we will place

on g. To motivate these conditions, it will help to recall some previous work of the
authors in [7] (for related work of the authors see [3, 4, 5, 6, 8, 12]).
In [7], the authors studied delay differential equations of the form

x′(t) +

∫ ∞
−∞

g(x(t), x(t − s)) dµ(s) = f(t), t ∈ R ,(1.2)

under a generalized nonresonance condition Condition GNR. Under this condition,
it was shown that (1.2) has a unique solution that is defined and bounded on all of
R. We want to briefly recall the statement and motivation of Condition GNR.
A very special case of (1.2) is the linear constant coefficient equation

x′(t) + ax(t) + bx(t− τ) = 0,(1.3)

where a, b ∈ R. This equation can be analyzed by classical techniques, [1, 9, 10]. In
particular, (1.3) has a nontrivial bounded solution if and only if the characteristic
equation z + a + be−τz = 0 has a root on the imaginary axis. Thus, it can be
shown that the set Cτ of pairs (a, b) in the ab-plane for which (1.3) has a nontrivial
bounded solution consists of the line a+ b = 0 and the multi-branch parameterized
curve

(a, b) =
1

τ
(−θ cot(θ), θ csc(θ)).

It is known that if (a, b) lies to the right of Cτ the zero solution of (1.3) is globally
asymptotically stable (i.e., all of the roots of the characteristic equation are in
the left half plane), see [9, 10, 11]. As τ varies, Cτ will sweep out the region R

′

consisting of the two quadrants above and below the lines a± b = 0, with a+ b = 0
included and a− b = 0 excluded. See Figure 1, which shows a few branches of Cτ
and shows the line a− b = 0 as dotted.
Equation (1.3) is a special case of (1.2) with g(x, y) = ax + by (µ is the Dirac

measure at τ). In this case, { (a, b) } is the image of the gradient of g, ∇g. In the
nonlinear case, the image of ∇g will be more than a single point. To get results for
all delays, we want the image of∇g to avoid R′. As the first part of Condition GNR,
we required the somewhat stronger condition that the image of ∇g be disjoint from

R =
{
(a, b) ∈ R2 | |a| ≤ |b|

}
,

the closure of R′ (in this paper, the image will have to lie to the right of R).
It is possible that Im(∇g), the image of ∇g, comes arbitrarily close to R. We

need some control on how fast Im(∇g) approaches R. This is measured as follows.
For ρ ≥ 0, define

Q(ρ) =
{
(x, y) ∈ R2 | |x| ≤ ρ, |y| ≤ ρ

}
.



EJDE–1997/24 INITIAL VALUE PROBLEMS FOR NONRESONANT DELAY EQUATIONS 3

a

b

Figure 1. The set Cτ

and let G(ρ) = ∇g(Q(ρ)). Let α, β : R2 → R be the linear functionals

α(a, b) = a− b

β(a, b) = a+ b.

The boundary lines of R are α = 0 and β = 0. The region to the right of R is
described by α > 0 and β > 0, while the region to the left of R is described by
α < 0 and β < 0. For ρ ≥ 0 we define

α∗(ρ) = inf {α(a, b) | (a, b) ∈ G(ρ) }

α∗(ρ) = sup {α(a, b) | (a, b) ∈ G(ρ) }

β∗(ρ) = inf {β(a, b) | (a, b) ∈ G(ρ) }

β∗(ρ) = sup {β(a, b) | (a, b) ∈ G(ρ) } .

(1.4)

Consider the case where Im(∇g) lies to the right of R. In this case, we define

r(ρ) = min {α∗(ρ), β∗(ρ) }

s(ρ) = max {α∗(ρ), β∗(ρ) } .
(1.5)

See Figure 2 for an illustration. Clearly r is a positive non-increasing function. If
Im(∇g) comes arbitrarily close to R, we will have r(ρ) → 0 as ρ → ∞, and the
rate at which r goes to zero is a measure of how fast Im(∇g) approaches R. As the
second part of Condition GNR, we assume that

sup { ρr(ρ) | ρ ≥ 0 } =∞.
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Similar definitions can be made in the case where Im(∇g) lies to the left of R, but
these will not be needed in this paper. We do not need to impose any assumptions
on s(ρ), but it will figure in our proofs.
We want to extend Condition GNR to allow g to depend explicitly on t and s,

as in (1.1). This is necessary for the techniques we will use in analyzing the initial
value problem, as well as desirable for greater generality. For brevity, we will refer
to the case where g does not depend explicitly on t and s as the “time independent
case.”
Our extended condition also takes into account another consideration. Since

the method of steps does not apply to (1.1), it is not clear that we have unique
continuation of solutions for (1.1). In order to prove uniqueness, it will be necessary
to consider solutions defined on intervals with a finite upper endpoint.
These considerations lead us to the following definition of the class of functions

g we will consider.

Definition 1.1. For 0 < p ≤ ∞, let Gp denote the set of functions

g : [0, p)× [0,∞)× R× R→ R : (t, s, x, y) 7→ g(t, s, x, y)

that satisfy the following conditions.

(G1) g is continuous.
(G2) The function

g(·, ·, 0, 0): [0, p)× [0,∞)→ R : (t, s) 7→ g(t, s, 0, 0)

is bounded.
(G3) The partial derivatives gx and gy exist and are continuous.

Since we will not have occasion to differentiate g with respect to t or s, we will use
the notation ∇g for the function (t, s, x, y) 7→ (gx(t, s, x, y), gy(t, s, x, y)).

(G4) For every compact set K ⊆ R2, the image of [0, p)× [0,∞)×K under ∇g is
a bounded set whose closure is disjoint from R and lies to the right of R.

For ρ ≥ 0, let G(ρ) be the image of [0, p)×[0,∞)×Q(ρ) under∇g. Let α∗(ρ), α∗(ρ),
β∗(ρ), β

∗(ρ), r(ρ) and s(ρ) be defined as in (1.4) and (1.5). Our last condition is
the following.

(G5) g satisfies

sup { ρr(ρ) | ρ ≥ 0 } =∞.

