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RELATIONSHIP BETWEEN DIFFERENT

TYPES OF STABILITY FOR LINEAR ALMOST

PERIODIC SYSTEMS IN BANACH SPACES

D. N. Cheban

Abstract. For the linear equation x′ = A(t)x with recurrent (almost periodic)

coefficients in an arbitrary Banach space, we prove that the asymptotic stability of

the null solution and of all limit equations implies the uniform stability of the null

solution.

Introduction

In 1962, W. Hahn [13] posed the problem of whether asymptotic stability implies
uniform stability for linear equation

x′ = A(t)x (x ∈ Rn) (0.1)

with almost periodic coefficients. In 1965, C. C. Conley and R. K. Miller [12] gave a
negative answer to this question, by constructing a scalar equation x′ = a(t)x with
the property that every solution ϕ(t, x, a)→ 0 as t→ +∞, but the null solution is
not uniformly stable (see also [4]). From the results by R. J. Sacker and G. R. Sell
[17] and I. U. Bronshteyn [2, p.141], the uniform stability of the null solution to
(0.1) holds under the following conditions: The matrix A(t) in (0.1) is recurrent (in
particular, almost periodic), and the asymptotic stability holds for the null solution
of (0.1) and for the null solutions of all systems

x′ = B(t)x , (0.2)

where B ∈ H(A) = {Aτ : τ ∈ R}, with Aτ denoting the translation of the matrix A
by τ and the bar denoting the closure in the topology of the uniform convergence
on compact subsets of R. Also we want to point out that from the results of the
author in [5], the result mentioned above is valid for (0.1) with compact matrix
(i. e., when H(A) is compact). The goal of the present paper is to study the
relationship between the asymptotical stability and uniform stability of the null
solution of system (0.1) in arbitrary Banach spaces.
Our main result is that for (0.1) with recurrent coefficients in an arbitrary Ba-

nach space the following statement holds: If the null solution of (0.1) and the null
solutions of all equations (0.2) are asymptotically stable, then the null solution of
(0.1) is uniformly stable.
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1. Linear non-autonomous dynamical systems

Assume that X and Y are complete metric spaces, R is the set of real numbers,
Z is the set integer numbers, T = R or Z, T+ = {t ∈ T : t ≥ 0}, and T− = {t ∈ T :
t ≤ 0}. Denote by (X,T+, π) a semigroup dynamical system on X, and by (Y,T, σ)
a group on Y . A triple 〈(X,T+, π), (Y,T, σ), h〉, where h is a homomorphism of
(X,T+, π) onto (Y,T, σ), is called a non-autonomous dynamical system.
The system (X,T+, π) is called: [6-7]

point dissipative, if there is K ⊆ X such that for all x ∈ X

lim
t→+∞

ρ(xt,K) = 0, (1.1)

where xt = πtx = π(t, x);
compactly dissipative, if (1.1) holds uniformly with respect to x on compact
subsets of X;
locally dissipative, if for a point p ∈ X there is δp > 0 such that (1.1) holds
uniformly with respect to x ∈ B(p, δp);
A non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is said to be point

(compact, local) dissipative, if the autonomous dynamical system (X,T+, π) is so.
Let (X,h, Y ) be a locally trivial Banach fibre bundle over Y [3]. A non-autonomous

dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is said to be linear if the mapping πt :
Xy → Xyt is linear for every t ∈ T+ and y ∈ Y , where Xy = {x ∈ X|h(x) = y}
and yt = σ(t, y). Let | · | be a norm on (X,h, Y ), i. e., | · | is co-ordinated with the
metric ρ ( that is ρ(x1, x2) = |x1−x2| for any x1, x2 ∈ X such that h(x1) = h(x2)).
In [8], the author obtained a point (compact, local) dissipativity criterion for linear
systems.

