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A classification scheme for positive solutions of

second order nonlinear iterative differential

equations ∗

Xianling Fan, Wan-Tong Li, & Chengkui Zhong

Abstract

This article presents a classification scheme for eventually-positive so-
lutions of second-order nonlinear iterative differential equations, in terms
of their asymptotic magnitudes. Necessary and sufficient conditions for
the existence of solutions are also provided.

1 Introduction

A systematic study of oscillatory properties and asymptotic behavior of solutions
of functional differential equations began with the works [4, 11, 12]. However,
a considerable number of papers dealing with these problems are from the last
two decades. In 1987, the monograph [5] presented a systematic investigation
of the oscillatory properties of solutions to ordinary differential equations with
deviating arguments. Recently, Bainov, Markova and Simeonov [3] studied the
equation

(r(t)x′(t))′ + f(t, x(t), x(∆(t, x(t)))) = 0 (1)

with the condition ∫ ∞
0

ds

r(s)
=∞ .

They provide a classification scheme for non-oscillatory solutions, and provide
necessary and sufficient conditions for the existence of solutions. Such schemes
are important since further investigations of qualitative behaviors of solutions
can then be reduced to only a number of cases. However, a more difficult
problem [9] is to characterize the case when∫ ∞

0

ds

r(s)
<∞ .
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This paper concerns with the general class of second order nonlinear differ-
ential equations

(r(t)(x′(t))σ)′ + f(t, x(t), x(∆(t, x(t)))) = 0 (2)

with the conditions
∫∞
0 ds/r(s)

1/σ = ∞ and
∫∞
0 ds/r(s)

1/σ < ∞. We give a
classification scheme for eventually-positive solutions of this equation in terms of
their asymptotic magnitude, and provide necessary and/or sufficient conditions
for the existence of solutions. Our results extend and improve the results in
[3, 5].
When f(t, x(t), x(∆(t, x(t)))) = f(t, x(t)), the oscillation and asymptotic

behavior of the solutions of (2) have been studied by Li [6]-[10], Ruan [13] and
Wong and Agarwal [14].
It is known [3] that the differential equation of the from (1) with delay

depending on the unknown function have been investigated only in the papers
[1], [2].
Let T ∈ R+ = [0,∞). Define T−1 = inf{∆(t, x) : t ≥ T, x ∈ R}.

Definition 1. The function x(t) is called a solution of the differential equation
(2) in the interval [T,+∞), if x(t) is defined for t ≥ T−1, it is twice differentiable
and satisfies (2) for t ≥ T .

Definition 2. The solution x(t) of (2) is called regular, if it is defined on some
interval [Tx,∞) and sup{|x(t)| : t ≥ T } > 0 for t ≥ Tx.

Definition 3. The solution x(t) of (2) is said to be:
(i) eventually positive: if there exists T ≥ 0 such that x(t) > 0 for all t ≥ T ;
(ii) eventually negative: if there exists T ≥ 0 such that x(t) < 0 for all t ≥ T ;
(iii) non-oscillatory: if it is either eventually positive or eventually negative;
(iv) oscillatory: if it is neither eventually positive nor eventually negative.
Throughout this paper, we assume that the following conditions hold:

H1) r ∈ C(R+,R+) and r(t) > 0, t ∈ R+.

H2) f ∈ C(R+ ×R2,R).

H3) There exists T ∈ R+ such that uf(t, u, v) > 0 for t ≥ T , uv > 0 and
f(t, u, v) is non-decreasing in u and v for each fixed t ≥ T .

H4) ∆ ∈ C(R+ ×R,R).

H5) There exist a function ∆∗(t) ∈ C(R+,R) and T ∈ R+ such that limt→∞∆∗(t) =
+∞ and ∆∗(t) ≤ ∆(t, x) for t ≥ T , x ∈ R.

H6) There exist a function ∆∗(t) ∈ C(R+,R) and T ∈ R+ such that ∆∗(t) is a
nondecreasing function for t ≥ T and ∆(t, x) ≤ ∆∗(t) ≤ t for t ≥ T, x ∈ R.

H7) σ is a quotient of odd integers.
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For the sake of convenience, we will employ the following notation

R(t) =

∫ ∞
t

ds

r(s)1/σ
, R(t, T ) =

∫ t
T

ds

r(s)1/σ
, R0 =

∫ ∞
0

ds

r(s)1/σ
.

In the following section, we give several preparatory lemmas which will be
used for later results. In Section 3, we will discuss the case R0 <∞. The case
R0 =∞ will be studied in Section 4.

2 Preparatory Lemmas

Lemma 1 Suppose x(t) is an eventually-positive solution of (2). Then x′(t) is
of constant sign eventually.