A time independent g that satisfies Condition GNR (and has Im(∇g) lying to the
right of R) is a member of Gp for all p. Further examples can be generated using
the G-lemma of the next section.
In the next section we will derive the basic properties of Gp. In Section 3, we will

prove the existence and uniqueness of a solution to our initial value problem. In
Section 4, we prove the solutions are globally asymptotically stable. In Section 5,
we prove the solutions are exponentially asymptotically stable under an exponential
decay assumption on µ.

2. Basic estimates

In this section, we will establish the basic properties of functions in Gp that we
will use. The first thing we need is an elementary geometric estimate, see [7].
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Figure 2. The setting for Lemma 2.2.

Lemma 2.1. Let D be the region in the ab-plane defined by the inequalities

r ≤ α, β ≤ s

for constants r and s. Let a be a fixed real number. Then we have

sup { |a− h|+ |k| | (h, k) ∈ D } = max { |a− r|, |a− s| } .(2.1)

To picture the region D, see D(ρ) in Figure 2. The following lemma gives the
basic estimate for functions of class Gp.

Lemma 2.2. Suppose that g ∈ Gp and let a be a fixed real number. If ρ ≥ 0 and
(ξi, ηi) ∈ Q(ρ), i = 1, 2, we have the estimate

(2.2) |[aξ1 − g(t, s, ξ1, η1)− [aξ2 − g(t, s, ξ2, η2)]|

≤ K(a, ρ)max { |ξ1 − ξ2|, |η1 − η2| } ,

for all (t, s) ∈ [0, p)× [0,∞). Here K(a, ρ) is defined as

K(a, ρ) = max { |a− r(ρ)|, |a− s(ρ)| } .

From this, we get the estimate

|g(t, s, ξ, η)| ≤ K(0, ρ)max { |ξ|, |η| }+ |g(t, s, 0, 0)|, (ξ, η) ∈ Q(ρ).(2.3)

See Figure 2 for the setting of this lemma.

Proof. Consider the norms defined on R2 by

‖(a, b)‖1 = |a|+ |b|

‖(a, b)‖∞ = max { |a|, |b| } .
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Let ui = (ξi, ηi), i = 1, 2. Let t0 ∈ [0, p) and s0 ∈ [0,∞) be fixed but arbitrary, and
define ϕ(ξ, η) = aξ− g(t0, s0, ξ, η). This function is continuously differentiable, and
by applying the Mean Value Theorem to σ 7→ ϕ((1− σ)u1 + σu2), we obtain

ϕ(u2)− ϕ(u1) = ∇ϕ(u
∗) · (u2 − u1),(2.4)

for some point u∗ = (ξ∗, η∗) on the line segment joining u1 and u2. Since Q(ρ) is
convex, u∗ ∈ Q(ρ). From (2.4), we have

|ϕ(u2)− ϕ(u1)| ≤ ‖∇ϕ(u
∗)‖1 ‖u2 − u1‖∞.(2.5)

Let D(ρ) be the region in the ab-plane defined by the inequalities r(ρ) ≤ α, β ≤
s(ρ). We may estimate ‖∇ϕ(u∗)‖1 as follows:

‖∇ϕ(u∗)‖1 = |a− gx(t0, s0, ξ
∗, η∗)|+ |−gy(t0, s0, ξ

∗, η∗)|

= |a− gx(t0, s0, ξ
∗, η∗)|+ |gy(t0, s0, ξ

∗, η∗)|

≤ sup{ |a− gx(t, s, ξ, η)|+ |gy(t, s, ξ, η)| |

(t, s, ξ, η) ∈ [0, p)× [0,∞)×Q(ρ) }

= sup { |a− h|+ |k| | (h, k) ∈ G(ρ) }

≤ sup { |a− h|+ |k| | (h, k) ∈ D(ρ) }

= max { |a− r(ρ)|, |a− s(ρ)| } ,

using Lemma 2.1. Using the definition of K(a, ρ) and (2.5), we have

|ϕ(u1)− ϕ(u1)| ≤ K(a, ρ)‖u2 − u1‖∞,

which translates into (2.2) when the definitions are expanded. The inequality in
(2.3) comes from (2.2) by setting a = 0, (ξ1, η1) = (0, 0) and (ξ2, η2) = (ξ, η), and
using the triangle inequality.

For a topological space X , we will use BC(X) to denote the space of bounded
continuous functions f : X → R, equipped with the supremum norm, which will be
denoted by ‖f‖. If X is an interval, we omit the outer parentheses.
The next two lemmas show that the class Gp is closed under an operation that

will be frequently employed in our proofs.

Lemma 2.3. Suppose that g ∈ Gp and that x and y are bounded continuous func-
tions on [0, p)× [0,∞). Then the function

(t, s) 7→ g(t, s, x(t, s), y(t, s))

is bounded on [0, p)× [0,∞).

Proof. Choose ρ such that ‖x‖, ‖y‖ ≤ ρ. Then (x(t, s), y(t, s)) ∈ Q(ρ) for all
(t, s) ∈ [0, p)× [0,∞). Thus, (2.3) shows that

|g(t, s, x(t, s), y(t, s))| ≤ K(0, ρ)max{ |x(t, s)|, |y(t, s)| }+ |g(t, s, 0, 0)|.

By hypothesis G2, the function g(·, ·, 0, 0) is bounded, and so

|g(t, s, x(t, s), y(t, s))| ≤ K(0, ρ)ρ+ ‖g(·, ·, 0, 0)‖.
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Lemma 2.4 (The G-lemma). Suppose that g ∈ Gp and suppose that

x, y, f ∈ BC ([0, p)× [0,∞)).

Let h : [0, p)× [0,∞)× R× R→ R be defined by

h(t, s, ξ, η) = g(t, s, ξ + x(t, s), η + y(t, s)) + f(t, s).

Then h is in Gp.

