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On the prescribed-period problem for

autonomous Hamiltonian systems ∗

A. A. Zevin

Abstract

Asymptotically quadratic and subquadratic autonomous Hamiltonian
systems are considered. Lower bounds for the number of periodic solu-
tions with a prescribed minimal period are obtained. These bounds are
expressed in terms of the numbers of frequencies corresponding to the
critical points of the Hamiltonian. Results are based on a global analysis
of families of periodic solutions emanating from these points.

1 Introduction

We consider the autonomous Hamiltonian system

Jẋ = Hx(x), J =

[
0 −In
In 0

]
, (1.1)

where x ∈ R2n and In is the identity matrix of order n. Here, the Hamiltonian
H(x) is assumed to be analytical.
The prescribed-period problem for system (1.1) consists of finding conditions

on H(x) that guarantee the existence of periodic solutions of a given period
T . During the recent years there appeared a considerable amount of work
devoted to this problem, see for example [11]. The most interesting results are
those that establish existence of solutions having minimal period T . For convex
asymptotically subquadratic and superquadratic Hamiltonians, the existence of
at least one such solution was proved by Clarke and Ekeland [3], Ambrosetti and
Mancini [1], Ekeland and Hofer [4], Girardi and Matseu [5]. For second-order
Hamiltonian systems, with an even potential function, some multiplicity results
were obtained by Van Groesen [12]. In these articles, the solution is obtained
as a minimum of a functional, through the use of variational techniques.
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In this paper, we investigate the prescribed-period problem with minimal
period T . The results obtained are based on an examining the behavior of
families of periodic solutions emanating from the equilibrium points. Note this
such approach to nonlocal analysis of autonomous Hamiltonian systems was
previously utilized in [15, 16].
Now we present the main results.
Suppose there are positive constants α and r such that for ‖x‖ > r ,

(H) −αI2n < Hxx(x) < αI2n

i.e., −α‖y‖2 < (Hxx(x)y, y) < α‖y‖2 for y 6= 0, where ‖y‖ = (y, y)1/2 is the
Euclidean norm of y.
We assume that H(x) has a finite number of critical points xp, p = 1, . . . , k in

R
2n (Hx(x

p) = 0). Also assume that they are non-degenerate (detHxx(x
p) 6= 0).

Let ±iωpr (ω
p
r > 0, r = 1, . . . , rp ≤ n) denote the purely imaginary eigenval-

ues of the matrix J−1Hxx(x
p), and let

lpr = i(Jx
p
r , x

p
r) , (1.2)

where xpr is the eigenvector associated with the eigenvalue iω
p
r .

As known in [13], lpr is real and l
p
r 6= 0 for simple eigenvalues. The quantity

ωpr is called a frequency of first kind, or of second kind, if l
p
r > 0 or l

p
r < 0,

respectively.
Denote by dp the number of negative eigenvalues of the matrix J−1Hxx(x

p),
and by np1(T ) and n

p
2(T ) the numbers of the frequencies of first and second kind

satisfying the inequality ωpr > 2π/T . Let

m(T ) =

∣∣∣∣∣
k∑
p=1

(−1)d
p

[np1(T )− n
p
2(T )]

∣∣∣∣∣ . (1.3)

The following theorem gives a lower bound for the number of T -periodic
solutions.

Theorem 1 For T < 2π/α, equation (1.1) has at least m(T ) periodic solutions
with minimal period T .

The proof (given in Section 3) is based on the following arguments. It appears
that at leastm(T ) Lyapunov families of periodic solutions xj(t, s) with the initial
minimal periods Tj(0) < T are continuable in s to an extent that Tj(s) > T ;
therefore, xj(t, s) = T for some s = sj .

2 Preliminary remarks

First let us recall some known facts relating to periodic solutions of autonomous
Hamiltonian systems. For any solution x(t) of (1.1), with

H(x(t)) ≡ h = constant , (2.1)
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and using this integral, equation (1.1) is reduced to a system of order 2n − 1
depending on the parameter h. As a result, a periodic solution x(t) belongs to
a one-parameter family. The existence of such families in a neighbourhood of
an equilibrium position xp is established by the Lyapunov center theorem [8].
Namely, if for some k, the values ωpr satisfy the condition

ωpr
ωpk
6= m, m = 1, 2, . . . ; r = 1, . . . , rp, r 6= k, (2.2)

then there exists a unique family of periodic solutions xpk(t, s) = x
p
k(t+T

p
k (s), s)

such that xpk(t, s) → x
p and T pk (s) → 2π/ω

p
k as s → 0. Thus the rp families

bifurcate from an equilibrium point xp.
Under continuation of such a family in the parameter s branching can occur.