Theorem 1.1 [8]. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dy-
namical system and Y be compact, then the following assertions hold
1. 〈(X,T+, π), (Y,T, σ), h〉 is point dissipative if and only if lim

t→+∞
|xt| = 0 for

all x ∈ X;
2. A non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is compactly

dissipative if and only if 〈(X,T+, π), (Y,T, σ), h〉 is point dissipative and there exists
a positive number M such that for all x ∈ X and t ∈ T+,

|xt| ≤M |x| ; (1.2)

3. A non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is locally dissi-
pative if and only if there exist positive numbers N and ν such that |xt| ≤ Ne−νt|x|
for all x ∈ X and t ∈ T+.

¿From the Banach-Steinhauss theorem it follows that point dissipativity and
compact dissipativity are equivalent for autonomous linear systems. For an example
of a linear autonomous dynamical system which is compactly dissipative but not
locally dissipative, see [8].

Theorem 1.2. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dynamical
system and the following conditions hold
1. Y is compact and minimal ( i. e., Y = H(y) = {yt : t ∈ T} for all y ∈ Y );
2. for each x ∈ X there exists Cx ≥ 0 such that for all t ∈ T+,

|xt| ≤ Cx ; (1.3)
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3. the mapping y 7→ ‖πty‖ is continuous for every t ∈ T+, where ‖π
t
y‖ is the

norm of the linear operator πty = π
t|Xy .

Then there exists M ≥ 0 such that (1.2) holds for all t ∈ T+ and x ∈ X.

Proof. From Condition 2. and the Banach-Steinhauss theorem, it follows the uni-
form boundedness of the family of linear operators {πty : t ∈ T+} for every y ∈ Y ,
i. e., for each y ∈ Y there exists My ≥ 0 such that ‖πty‖ ≤ My for all t ∈ T+. We
put

d(y) = sup
t≥0
‖πty‖ (1.4)

and claim that d : Y → R+ is lower semi-continuous, i. e., lim inf
yn→y

d(yn) ≥ d(y) for

all y ∈ Y and {yn} → y. Suppose that this is not true, then there exist y ∈ Y, {yn}
and ε > 0 such that

lim inf
yn→y

d(yn) = d(y)− ε (1.5)

From (1.4) it follows that d(y) = lim
n→+∞

‖πtny ‖ for some sequence {tn} ⊆ T+ and,

consequently, there exists k such that

|‖πtny ‖ − d(y)| <
ε

4
(1.6)

for all n ≥ k. By the the continuity of mapping y 7→ ‖πty‖ there exists n(k) such
that

|‖πtkyn‖ − ‖π
tk
y ‖| <

ε

4
(1.7)

for all n ≥ n(k). From (1.6) and (1.7),

|d(y)− ‖πtkyn‖| <
ε

2
(1.8)

for all n ≥ n(k). From (1.8),

|d(y)− d(yn)| ≤
ε

2
(1.9)

for all n ≥ n(k). Notice that (1.9) contradicts (1.5), and this contradiction proves
that d : Y → R+ is lower semicontinuous. Hence, this function has a set of points
of continuity D ⊂ Y of the type Gδ. Let p ∈ D, then there exist positive numbers
δp and Mp such that d(y) ≤Mp for all y ∈ S[p, δp] = {y ∈ Y |ρ(y, p) ≤ δp} ⊂ Y .
Since Y is minimal, there are negative numbers t1, t2, . . . , tm such that Y =⋃m
i=1 σ(S[p, δp], ti) (see [16, p.134]). We put L = max{ti|i = 1, 2, . . . ,m}. As-
sume that m ∈ Y , y ∈ S[p, δp] and ti are such that m = yti. Then

|xt| = |πt+tiy (π−tiyti (x))| ≤MpC|x| (1.10)

for all x ∈ X with h(x) = m and t ≥ L, where

C = max{max{‖π−tiy ‖ : y ∈ Y }, i = 1, 2, . . . ,m} .