Proof. The function h is clearly continuous, so hypothesis G1 is satisfied. The last
lemma shows that h(·, ·, 0, 0) is bounded, so G2 is satisfied. The gradient of h is
given by

∇h(t, s, ξ, η) = (gx(t, s, ξ + x(t, s), η + y(t, s)), gy(t, s, ξ + x(t, s), η + y(t, s)),

and G3 is satisfied.
Choose M > 0 such that ‖x‖, ‖y‖ ≤ M . Then, if (ξ, η) ∈ Q(ρ), the point

(ξ+ x(t, s), η+ y(t, s)) is in Q(ρ+M) for all (t, s). Thus, if we let H(ρ) denote the
image of [0, p)× [0,∞)×Q(ρ) under ∇h, we have

H(ρ) ⊆ G(ρ+M).(2.6)

Thus, H(ρ) is a bounded set whose closure lies to the right of R, so G4 is satisfied.
If we let rh and rg denote the r-functions for h and g respectively, (2.6) shows

that rg(ρ +M) ≤ rh(ρ). Thus, to show that sup ρrh(ρ) = ∞, it will suffice to
show that sup ρrg(ρ + M) = ∞. To prove this, let A > 0 be arbitrary. Since
supρrg(ρ) = ∞, we can find some σ such that σrg(σ) ≥ A +Mrg(0). We must
have σ > M , for otherwise σrg(σ) ≤ Mrg(0), since rg is non-increasing. Thus, we
can write σ = ρ+M for ρ > 0. We have

(ρ+M)rg(ρ+M) ≥ A+Mrg(0)

which implies that

ρrg(ρ+M) ≥ A+M [rg(0)− rg(ρ+M)].

The right hand side is greater that or equal to A, since rg is non-increasing. Since
A was arbitrary, we conclude that sup ρrg(ρ+M) =∞. Thus, h satisfies G5.

We should also observe the following lemma, whose proof is straight forward.

Lemma 2.5. Suppose that g ∈ Gp and that 0 < q < p. Then, the restriction of g
to [0, q)× [0,∞)× R2 is in Gq.

3. Existence and Uniqueness

In this section we prove the existence and uniqueness of solutions of the initial
value problem (1.1). Our first goal is the following Proposition.

Proposition 3.1. Suppose that g ∈ Gp and that µ is a finite positive Borel measure
on [0,∞). Then, for every ϕ ∈ BC (−∞, 0] and f ∈ BC [0,∞), there is a unique
function x ∈ BC (−∞, p) that satisfies the initial value problem


x(t) = ϕ(t), t ∈ (−∞, 0]

x′(t) +

∫ ∞
0

g(t, s, x(t), x(t − s)) dµ(s) = f(t), t ∈ [0, p).
(3.1)
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It will be useful to observe that if x is a bounded solution of (3.1), then x′ must
be continuous and bounded on [0,∞).
The first step in proving this proposition is to observe that we can reduce the

problem to the case where the initial condition ϕ is zero.
To see this, let ϕ̄ be an extension of ϕ to the interval (−∞, p), such that ϕ̄ is

bounded, ϕ̄ is C1 on [0, p) (interpreting ϕ̄′(0) as a right hand derivative, as usual)
and ϕ̄′ is bounded on [0, p). An obvious choice would be to define ϕ̄(t) = ϕ(0) for
t > 0, but another choice will be useful in our stability analysis.
Suppose that x is a solution of the initial value problem (3.1). Define y = x− ϕ̄.

Then y is bounded and continuous and y is continuously differentiable on [0, p). Of
course, y(t) = 0 for t ∈ (−∞, 0]. If we substitute x = y + ϕ̄ in the initial value
problem, for t ∈ [0, p) we obtain

y′(t) + ϕ̄′(t) +

∫ ∞
0

g(t, s, y(t) + ϕ̄(t), y(t− s) + ϕ̄(t− s)) dµ(s) = f(t) .(3.2)

Let m = µ[0,∞) denote the total mass of µ, a notation that will be used for the
rest of the paper. Then, for t ∈ [0, p) we can rewrite (3.2) as

y′(t) +

∫ ∞
0

[g(t, s, y(t) + ϕ̄(t), y(t− s) + ϕ̄(t− s)) + ϕ̄′(t)/m] dµ(s) = f(t) .

Thus, if we define h by

h(t, s, ξ, η) = g(t, s, ξ + ϕ̄(t), η + ϕ̄(t− s)) + ϕ̄′(t)/m ,

we see that y is a solution of the initial value problem

y(t) = 0, t ∈ (−∞, 0]

y′(t) +

∫ ∞
0

h(t, s, y(t), y(t− s)) dµ(s) = f(t), t ∈ [0, p).
(3.3)

By the G-lemma, h is again in Gp.
Conversely, if y is a bounded solution of (3.3), then x = y + ϕ̄ is a bounded

solution of (3.1). Thus, to prove Proposition 3.1, it will suffice to prove the following
Proposition.

Proposition 3.2. Suppose that g ∈ Gp and that µ is a finite positive Borel mea-
sure on [0,∞). Then, for every f ∈ BC [0,∞), there is a unique function x ∈
BC(−∞, p) that satisfies the initial value problem


x(t) = 0, t ∈ (−∞, 0]

x′(t) +

∫ ∞
0

g(t, s, x(t), x(t − s)) dµ(s) = f(t), t ∈ [0, p).
(3.4)

The proof of this Proposition will occupy most of the rest of this section. We
begin by introducing the function spaces we will use. Let BC1[0, p) denote the
space of functions f ∈ BC [0, p) such that f is differentiable and f ′ ∈ BC [0, p).
Let Xp be the space of functions x ∈ BC (−∞, p) such that x = 0 on the

negative half-axis (−∞, 0]. This is a closed subspace of BC(−∞, p) and hence a
Banach space in the supremum norm. Finally, let X1p denote the space of functions

x ∈ Xp such that the restriction of x to [0, p) is in BC
1[0, p).
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The simplest case of the initial value problem (3.4) is the problem{
x(t) = 0, t ∈ (−∞, 0]

x′(t) + ax(t) = f(t), t ∈ [0, p),

where a > 0. This is, of course, easy to solve by elementary means. The results are
summarized in the next lemma.

Lemma 3.3. For a > 0, let La : X
1
p → BC [0, p) be the operator defined by

Lax(t) = x
′(t) + ax(t), t ∈ [0, p).