It appears (J.Mallet-Paret and J.Yorke [9] that from the corresponding contin-
uum of solutions one can chose a one-parameter family of solutions (“snake”)
xpk(t, s) possessing the following properties.
The snake may terminate at an equilibrium point xq; in other words, different

families emanating from the points xp and xq may coalesce (it is possible that
q = p). Otherwise, the snake is continuable to an arbitrary large value of the
modulus

Mpk (s) = T
p
k (s) + |h

p
k(s)|+maxt

‖xpk(t, s)‖ (2.3)

where hpk(s) = H(x
p
k(t, s)). The minimal period of the snake T

p
k (s) is continuous

but at most countable number of points sr where it drops by a factor q > 1
(at such a point, a family with the minimal period T pk (sr)/q may branch off the
snake). The left and right limits of T pk (s) at sr are equal.
By scaling the time t = τT , equation (1.1) is reduced to

Jx′ = THx(x), x′ = dx/dτ , (2.4)

so that 1-periodic solutions of (2.4) correspond to T –periodic solutions of (1.1).
The variational equation associated with such a solution x(τ) is

Jy′ = TA(τ)y, A(τ) = Hxx(x(τ)). (2.5)

Let ρk, k = 1, . . . , 2n be the Floquet multipliers of (2.5) (the eigenvalues
of the monodromy matrix W (T ) where W (t) is the matrix of a fundamental
system of solutions satisfying the condition W (0) = I2n).
Since (2.4) is autonomous, (2.5) has always a multiplier ρ = 1 corresponding

to the periodic solution y1(τ) = x
′(τ). In view of integral (2.1), the multiplicity

of this multiplier equals two [10]. Hereafter, we assume ρ1 = ρ2 = 1. If the
corresponding elementary divisors of the matrix W (T ) are simple, there exists
one more 1-periodic solution y2(τ). In the case of non-simple divisors the sec-
ond solution is of the form y2(τ) = f2(τ) + τy1(τ) where f2(τ + 1) = f2(τ).
Substituting this solution in (2.5), we find that f2(τ) satisfies the equation

Jf ′2 = TA(τ)f2 − Jy1(τ) . (2.6)
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If ρk 6= 1 for k > 2, the corresponding invariant subspaces of the matrix
W (T ) are J-orthogonal [13], i.e.,

(Jyr(0), yq(0)) = 0 for r ≤ 2, q > 2 . (2.7)

If ρk = 1 for some k > 2, relation (2.7) is reached by an appropriate choice
of the vectors associated with the multiplier ρ = 1.
Setting r = 1 in (2.7), and taking into account that Jy1 = Hx and that

(Jy1, y1) = 0, we find

(Hx(x(0)), yq(0)) = 0 for q 6= 2. (2.8)

As Hx(x(0)) 6= 0, from (2.8) it follows

(Hx(x(0)), y2(0)) 6= 0. (2.9)

Fixing the energy h and one of the coordinates (so that the trajectory of x(τ)
is transversal to the corresponding (2n− 2)–dimensional disc B), we obtain the
Poincare map G(v, h) with G(v0, h) = v0 where v0 corresponds to the solution
x(τ). The eigenvalues of the matrix of partial derivatives Gv(v0, h) are the
multipliers ρ3, . . . , ρ2n of equation (2.5).
Let x(t, s) be a snake, then

v0(s) = G(v0(s), h(s)). (2.10)

Differentiating (2.10), we obtain

D(s)v0s(s) = hs(s)Gh(v0(s), h(s)) (2.11)

where D(s) = [I2n−2 −Gv(v0(s), h(s))], hs(s) = dh(s)/ds,
Gh(v0, h) = ∂G(v0, h)/∂h, and v0s(s) = dv0(s)/ds.
As is seen from (2.11), if hs(sk) = 0, then U(sk) = detD(sk) = 0 (and,

therefore, ρq(sk) = 1 for some q > 2 [9]). Generically, h(s) is a Morse function
(hss(sk) 6= 0 for hs(sk) = 0 [2]) and v0s(sk) 6= 0, so the functions hs(s) and
U(s) change their signs at the same points sk.
As is mentioned above, the frequencies ωpk are classified into that of first or

second kind depending on the sign of lpk (this complies with the Krein’s clas-
sification [7] of the corresponding multipliers ρpk = exp(iω

p
kT ) of the linearized

system). If Hxx(x
p) > 0 or Hxx(x

p) < 0 (i.e., xp is a minimum or a maximum
of H(x)) all eigenvalues of the matrix J−1Hxx(x

p) are purely imaginary [13].
Taking into account that J−1Hxx(x

p)xpk = iω
p
kx
p
k , we find

lpk = i(Jx
p
k, x

p
k) = (Hxx(x

p)xpk, x
p
k)/ω

p
k,

so lpk > 0 or l
p
k < 0 and, therefore, all frequencies ω

p
k, k = 1, . . . , n are of first

or second kind, correspondingly. If the matrix Hxx(x
p) is indefinite, there exist

frequencies of each kind. Note that bilateral bounds for their numbers expressed
in the numbers of positive and negative eigenvalues of the matrix Hxx(x

p) are
obtained in [17].
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3 Proof of main Theorem

First let us establish some preliminary results. Let xpk(t, s) be a Lyapunov family
(xpk(t, s) → x

p, T pk (s) → 2π/ω
p
k as s → 0). The following lemma describes the

behavior of the corresponding energy hpk(s) in the vicinity of x
p depending on

the kind of the frequency ωpk.