We claim that the family of operators {πt : t ∈ [0, L]} is uniformly continuous,
that is, for any ε > 0 there is a δ(ε) > 0 such that |x| ≤ δ implies |xt| ≤ ε for all



4 D. N. Cheban EJDE–1999/46

t ∈ [0, L]. On the contrary, assume that there are ε0 > 0, δn > 0 with δn → 0,
|xn| < δn and tn ∈ [0, L] such that

|xntn| ≥ ε0. (1.11)

Since (X,h, Y ) is a locally trivial Banach fibre bundle and Y is compact, then the
zero section Θ = {θy : y ∈ Y } of (X,h, Y ) is compact and, consequently, we can
assume that the sequences {xn} and {tn} are convergent. Put x0 = lim

n→+∞
xn and

t0 = lim
n→+∞

tn, then x0 = θy0 (y0 = h(x0)). Passing to the limit in (1.11) as

n→ +∞, we obtain 0 = |x0t0| ≥ ε0. This last inequality contradicts the choice of
ε0, and hence proves the above assertion. If γ > 0 is such that |πtx| ≤ 1 for all
|x| ≤ γ and t ∈ [0, L], then

|xt| ≤
1

γ
|x| (1.12)

for all t ∈ [0, L] and x ∈ X. We put M = max{γ−1,MpC}, then from (1.10) and
(1.12) it follows (1.2) for all t ≥ 0 and x ∈ X. The theorem is proved.

Remark 1.3. a.) If the fibre bundle (X,h, Y ) is finite-dimensional, then condi-
tion 3 in Theorem 1.2 holds.
b.) Let X = E × Y, where E is a Banach space and π = (ϕ, σ), i. e., πtx =

(ϕ(t, u, y), σty) for all t ∈ T+ and x = (u, y) ∈ X = E × Y . Then condition 3 in
Theorem 1.2 holds, if for every t ∈ T+ the mapping U(t, ·) : Y → [E] is continuous,
where U(t, y)u = ϕ(t, u, y) with (t, u, y) ∈ T+×E ×Y and [E] the Banach space of
continuous operators acting on E equipped with the operator norm.

Theorem 1.4. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dynamical
system, Y be a compact minimal set and the mapping y 7→ ‖πty‖ be continuous for
each t ∈ T+. Then the point dissipativity of 〈(X,T+, π), (Y,T, σ), h〉 implies its
compact dissipativity.

Proof. Assume that the conditions of Theorem 1.4 are fulfilled and the non-autonomous
dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is point dissipative, then according to
Theorem 1.1 for every x ∈ X there exists a constant Cx ≥ 0 such that (1.3) holds
for all x ∈ X and t ∈ T+. Then by referring to Theorem 1.1, the present proof is
complete.

Theorem 1.5 [6]. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dy-
namical system, Y be compact, then the following assertions take place.
1. If (X,T+, π) is completely continuous (i. e., for all bounded subset A ⊂ X

there exists a positive number l = l(A) such that πlA is precompact), then from the
point dissipativity of 〈(X,T+, π), (Y,T, σ), h〉 follows its local dissipativity;
2. If (X,T+, π) is asymptotically compact (i. e., for all bounded sequence {xn} ⊂

X and {tn} → +∞ the sequence {xntn} is precompact), then from the compact
dissipativity of 〈(X,T+, π), (Y,T, σ), h〉 results its local dissipativity.

2. Some classes of linear non-autonomous differential equations

Let Λ be a complete metric space of linear operators that act on Banach space
E and C(R,Λ) be a space of all continuous operator-functions A : R→ Λ equipped
with the open-compact topology and (C(R,Λ),R, σ) be the dynamical system of
shifts on C(R,Λ).
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Ordinary linear differential equations. Let Λ = [E] and consider the linear
differential equation

u′ = A(t)u , (2.1)

where A ∈ C(R,Λ). Along with equation (2.1), we shall also consider its H−class,
that is, the family of equations

v′ = B(t)v , (2.2)

where B ∈ H(A) = {Aτ : τ ∈ R},Aτ (t) = A(t + τ) (t ∈ R) and the bar denotes
closure in C(R,Λ). Let ϕ(t, u,B) be the solution of equation (2.2) that satisfies the
condition ϕ(0, v,B) = v. We put Y = H(A) and denote the dynamical system of
shifts on H(A) by (Y,R, σ), then the triple 〈(X,R+, π), (Y,R, σ), h〉 is a linear non-
autonomous dynamical system, where X = E×Y, π = (ϕ, σ) (i. e., π((v,B), τ) =
(ϕ(τ, v,B),Bτ ) and h = pr2 : X → Y . Applying Theorem 1.4 to this system, we
obtain the following assertion.