Then, La is invertible, with the inverse given by

L−1a f(t) =



0, t ∈ (−∞, 0]∫ t
0

ea(s−t)f(s) ds, t ∈ [0, p).

From this formula we get the supremum norm estimate

‖L−1a f‖ ≤
1

a
‖f‖.(3.5)

We will now introduce some operators that will be useful in the proof. If a > 0
and x ∈ Xp, define a function Na(x) on [0, p)× [0,∞) by

Na(x)(t, s) = ax(t) − g(t, s, x(t), x(t− s)).

By Lemma 2.3, this function is bounded, so we have a nonlinear operatorNa : Xp →
BC([0, p)× [0,∞)).
We will use the notation B(ρ) for the closed ball of radius ρ centered at the

origin in Xp. If x ∈ B(ρ), then (x(t), x(t − s)) ∈ Q(ρ) for all t and s. Thus, if
x, y ∈ B(ρ) and we apply Lemma (2.2), we have

|[ax(t) − g(t, s, x(t), x(t− s))]− [ay(t)− g(t, s, y(t), y(t− s))]|

≤ K(a, ρ)max { |x(t) − y(t)|, |x(t− s)− y(t− s)| }

≤ K(a, ρ)‖x− y‖,

since both terms in the maximum are bounded by ‖x− y‖. Thus, we have the
estimate

‖Na(x)−Na(y)‖ ≤ K(a, ρ)‖x− y‖, x, y ∈ B(ρ).(3.6)

For a > 0, we define a nonlinear operator Ma : Xp → BC [0, p) by

Ma(x)(t) = ax(t)−

∫ ∞
0

g(t, s, x(t), x(t − s)) dµ(s), t ∈ [0, p).

Recalling the notation m = µ[0,∞), we can rewrite this as

Ma(x)(t) =

∫ ∞
0

[(a/m)x(t)− g(t, s, x(t), x(t − s))] dµ(s)

=

∫ ∞
0

Na/m(x)(t, s) dµ(s).

Hence, by applying (3.6) we obtain the estimate

‖Ma(x)−Ma(y)‖ ≤ mK(a/m, ρ)‖x− y‖, x, y ∈ B(ρ).(3.7)
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We next show that (3.4) can be reduced to a fixed point problem in Xp. Suppose
that x ∈ Xp is a solution of (3.4). Then, if a > 0 is arbitrary, we have, for t ≥ 0,

x′(t) + ax(t) = ax(t)−

∫ ∞
0

g(t, s, x(t), x(t − s)) dµ(s) + f(t)

We may rewrite this as

Lax =Ma(x) + f

Since La is invertible, this is equivalent to

x = Ta(x) ,

where Ta : Xp → Xp is defined by

Ta(x) = L
−1
a Ma(x) + L

−1
a f.

Conversely, if x ∈ Xp and x = Ta(x), then x ∈ X1p ⊆ Xp, and we may reverse the
steps to conclude that x is a solution of (3.4). Thus, we have the following lemma.

Lemma 3.4. The following conditions are equivalent.

1. x ∈ Xp is a solution of (3.4).
2. x ∈ Xp and Ta(x) = x for all a > 0.
3. x ∈ Xp and Ta(x) = x for some a > 0.

To show that one of the operators Ta has a fixed point, we will use the Contrac-
tion Mapping Lemma. From (3.7) and (3.5), we get the estimate

‖Ta(x)− Ta(y)‖ ≤
m

a
K(a/m, ρ)‖x− y‖, x, y ∈ B(ρ) .(3.8)

We now make a specific choice of a. For ρ ≥ 0, define

a(ρ) = m
r(ρ) + s(ρ)

2
.

It is then easily calculated that

K(a(ρ)/m, ρ) =
s(ρ)− r(ρ)

2

and thus that

a(ρ)

m
−K(a(ρ)/m, ρ) = r(ρ) > 0 .(3.9)

In particular, K(a(ρ)/m, ρ) < a(ρ)/m, and so
m

a(ρ)
K(a(ρ)/m, ρ) < 1 .

If we set a = a(ρ) in (3.8), we have

‖Ta(ρ)(x) − Ta(ρ)(y)‖ ≤
m

a(ρ)
K(a(ρ)/m, ρ)‖x− y‖, x, y ∈ B(ρ) ,

where the constant is strictly less than one. This is enough to prove the uniqueness
part of Proposition (3.2). If x, y ∈ Xp are solutions of the initial value problem
(3.4), we can choose ρ such that x, y ∈ B(ρ). By Lemma (3.4), x and y are fixed
points of Ta(ρ) and hence

‖x− y‖ ≤
m

a(ρ)
K(a(ρ)/m, ρ)‖x− y‖ .

Since the constant is strictly less than one, this implies x = y.
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We have not yet proven the existence of a solution, because we don’t know that
Ta(ρ) maps B(ρ) into itself. If we can find a ρ such that Ta(ρ)(B(ρ)) ⊆ B(ρ), it
will follow from the Contraction Mapping Lemma that Ta(ρ) has a fixed point, and
hence that there is a solution x ∈ Xp of the initial value problem (3.4).
To find such a ρ, we make some additional estimates. Setting y = 0 in (3.7) gives

‖Ma(x)‖ ≤ mK(a/m, ρ)‖x‖+m‖g(·, ·, 0, 0)‖, x ∈ B(ρ),

For brevity, set γ = ‖g(·, ·, 0, 0)‖. By the definition of Ta, we have

‖Ta(x)‖ ≤
1

a
‖Ma(x)‖ +

1

a
‖f‖.

Thus, we have

‖Ta(x)‖ ≤
m

a
K(a/m, ρ)‖x‖+

m

a
γ +
1

a
‖f‖, x ∈ B(ρ).

If we set a = a(ρ) in the last inequality and estimate ‖x‖ by ρ, we obtain the
estimate

‖Ta(ρ)(x)‖ ≤
m

a(ρ)
K(a(ρ)/m, ρ)ρ+

m

a(ρ)
γ +

1

a(ρ)
‖f‖, x ∈ B(ρ).