Lemma 1 For small s, the function hpk(s) increases or decreases with s if the
frequency ωpk is of first or second kind, respectively.

Proof . Setting x = xpk(t, s) in (2.1) and differentiating it with respect to s,
we obtain

hpks(s) = dh
p
k(s)/ds = (Hx(x

p
k(t, s)), x

p
ks(t, s)) = (Jẋ

p
k(t, s), x

p
ks(t, s)). (3.1)

For small s, one can assume s = |h−H(xp)|, then [8]

xpk(t, s) = s
1/2xpk exp(iω

p
kt) +O(s, t) (3.2)

where O(s, t)/s1/2 → 0 as s→ 0. From (3.1) and (3.2) we obtain

hpks(0) = 1/2iω
p
k(Jx

p
k, x

p
k) = 1/2ω

p
kl
p
k. (3.3)

Thus, the sign of hpks(0) coincides with that of l
p
k. The lemma is proved.

Let h(s) and T (s) be the energy and period of a one-parameter family x(t, s).

Lemma 2 If hs(sk) = 0 , then Ts(sk) = 0.

Proof Setting x = x(τ, s) in (2.4) and differentiating it with respect to s, we
obtain

Jx′s = TA(τ, s)xs + TsHx(x(τ, s)). (3.4)

Let Ts(s) 6= 0. Taking into account that

Hx(x(τ, s)) = Jx
′(τ, s)/T = Jy1(τ, s)/T ,

we find that the function −xs(τ, s)T (s)T−1s (s) satisfies (2.6). Therefore, xs(τ, s)
may be represented in the form

xs(τ, s) = −Ts(s)T
−1(s)[y2(τ, s)− τy1(τ, s)] +

∑
k

akyk(τ, s) , (3.5)

where the sum includes the 1–periodic solutions yk(τ, s) of (2.5), xs(τ, s) =
xs(τ + 1, s).
From (2.8), (2.9) and (3.5) we obtain

hs(s) = (Hx(x(τ, s)), xs(τ, s)) = −Ts(s)T
−1(s)(Hx(x(τ, s)), y2(τ, s)) 6= 0 .

(3.6)
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Thus, hs(s) 6= 0 for Ts(s) 6= 0. The lemma is proved.

Let xpk(t, s) and x
q
r(t, s) be Lyapunov families; if they belong to the same

snake, they merge under continuation in s. The following lemma (having a
dominant role in the proof of the above Theorem) indicates cases when different
families certainly belong to different snakes.
Let µml = 1 and µ

m
l = 2 for a frequency ω

m
l of first and second kind,

respectively. Recall that dm denotes the number of negative eigenvalues of the
matrix J−1Hxx(x

m).

Lemma 3 If the values µpk + d
p and µqr + d

q are both odd or even, the families
xpk(t, s) and x

q
r(t, s) belong to different snakes.

Proof Suppose xpk(t, s) and x
q
r(t, s) belong to the same snake x(t, s). We

also assume that x(t, s) = xpk(t, s) for small s, then x(t, s∗ − s) = x
q
r(t, s),

h(0) = H(xp) and h(s∗) = H(x
q) for some s∗. Let sk, k = 1, 2, . . . be successive

critical points of h(s) on (0, s∗), (hs(sk) = 0). As is shown above, U(sk) = 0;
generically, hss(sk) 6= 0 and Us(sk) 6= 0.
Suppose first that µpk = µ

q
r (i.e., the frequencies ω

p
k and ω

q
r are of the same

kind). By Lemma 1, the signs of hpks(s) = hs(s) and h
q
rs(s) = −hs(s∗ − s)

for small s coincide; therefore, the total number of the points sk is odd. It
follows that the signs of U(0) and U(s∗) are different. Clearly, U(s) = (ρ3(s)−
1) . . . (ρ2n(s)− 1). The complex multipliers ρk(s) are conjugate, so U(s) > 0 or
U(s) < 0 when, respectively, the number of multipliers ρk(s) ∈ (0, 1) is even or
odd. Observing that A(τ, 0) = Hxx(x

p) and A(τ, s∗) = Hxx(x
q), we find that

the respective numbers of the multipliers equal dp and dq. Hence, one of these
values and, therefore, one of the sums µpk + d

p and µqr + d
q is odd and another

is even.
Suppose now that µpk 6= µ

q
r. Here the signs of h

p
ks(s) and h

q
rs(s) are different,

so the number of sk ∈ (0, s∗) is even. Therefore, the signs of U(0) and U(s∗)
coincide, so, both of the values dp and dq are odd or even and, thus, as in the
previous case, one of the sums µpk + d

p and µqr + d
q is odd and another is even.