Theorem 2.1. Let A ∈ C(R,Λ) be recurrent (i. e., H(A) is compact minimal set
of (C(R,Λ),R, σ) ) and the zero solutions of equation (2.1) and all equations (2.2)
are asymptotically stable, i. e., lim

t→+∞
|ϕ(t, v,B)| = 0 for all v ∈ E and B ∈ H(A).

Then the zero solution of equation (2.1) is uniformly stable, i. e., there existsM ≥ 0
such that |ϕ(t, v,B)| ≤M |v| for all t ≥ 0, v ∈ E and B ∈ H(A).

Proof. By Lemma 2 in [9], the mapping B 7→ ϕ(t, ·,B) from H(A) into [E] is
continuous for all t ∈ R. Then applying Theorem 1.3 this proof is complete.

Partial linear differential equations. Let Λ be some complete metric space of
linear closed operators acting on a Banach space E ( for example Λ = {A0 +B :
B ∈ [E]}, where A0 is a closed operator that acts on E). We assume that the
following conditions are fulfilled for equation (2.1) and its H− class (2.2).
a.) For every v ∈ E and B ∈ H(A) equation (2.2) has exactly one solution that

is defined on R+ and satisfies the condition ϕ(0, v,B) = v.
b.) The mapping ϕ : (t, v,B) → ϕ(t, v,B) is continuous in the topology of

R+ × E × C(R; Λ).
c.) For every t ∈ R+ the mapping U(t, ·) : H(A) → [E] is continuous, where

U(t, ·) is the Cauchy operator of equation (2.2), i. e., U(t,B)v = ϕ(t, v,B) (t ∈
R+, v ∈ E and ∈H(A) ).
Under the above assumptions, (2.1) generates a linear non-autonomous dy-

namical system 〈(X,R+, π), (Y,R, σ), h〉, where X = E × Y , π = (ϕ, σ) and
h = pr2 : X → Y . Applying Theorem 1.4 to this system, we will obtain the
analogue to Theorem 2.1 for different classes of partial differential equations.

We will consider an example of a partial differential equation which satisfies
conditions a)-c) above. Let H be a Hilbert space with a scalar product 〈·, ·〉 = | · |2,
D(R+,H) be the set of all infinite differentiable and bounded functions on R+ with
values in H.
Denote by (C(R, [H]),R, σ) the dynamical system of shifts on C(R, [H]). Con-

sider the equation

∫

R+

〈u(t), ϕ′(t)〉+ 〈A(t)u(t), ϕ(t)〉 dt = 0 , (2.3)
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along with the family of equations

∫

R+

〈u(t), ϕ′(t)〉+ 〈B(t)u(t), ϕ(t)〉 dt = 0 , (2.4)

where B ∈ H(A) = {Aτ : τ ∈ R}, Aτ (t) = (t + τ) and the bar denotes closure in
C(R, [H]).
A function u ∈ C(R+,H) is called a solution of (2.3), if the equality in (2.3) is

satisfied for all ϕ ∈ D(R+,H).
Assume that the operator A(t) is self-adjoint. Let (H(A),R, σ) be the dynam-

ical system of shifts on H(A), ϕ(t, v,B) be a solution of (2.4) with the condi-
tion ϕ(0, v,B) = v, X = H × H(A), X be a set of all the points 〈u,B〉 ∈ X
such that through point u ∈ H passes a solution ϕ(t, u,A) of (2.3) defined on
R+. According to Lemma 2.21 in [10] the set X is closed in X . By Lemma
2.22 in [10] the triple (X,R+, π) is a dynamical system on X (where π = (ϕ, σ))
and 〈(X,R+, π), (Y,R, σ), h〉 is a linear non-autonomous dynamical system, with
h = pr2 : X → Y = H(A). Applying the results from [1] it is possible to show
that for every t the mapping B 7→ U(t,B) ( where U(t,B)v = ϕ(t, v,B)) from H(A)
into [H] is continuous and, consequently, for this system we can apply Theorem 1.3.
Thus the following assertion takes place.