From this inequality, we see that if we can choose ρ such that

m

a(ρ)
K(a(ρ)/m, ρ)ρ+

m

a(ρ)
γ +

1

a(ρ)
‖f‖ ≤ ρ,(3.10)

we will have Ta(ρ)(B(ρ)) ⊆ B(ρ). If we multiply both sides of (3.10) by a(ρ)/m
and move the first term on the left to the other side, we have

γ +
1

m
‖f‖ ≤

[
a(ρ)

m
−K(a(ρ)/m, ρ)

]
ρ .

By (3.9), this reduces to

γ +
1

m
‖f‖ ≤ ρr(ρ) .(3.11)

In this inequality, the left hand side is independent of ρ, while the right hand side
can be made as large as we like by our assumption G5. Thus, we can choose ρ to
satisfy (3.11).
This completes the proof of Proposition 3.2, and hence the proof of Proposi-

tion 3.1.
We can now apply Proposition 3.1 to prove our main existence and uniqueness

theorem.

Theorem 3.5. Suppose that g ∈ Gp, where 0 < p ≤ ∞, and that µ is a finite
positive Borel measure on [0,∞). Then for every ϕ ∈ BC(−∞, 0] and f ∈ BC [0, p),
the initial value problem


x(t) = ϕ(t), t ∈ (−∞, 0]

x′(t) +

∫ ∞
0

g(t, s, x(t), x(t − s)) dµ(s) = f(t), t ∈ [0, p)
(3.12)

has a unique maximally defined solution x, which is defined and bounded on (−∞, p).
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Proof. We know, of course, that there is a solution x of (3.12) which is defined and
bounded on (−∞, p).
To prove the uniqueness assertion, suppose that y is a function, possibly un-

bounded, defined on (0, q), where 0 < q ≤ p, that satisfies (3.12) on its domain.
Let t0 ∈ (0, q) be fixed but arbitrary. Choose some point u such that t0 < u < q.
By continuity, both x and y are bounded on [0, u], and hence on (−∞, u). The
restriction of g to [0, u)× [0,∞)×R2 is in the class Gu and the restrictions of x and
y to (−∞, u) are both bounded solutions of the corresponding initial value problem.
Thus, by the uniqueness part of Proposition 3.1, we must have x = y on (−∞, u).
In particular, x(t0) = y(t0). Since t0 ∈ (0, q) was arbitrary, we conclude that that
x = y on the intersection of their domains.

We observe that the argument in the proof can be extended to show the exis-
tence of a unique maximally defined solution to (3.12) even in the case where f is
unbounded, but we will not pursue this result here.
It’s not hard to trace through our proof to show that the choice of ρ and

the contraction constant can be made uniformly for ϕ and f in a closed ball in
BC(−∞, 0] × BC [0, p), and then to use the Uniform Contraction Principal [2,
page 25] to show that the solution x depends continuously on the data (ϕ, f).
Under an additional assumption on g, which is automatically satisfied in the

time independent case and is preserved by the operations in the G-lemma, it can
be shown that the dependence of x on (ϕ, f) is C1. The details are sufficiently
involved that we won’t pursue them here.

4. Asymptotic Stability

For the rest of the paper, we will be concerned with the case p =∞ and we will
write G = Gp, X = Xp, etc. Our goal in this section is the following theorem.

Theorem 4.1. Suppose that g ∈ G and let µ be a finite positive Borel measure on
[0,∞). Suppose that f ∈ BC [0,∞) and ϕ ∈ BC (−∞, 0] and consider the initial
value problem


x(t) = ϕ(t), t ∈ (−∞, 0]

x′(t) +

∫ ∞
0

g(t, s, x(t), x(t − s)) dµ(s) = f(t), t ∈ [0,∞).
(4.1)

Suppose that x1 and x2 are solutions of (4.1) for different initial conditions ϕ = ϕ1
and ϕ = ϕ2 respectively. Then,

lim
t→∞

|x1(t)− x2(t)| = 0.

The proof will occupy the remainder of this section. We will first make some
reductions. Let x1 and x2 be solutions for initial conditions ϕ1 and ϕ2. Define
y = x2 − x1. For t ≤ 0, y(t) = ϕ2(t) − ϕ1(t) = ψ(t), and ψ is bounded and
continuous. For t ≥ 0, we may subtract the delay differential equations satisfied by
x1 and x2 to obtain

x′2(t)− x
′
1(t) +

∫ ∞
0

[g(t, s, x2(t), x2(t− s)))− g(t, s, x1(t), x1(t− s))] dµ(s) = 0 .
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We may rewrite this as

(4.2) y′(t) +∫
[g(t, s, y(t) + x1(t), y(t− s) + x1(t− s))− g(t, s, x1(t), x1(t− s))] dµ(s) = 0.

Thus, if we define h by

h(t, s, ξ, η) = g(t, s, ξ + x1(t), η + x1(t− s))− g(t, s, x1(t), x1(t− s)),

we see that y is a solution of the initial value problem

y(t) = ψ(t), t ∈ (−∞, 0]

y′(t) +

∫ ∞
0

h(t, s, y(t), y(t− s)) dµ(s) = 0, t ∈ [0,∞).

By the G-lemma, h is again in G. We also have h(t, s, 0, 0) ≡ 0. Thus, in order
to prove Theorem 4.1, it will suffice to prove the following proposition.

Proposition 4.2. Suppose that g ∈ G and that g(·, ·, 0, 0) = 0. Let µ be a finite
positive Borel measure on [0,∞). Suppose that ϕ ∈ BC (−∞, 0], and let x be the
solution of the initial value problem


x(t) = ϕ(t), t ∈ (−∞, 0]

x′(t) +

∫ ∞
0

g(t, s, x(t), x(t− s)) dµ(s) = 0, t ∈ [0,∞).
(4.3)

Then lim
t→∞

x(t) = 0.

In order to prove Proposition 4.2, we will reduce to the case ϕ = 0, as in the last
section.
Thus, let ϕ̄ be an extension of ϕ to (−∞,∞). We choose ϕ̄ so that it is contin-

uously differentiable on [0,∞) and such that the support of ϕ̄ is bounded above.
Thus, both ϕ̄ and ϕ̄′ are bounded.
Let x be a solution of the initial value problem (4.3) and define y(t) = x(t)−ϕ̄(t).