Thus, only under this condition different families may belong to the same snake.
The lemma is proved.

Note that from Lemma 3 it follows that families xpk(t, s) and x
p
r(t, s) ema-

nating from the same equilibrium position xp and corresponding to frequencies
ωpk and ω

p
r of the same kind cannot merge together.

The above results enable us to prove readily the Theorem.

Proof of Theorem 1 By definition, np1(T ) and n
p
2(T ) are, respectively, the

numbers of the frequencies of first and second kind satisfying the inequality
ωpk > 2π/T . Taking into account Lemma 3, we find that at least m(T ) of the
corresponding families xpk(t, s) with the initial periods T

p
k (0) < T belong to

different snakes, i.e., they do not merge as s increases. So, such a family xpk(t, s)
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either meets a family xqh(t, s) with the initial period T
q
h(0) > T or is continuable

to an arbitrary large value of the modulus Mpk (s). Clearly, in the first case
T pk (s) = T for some s. Let us prove that the same is true for the second case.
Let X(t) = ‖x(t)‖, X− = X(t−) = mintX(t) and X+ = X(t+) = maxtX(t)

where x(t) = x(t + T ) is a solution of (1.1), 0 ≤ t− < t+ < T . By (H), there
exist constants γ and c such that ‖Hx(x)‖ < γ‖x‖ + c for all x ∈ R2n. Taking
into account that ‖Hx(x)‖ = ‖ẋ‖, we find (see [6], ch.4, lemma 4.1)

X+ ≤ [X− + c(t+ − t−)] exp[γ(t+ − t−)].

Thus, if T pk (s) remains bounded, thenX
p
k− →∞whenX

p
k+ →∞ and, therefore,

for some s, ‖xpk(t, s)‖ > r , ∀t.
By (H), the value α may serve as a Lipschitz constant for the function

J−1Hx(x) with ‖x‖ > r; so from a theorem by Yorke [14] it follows that

T pk (s) > 2π/α . (3.7)

As mentioned above, at some points sr the minimal period of the solution
xpk(t, sr) may be equal T

p
k (sr)/q where q is an integer [9]. Let us show that T

p
k (sr)

is the minimal period of xpk(t, sr) for some s 6= sr. Really, for T = T
p
k (sr)/q,

variational equation (2.4) has a multiplier ρ′m = exp(2πi/q) (m > 2) [9]; so,
for T = T pk (sr), the corresponding multiplier ρm = (ρ

′
m)
q = 1. Therefore,

hs(sr) = 0 and, by Lemma 2, T
p
ks(sr) = 0. Generically, sr is a local extremum

of the function T pk (s), so, for T ∈ (2π/ω
p
k, 2π/α), there exists s 6= sr such that

T pk (s) = T
p
k (sr) is the minimal period of x

p
k(t, s). The theorem is proved.

4 Conclusion

Theorem 1 gives a lower bound for the number of periodic solutions with a pre-
scribed minimal period T . Note that if a system is asymptotically subquadratic
(i.e., H(x)‖x‖−2 → 0 as ‖x‖ → ∞), then the value α in (H) may be taken
as small as one likes, so Theorem 1 enables one to establish the existence of
periodic solutions with an arbitrary large minimal period.
Suppose that a system has a unique equilibrium position x = 0 andHxx(0) >

0 or Hxx(0) < 0. As shown above, the frequencies ωk, k = 1, . . . , n are of
first or second kind. The corresponding families cannot coalesce as s increases.
Therefore, for any T < 2π/α, there exist at least n1(T ) periodic solutions with
the minimal period T where n1(T ) is the number of frequencies ωk > 2π/T .
In particular, for an asymptotically subquadratic system, there exist at least n
periodic solutions with any minimal period T > 2π/ω1 where ω1 is the smallest
frequency of the linearized system.
Note that these results cannot be improved without additional information

about H(x). One can easily construct a Hamiltonian such that ‖xk(t, s)‖ → ∞
and the periods Tk(s) increase monotonically to 2π/α as s→∞. Clearly, here
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the number of solutions with a minimal period T equals n1(T ), i.e., coincides
with the lower bound obtained.
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