Theorem 2.2. Let A ∈ C(R, [H]) be recurrent and the zero solution of (2.1) and
the zero solutions of (2.2) be asymptotically stable, i. e., lim

t→+∞
|ϕ(t, v,B)| = 0 for

all v ∈ E and B ∈ H(A). Then the zero solution of (2.1) is uniformly stable, i. e.,
there exists M ≥ 0 such that |ϕ(t, v,B)| ≤M |v| for all t ≥ 0, v ∈ H and B ∈ H(A).

We will give an example of a boundary-value problem reduced to an equation of
type (2.3). Let Ω be a bounded domain in Rn, Γ be boundary of Ω, Q = R+ × Ω
and S = R+ × Γ. In Q consider the initial boundary-value problem

∂u

∂t
= L(t)u (u|t=0 = ϕ, u|S = 0) , (2.5)

where

L(t)u =
n∑

i,j=1

∂

∂xi
(aij(t, x)

∂u

∂xj
)− a(t, x)u .

By the Riesz representation theorem,

〈A(t)u, ϕ〉 = −

∫

Ω

[

n∑
i,j=1

aij(t, x)
∂u

∂xj

∂ϕ

∂xi
+ a(t, x)uϕ]dx.

If aij(t, x) = aji(t, x) and the functions aij(t, x) and a(t, x) are recurrent (almost
periodic) with respect to t ∈ R uniformly with respect to x ∈ Ω, then we can apply
Theorem 2.2 to equation (2.5), if H = Ẇ 1

2 (Ω).

Linear functional-differential equations. Let r > 0, C([a, b],Rn) be the Ba-
nach space consisting of continuous functions from [a, b] to Rn with the supre-
mum norm. Then we put C = C([−r, 0],Rn). Let σ ∈ R, A ≥ 0 and u ∈
C([σ − r, σ + A],Rn). For t ∈ [σ, σ + A] we define ut ∈ C by ut(θ) = u(t + θ),
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−r ≤ θ ≤ 0. Denote by A = A(C,Rn) the Banach space consisting of linear con-
tinuous operators from C into Rn, equipped with the operator norm. Consider the
equation

u′ = A(t)ut , (2.6)

where A ∈ C(R,A). We put H(A) = {Aτ : τ ∈ R}, Aτ (t) = A(t+ τ) and the bar
denotes closure in the topology of uniform convergence on compact subsets of R.
Along with equation (2.6) we also consider the family of equations

u′ = B(t)ut , (2.7)

where B ∈ H(A). Let ϕ(t, v,B) be a solution of (2.7) with ϕ0(v,B) = v on
R+. We put Y = H(A) and denote by (Y,R, σ) the dynamical system of shifts
on H(A). Let X = C × Y and π = (ϕ, σ) be the dynamical system on X,
defined by π(t, (v,B)) = (ϕτ (v,B),Bτ ). The non-autonomous dynamical system
〈(X,R+, π), (Y,R, σ), h〉 (h = pr2 : X → Y ) is linear, and the following assertion
takes place.

Lemma 2.3. Let H(A) be compact in C(R,A), then the non-autonomous dynam-
ical system 〈(X,R+, π), (Y,R, σ), h〉 generated by (2.6) is completely continuous.

Proof. Let B be a bounded subset of C[−r, 0], and t ≥ r. By the continuity of
the mapping ϕ : R+ × C ×H(A) 7→ C and the compactness of H(A) there exists
a positive number M such that |ϕτ (v,B)| ≤ M and |B(τ)ϕτ (v,B)| ≤ M for all
τ ∈ [0, t], B ∈ H(A) and v ∈ B. Consequently, |ϕ̇(τ, v,B)| ≤ M for all τ ∈ [0, t],
B ∈ H(A), and v ∈ B, i. e., the family of functions {ϕt(v,B) : B ∈ H(A), v ∈ B} (
for t ≥ r) is uniformly continuous on [−r, 0]. Therefore, this family of functions is
precompact, and the present proof is complete.