Then y is bounded and continuous, y = 0 on (−∞, 0] and by substituting x = y+ ϕ̄
into (4.3), we see that for t ≥ 0, y satisfies

y′(t) + ϕ̄′(t) +

∫ ∞
0

g(t, s, y(t) + ϕ̄(t), y(t− s) + ϕ̄(t− s)) dµ(s) = 0.

We choose to rewrite this as

(4.4)

y′(t) +

∫ ∞
0

[g(t, s, y(t) + ϕ̄(t), y(t− s) + ϕ̄(t− s))− g(t, s, ϕ̄(t), ϕ̄(t− s))] dµ(s)

= −ϕ̄′(t)−

∫ ∞
0

g(t, s, ϕ̄(t), ϕ̄(t− s)) dµ(s).

We claim that the right hand side of this equation goes to 0 as t goes to infinity.
This is certainly true of ϕ̄′, since the support of ϕ̄ is bounded above.
To deal with the other term, hold s fixed for a moment. Then, for sufficiently

large t, both ϕ̄(t) and ϕ̄(t − s) are zero. Since g(t, s, 0, 0) ≡ 0, we conclude that
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g(t, s, ϕ̄(t), ϕ̄(t− s)) = 0 for all sufficiently large t. Thus, in the integral∫ ∞
0

g(t, s, ϕ̄(t), ϕ̄(t− s)) dµ(s)(4.5)

the integrand goes to zero for each fixed s as t → ∞. The integrand is also
bounded in absolute value by some constant, and constant functions are integrable
with respect to µ, since µ is finite. Thus, (4.5) goes to zero as t → ∞ by the
Dominated Convergence Theorem.
If we now define h by

h(t, s, ξ, η) = g(t, s, ξ + ϕ̄(t), η + ϕ̄(t− s))− g(t, s, ϕ̄(t), ϕ̄(t− s)),(4.6)

h is again in G and h(t, s, 0, 0) ≡ 0. Thus, y is the solution of an initial value
problem 


y(t) = 0, t ∈ (−∞, 0]

y′(t) +

∫ ∞
0

h(t, s, y(t), y(t− s)) = f(t), t ∈ [0,∞),
(4.7)

where f(t)→ 0 as t→∞.
If we show that the solution of y of (4.7) goes to zero at infinity, then the solution

x = y+ ϕ̄ of (4.3) will also go to zero at infinity, since the support of ϕ̄ is bounded
above.
Thus, in order to prove Proposition 4.2, it will suffice to prove the following

proposition.

Proposition 4.3. Suppose that g ∈ G and g(·, ·, 0, 0) = 0. Let µ be a finite positive
Borel measure on [0,∞). Suppose that f ∈ BC [0,∞) and f(t)→ 0 as t→∞. Let
x be the solution of the initial value problem


x(t) = 0, t ∈ (−∞, 0]

x′(t) +

∫ ∞
0

g(t, s, x(t), x(t − s)) dµ(s) = f(t), t ∈ [0,∞).
(4.8)

Then lim
t→∞

x(t) = 0.

The proof of Proposition 4.3 will occupy the rest of the section.
Using the apparatus of the last section, our strategy is as follows. Let X0 ⊆ X

be the space of functions x ∈ X such that x(t) → 0 as t → ∞. It is easy to check
that X0 is a closed subspace of X .
Suppose that we show that X0 is invariant under all of the operators Ta. Then,

as in the last section, we may find some ρ such that B(ρ) is invariant under Ta(ρ)
and Ta(ρ) is a contraction on B(ρ). Thus, Ta(ρ) has a fixed point x in B(ρ), which
is precisely the solution of the initial value problem (4.8). But then X0 ∩B(ρ) is a
closed subset ofX which is invariant under Ta(ρ) and on which Ta(ρ) is a contraction.
Thus, the fixed point x must be in X0, i.e., x(t)→ 0 as t→∞.
Let BC0[0,∞) denote the space of functions f ∈ BC [0,∞) such that f(t) → 0

as t→∞. Since Ta(x) = L
−1
a Ma(x)+L

−1
a f , to show that X0 is invariant under Ta,

it will suffice to show that Ma sends X0 into BC0[0,∞) and L
−1
a sends BC0[0,∞)

into X0 (since f in (4.8) is in BC0[0,∞)).
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To show thatMa(x) sends X0 into BC0[0,∞), it will plainly suffice to show that
the operator H defined by

H(x)(t) =

∫ ∞
0

g(t, s, x(t), x(t − s)) dµ(s), t ≥ 0 ,(4.9)

sends X0 into BC0[0,∞). To show this, suppose that x ∈ X0 and choose ρ ≥ ‖x‖.
Since g(·, ·, 0, 0) = 0, (2.3) gives

|g(t, s, x(t), x(t − s))| ≤ K(0, ρ)max { |x(t)|, |x(t− s)| } .

If we hold s fixed and let t go to infinity, x(t) and x(t − s) go to zero, and so
g(t, s, x(t), x(t − s)) → 0. Thus, the integrand in (4.9) goes to zero as t → ∞ for
fixed s. Since the integrand is bounded by a constant, the Dominated Convergence
Theorem shows that H(x)(t)→ 0 as t goes to infinity.

To show that L
−1
a maps BC0[0,∞) into X0, suppose that f ∈ BC0[0,∞). By

our formula for L
−1
a , we have

L−1a f(t) =

∫ t
0

ea(s−t)f(s) ds .

for t ≥ 0. By a simple change of variable, we may rewrite this convolution as

L−1a f(t) =

∫ t
0

e−asf(t− s) ds .

Thus, we have

|L−1a f(t)| ≤

∫ t
0

e−as|f(t− s)| ds ≤

∫ ∞
0

e−as|f(t− s)| ds ,

where the last integral converges because f is bounded. In the integral∫ ∞
0

e−as|f(t− s)| ds ,(4.10)

the integrand goes to zero as t→∞ for each fixed s, and the integrand is bounded
by the integrable function e−as‖f‖. Thus, (4.10) goes to zero as t goes to infinity,

and so L
−1
a f goes to zero at infinity.