Theorem 2.4. Let H(A) be compact. Then the following assertion are equivalent.
1. For any B ∈ H(A) the zero solution of (2.7) is asymptotically stable, i. e.,
lim
t→+∞

|ϕt(v,B)| = 0 for all v ∈ C and B ∈ H(A).

2. The zero solution of (2.6) is uniformly asymptotically stable, i. e., there are
the positive numbers N and ν such that |ϕt(v,B)| ≤ Ne−νt|v| for all t ≥ 0, v ∈ C
and B ∈ H(A).

Proof. Let 〈(X,R+, π), (Y,R, σ), h〉 be the linear non-autonomous dynamical sys-
tem, generated (2.6). By Lemma 2.3 this system is completely continuous. Then
using Theorems 1.1 and 1.5, we conclude the present proof.

Consider the neutral functional differential equation

d

dt
Dxt = A(t)xt , (2.8)

where A ∈ C(R,A) and D ∈ A is non-atomic at zero [14, p. 67]. As in the case of
(2.6), the equation (2.8) generates a linear dynamical system 〈(X,R+, π), (Y,R, σ), h〉,
where X = C × Y , Y = H(A) and π = (ϕ, σ).

Theorem 2.5 [4, 11]. Let 〈(X,R+, π), (Y,R, σ), h〉 be a non-autonomous dynam-
ical system, and the mapping πt = π(·, t) : X → X(tR+) be representable as a sum
π(x, t) = ϕ(x, t) + ψ(x, t) for all tR+ and x ∈ X, and the following conditions be
are fulfilled.
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1. |ϕ(x, t)| ≤ m(t, r) for all tR+, r > 0 and |x| ≤ r, where m : R+ × R+ → R+
and m(t, r)→ 0 for t→ +∞;
2. The mappings ψ(·, t) : X → X(t > 0) are conditionally completely continuous,

i. e., ψ(A, t) is relatively compact for any t > 0 and any bounded positively invariant
set A ⊆ X.
Then the dynamical system (X,R+, π) is asymptotically compact.

Lemma 2.6. Let H(A) be compact and the operator D be stable, i. e., the zero
solution of the homogeneous difference equation Dyt = 0 is uniformly asymptotically
stable. Then a linear non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉,
generated by (2.8), is asymptotically compact.

Proof. According to [15, p.119, formula (5.18)] the mapping ϕt(·,B) : C → C can
be written as

ϕt(·,B) = St(·) + Ut(·,B)

for all B ∈ H(A), where Ut(·,B) is conditionally completely continuous for t ≥ r.
Also there exist positive constants N, ν such that ‖St‖ ≤ Ne−νt(t ≥ 0). Then this
proof is complete by referring to Theorem 2.5.

Theorem 2.7. Let A ∈ C(R,A) be recurrent (i. e., H(A) is compact minimal
in the dynamical system of shifts (C(R,A),R, σ) ) and let D be stable. Then the
following assertions are equivalent.
1. The zero solution of (2.6) and the zero solutions of all equations

d

dt
Dxt = B(t)xt , (2.9)

where B ∈ H(A), are asymptotically stable, i. e., lim
t→+∞

|ϕ(t, v,B)| = 0 for all v ∈ C

and B ∈ H(A) (ϕ(t, v,B) is a solution of (2.9) with ϕ(0, v,B) = v).
2. The zero solution of (2.8) is uniformly exponentially stable, i. e., there are a

positive numbers N and ν such that |ϕ(t, v,B)| ≤ Ne−νt|v| for all t ≥ 0, v ∈ C and
B ∈ H(A).

Proof. Let 〈(X,R+, π), (Y,R, σ), h〉 be a linear non-autonomous dynamical system,
generated by (2.8). By Lemma 2.6 this system is asymptotically compact. To
complete this proof it is sufficient to refer to Theorems 1.1 and 1.5.
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