This completes the proof of Proposition 4.3 and hence the proof of Theorem 4.1.

5. Exponential Asymptotic Stability

In this section, we show that under an exponential decay condition on the the
measure µ, the solutions of our initial value problem are globally exponentially
asymptotically stable. Specifically, we prove the following theorem.

Theorem 5.1. Suppose that g ∈ G and that µ is a finite Borel measure on [0,∞)
such that ∫ ∞

0

eλ0s dµ(s) <∞, for some λ0 > 0.(5.1)

For f ∈ BC [0,∞) and ϕ ∈ BC(−∞, 0], consider the initial value problem

x(t) = ϕ(t), t ∈ (−∞, 0]

x′(t) +

∫ ∞
0

g(t, s, x(t), x(t − s)) dµ(s) = f(t), t ∈ [0,∞).
(5.2)
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Then, if x1 and x2 are two solutions of (5.2) for different initial conditions ϕ = ϕ1
and ϕ = ϕ2 respectively, then there are constants C ≥ 0 and λ > 0 such that

|x1(t)− x2(t)| ≤ Ce
−λt, t ≥ 0.

To prove this theorem, we let y = x2 − x1 and make the same reduction we
made in Section 4 in going from Theorem 4.1 to Proposition 4.2. Thus, to prove
Theorem 5.1, it will suffice to prove the following proposition.

Proposition 5.2. Suppose that g ∈ G and that µ is a finite Borel measure on
[0,∞) which satisfies the condition (5.1). Suppose, also, that g(·, ·, 0, 0) = 0. If
ϕ ∈ BC (−∞, 0] and x is the solution of the initial value problem


x(t) = ϕ(t), t ∈ (−∞, 0]

x′(t) +

∫ ∞
0

g(t, s, x(t), x(t− s)) dµ(s) = 0, t ∈ [0,∞),
(5.3)

then there are constants C ≥ 0 and λ > 0 such that

|x(t)| ≤ Ce−λt, t ≥ 0.

To prove this proposition, we next make the same reduction that we made in
Section 4 in passing from Proposition 4.2 to Proposition 4.3. Thus, suppose that
x is the solution of (5.3). Choose an extension ϕ̄ of ϕ which is C1 on [0,∞) and
has support bounded above. Define y = x − ϕ̄, so y = 0 on (−∞, 0]. As before,
we may write the equation satisfied by y in the form (4.4). In our present context,
we need to show that the function on the right hand side of (4.4) is exponentially
decreasing. This is is no problem for ϕ̄′, since the support of ϕ̄ is bounded above.
Thus, we need the following lemma.

Lemma 5.3. Suppose that g ∈ G and that g(·, ·, 0, 0) = 0. Let µ satisfy Condition
(5.1). Define a function f by

f(t) =

∫ ∞
0

g(t, s, ϕ̄(t), ϕ̄(t− s)) dµ(s) ,(5.4)

where ϕ̄ ∈ BC (−∞,∞) and the support of ϕ̄ is bounded above by b > 0. Then there
is a constant C ≥ 0 such that

|f(t)| ≤ Ce−λ0t, t ≥ 0 .

Proof of Lemma. Consider first the µ-measure of the interval [t,∞). Let K denote
the value of the integral in (5.1). Then, for any t ≥ 0 we have

eλ0tµ[t,∞) =

∫ ∞
t

eλ0t dµ(s)

≤

∫ ∞
t

eλ0s dµ(s)

≤

∫ ∞
0

eλ0s dµ(s) = K,

and so

µ[t,∞) ≤ Ke−λ0t.
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Next consider the function g(t, s, ϕ̄(t), ϕ̄(t − s)). If t > b, this function will be
zero if t− s > b, since g(t, s, 0, 0) ≡ 0. Thus, the integrand in (5.4) is nonzero only
for s ≥ t− b. Then we have

|f(t)| ≤

∫ ∞
t−b
|g(t, s, ϕ̄(t), ϕ̄(t− s))| dµ(s).

The integrand is bounded by some constant C, so we have

|f(t)| ≤ Cµ[t− b,∞) ≤ CKeλ0be−λ0t,

for t > b. Since |f | is bounded on [0, b], this completes the proof of the lemma.

To return to the discussion prior to the lemma, by applying this lemma, we
see that y = x − ϕ̄ is a solution of an initial value problem of the form (4.7),
where h is defined by (4.6) and f is exponentially decreasing. If we show that the
solution of this initial value problem is exponentially decreasing, x = y + ϕ̄ will be
exponentially decreasing, since the support of ϕ̄ is bounded above. Thus, to prove
Proposition 5.2, it will suffice to prove the following proposition.

Proposition 5.4. Suppose that g ∈ G and g(·, ·, 0, 0) = 0. Let µ be a finite positive
Borel measure on [0,∞) that satisfies (5.1). Suppose that f ∈ BC [0,∞) and that
there is a constant K such that |f(t)| ≤ Ke−λ0t. Let x be the solution of the initial
value problem


x(t) = 0, t ∈ (−∞, 0]

x′(t) +

∫ ∞
0

g(t, s, x(t), x(t − s)) dµ(s) = f(t), t ∈ [0,∞).
(5.5)

Then, for λ > 0 sufficiently small, there is a constant C such that

|x(t)| ≤ Ce−λt.

To prove this proposition, we first introduce some spaces of exponentially de-
creasing functions. For λ > 0, let Z(λ) denote the space of functions x ∈ X such
that |x(t)| ≤ Ce−λt for some constant C and all t (recall that elements of X are
zero on (−∞, 0]).
We will be able to show that Z(λ) is invariant under the operators Ta for suf-

ficiently small λ. This is not sufficient to prove the proposition, since Z(λ) is not
closed in X . Indeed, if Xc ⊆ X denotes the set of functions in X with compact
support, then Xc ⊆ Z(λ) ⊆ X0 for all λ, but the closure of Xc in X is X0. To deal
with this problem, we put a norm on Z(λ) and show that an appropriate Ta is a
contraction in this norm.
Let eλ(t) = e

λt. A function x ∈ X is in Z(λ) if and only if eλx is bounded. We
define the norm on Z(λ) by

‖x‖λ = ‖eλx‖ = sup
{
eλt|x(t)| | t ∈ R

}
.

Since eλ ≥ 1 where x 6= 0, we see that ‖x‖ ≤ ‖x‖λ, so the inclusion of Z(λ) intoX is
continuous. The mapping Z(λ)→ X : x 7→ eλx is a (bijective) isometry, so Z(λ) is
a Banach space. If λ1 < λ2, then e

λ1t ≤ eλ2t where x is not zero, so ‖x‖λ1 ≤ ‖x‖λ2 .
Thus, Z(λ2) ⊆ Z(λ1) and the inclusion is continuous.
By the definition of the norm, if x ∈ Z(λ), we have

|x(t)| ≤ ‖x‖λe
−λt.
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We make similar definitions for spaces of exponentially decreasing functions on
[0,∞). Thus, Z+(λ) will denote that space of functions f ∈ BC [0,∞) such that
eλf is bounded and we equip Z+(λ) with the norm ‖f‖λ = ‖eλf‖.
We next make some estimates for our operators on the spaces of exponentially

decreasing functions.

We first consider the operators L
−1
a . Suppose that f ∈ Z+(λ), where λ < a.

Then L
−1
a f(t) is zero for t ≤ 0, and for t ≥ 0, we have

|L−1a f(t)| ≤

∫ t
0

e−as|f(t− s)| ds

≤

∫ t
0

e−as‖f‖λe
−λ(t−s) ds

= ‖f‖λe
−λt

∫ ∞
0

e−aseλs ds.

The last integral has the value

1

a− λ
[1− e−(a−λ)t],

which is less than 1/(a− λ), since a− λ > 0. Thus, we have

‖L−1a f‖λ ≤
1

a− λ
‖f‖λ, f ∈ Z+(λ), λ < a.(5.6)

We next turn to the operators Na. If x, y ∈ Z(λ) ∩ B(ρ) and (t, s) ∈ [0,∞) ×
[0,∞), we may apply Lemma 2.2 to conclude

|[ax(t) − g(t, s, x(t), x(t− s))]− [ay(t)− g(t, s, y(t), y(t− s))]|

≤ K(a, ρ)max { |x(t) − y(t)|, |x(t− s)− y(t− s)| }

≤ K(a, ρ)max
{
‖x− y‖λe

−λt, ‖x− y‖λe
−λ(t−s)

}
= K(a, ρ)‖x− y‖λe

−λteλs.

Thus, for x, y ∈ Z(λ) ∩B(ρ),

|Na(x)(t, s) −Na(y)(t, s)| ≤ K(a, ρ)‖x− y‖λe
−λteλs .(5.7)

Now consider the operator Ma : X → BC [0,∞). Suppose that x, y ∈ Z(λ) ∩
B(ρ), where λ ≤ λ0. Then we have

|Ma(x)(t) −Ma(y)(t)| ≤

∫ ∞
0

|Na/m(x)(t, s)−Na/m(y)(t, s)| dµ(s)

≤

∫ ∞
0

K(a/m, ρ)‖x− y‖λe
−λteλs dµ(s)

= K(a/m, ρ)‖x− y‖λe
−λt

∫ ∞
0

eλs dµ(s) ,

where the last integral is finite because λ ≤ λ0. In particular, if we set y = 0
and note that Na(0) = 0 and Ma(0) = 0 (because g(·, ·, 0, 0) = 0), we see that
Ma(x) ∈ Z+(λ) if x ∈ Z(λ) and λ ≤ λ0. We also conclude that for x, y ∈ Z(λ)∩B(ρ)
and λ ≤ λ0,

‖Ma(x)−Ma(y)‖λ ≤ K(a/m, ρ)‖x− y‖λ

∫ ∞
0

eλs dµ(s) .(5.8)
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Consider the initial value problem (5.5), so f ∈ Z+(λ0). Assume that λ ≤ λ0
and λ < a. If x ∈ Z(λ) then, from the results above, Ma(x) ∈ Z+(λ), f ∈ Z+(λ)

and L
−1
a Ma(x) and L

−1
a f are in Z(λ). Thus, Z(λ) is invariant under the operator

Ta(x) = L
−1
a Ma(x) + L

−1
a f . For x, y ∈ Z(λ) ∩B(ρ), we have the estimate

‖Ta(x)− Ta(y)‖λ ≤
1

a− λ
K(a/m, ρ)‖x− y‖λ

∫ ∞
0

eλs dµ(s) .(5.9)

We know that we can find a ρ > 0 such that Ta(ρ)(B(ρ)) ⊆ B(ρ). If we fix
such a ρ and assume λ < a(ρ) and λ < λ0, the set Z(λ) ∩ B(ρ) is invariant under
Ta(ρ). The set Z(λ) ∩B(ρ) is closed in Z(λ), because the inclusion of Z(λ) into X
is continuous. For x, y ∈ Z(λ) ∩B(ρ), we have

‖Ta(ρ)(x) − Ta(ρ)(y)‖ ≤
1

a(ρ)− λ
K(a(ρ)/m, ρ)‖x− y‖λ

∫ ∞
0

eλs dµ(s).

Thus, Ta(ρ) is Lipschitz on Z(λ) ∩B(ρ) with Lipschitz constant

σ(λ) =
1

a(ρ)− λ
K(a(ρ)/m, ρ)

∫ ∞
0

eλs dµ(s).

But σ is a continuous, nondecreasing, function of λ and

σ(0) =
1

a(ρ)
K(a(ρ)/m, ρ)m,

which we know is strictly less than one. Thus, σ(λ) < 1 for λ > 0 sufficiently small.
We conclude that if we choose λ sufficiently small that λ < λ0, λ < a(ρ) and

σ(λ) < 1, then Ta(ρ) leaves Z(λ)∩B(ρ) invariant and is a contraction on this closed
subset of Z(λ). Thus, Ta(ρ) has a fixed point x ∈ Z(λ), which is precisely the solu-
tion of the initial value problem (5.5). This completes the proof of Proposition 5.4
and hence the proof of Theorem 5.1.
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