Proof. Assume that there exists t0 ≥ 0 such that x(t) > 0, for t ≥ t0. It
follows from (H6) that there exists t1 ≥ t0 such that x(∆(t, x(t))) > 0 for
t ≥ t1. From (H4) and (2) we conclude that (r(t)(x′(t))σ)′ < 0 for t ≥ t1. If
x′(t) is not eventually positive, then there exists t2 ≥ t1 such that x′(t2) ≤ 0.
Therefore, r(t2)(x

′(t2))
σ ≤ 0. From (2), we have

r(t)(x′(t))σ − r(t2)(x
′(t2))

σ +

∫ t
t2

f(s, x(s), x(∆(s, x(s))))ds = 0.

Thus

r(t)(x′(t))σ ≤ −

∫ t
t2

f(s, x(s), x(∆(s, x(s))))ds < 0,

for t ≥ t2. This shows that x′(t) < 0 for t ≥ t2. The proof is complete. ♦

As a consequence, an eventually positive solution x(t) of (2) either satisfies
x(t) > 0 and x′(t) > 0 for all large t, or, x(t) > 0 and x′(t) < 0 for all large t.

Lemma 2 Suppose that

R0 =

∫ ∞
0

ds

r(s)1/σ
<∞ , (3)

and that x(t) is an eventually positive solution of (2). Then limt→∞ x(t) exists.

Proof. If not, then we have limt→∞ x(t) =∞ by Lemma 1. On the other hand,
we have noted that r(t)(x′(t))σ is monotone decreasing eventually. Therefore,
there exists t1 ≥ 0 such that

r(t)(x′(t))σ ≤ r(t1)(x
′(t1))

σ, for t ≥ t1 .

Then

x′(t) ≤ (r(t1))
1/σx′(t1)

1

r(t)1/σ
, (4)
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for t ≥ t1, and after integrating,

x(t) − x(t1) ≤ (r(t1))
1/σx′(t1)R(t1, t),

for t ≥ t1. But this is contrary to the fact that limt→∞ x(t) = ∞ and the
assumption that R0 <∞. The proof is complete. ♦

Lemma 3 Suppose that R0 <∞. Let x(t) be an eventually positive solution of
(2). Then there exist a1 > 0, a2 > 0 and T ≥ 0 such that a1R(t) ≤ x(t) ≤ a2
for t ≥ T .

Proof. By Lemma 2, there exists t0 ≥ 0 such that x(t) ≤ a2 for some positive
number a2. We know that x

′(t) is of constant sign eventually by Lemma 1. If
x′(t) > 0 eventually, then R(t) ≤ x(t) eventually because limt→∞R(t) = 0. If
x′(t) < 0 eventually, then since r(t)(x′(t))σ is also eventually decreasing, we
may assume that x′(t) < 0 and r(t)(x′(t))σ is monotone decreasing for t ≥ T .
By (4), we have

x(s)− x(t) ≤ (r(T ))1/σx′(T )R(t, s), s ≥ t ≥ T.

Taking the limit as s→∞ on both sides of the above inequality,

x(t) ≥ −(r(T ))1/σx′(T )R(t),

for t ≥ T . The proof is complete. ♦

Our next result is concerned with necessary conditions for the function f to
hold in order that an eventually positive solution of (2) exist.

Lemma 4 Suppose that R0 < ∞ and x(t) is an eventually positive solution of
(2). Then

∫ ∞
0

1

r(t)1/σ

(∫ t
0

f(s, x(s), x(∆(s, x(s))))ds

)1/σ
dt <∞.

Proof. In view of Lemma 1, we may assume without loss of generality that
x(t) > 0, and, x′(t) > 0 or x′(t) < 0 for t ≥ 0. From (2), we have

r(t)(x′(t))σ − r(0)(x′(0))σ +

∫ t
0

f(s, x(s), x(∆(s, x(s))))ds = 0 .

Thus, if x′(t) > 0 for t ≥ 0, we have

∫ u
0

1

r(t)1/σ

(∫ t
0

f(s, x(s), x(∆(s, .x(s))))ds

)1/σ
dt

≤ (r(0))1/σx′(0)

∫ u
0

1

r(t)1/σ
dt ,
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for u ≥ 0, and

∫ u
0

1

r(t)1/σ

(∫ t
0

f(s, x(s), x(∆(s, x(s))))ds

)1/σ
dt ≤ (r(0))1/σx′(0)R0 <∞ .

If x′(t) < 0 for t ≥ 0, we have

∫ u
0

1

r(t)1/σ

(∫ t
0

f(s, x(s), x(∆(s, x(s))))ds

)1/σ
dt ≤ −

∫ ∞
0

x′(s)ds ≤ x(0) <∞ .

The proof is complete. ♦

We now consider the case where R0 =∞.

Lemma 5 Suppose that

R0 =

∫ ∞
0

ds

r(s)1/σ
=∞ . (5)

Let x(t) be an eventually positive solution of (2). Then x′(t) is eventually pos-
itive and there exist c1 > 0, c2 > 0 and T ≥ 0 such that c1 ≤ x(t) ≤ c2R(t, T )
for t ≥ T .

Proof. In view of Lemma 1, x′(t) is of constant sign eventually. If x(t) > 0
and x′(t) < 0 for t ≥ T , then we have

r(t)(x′(t)σ) ≤ r(T )(x′(T )σ) < 0 .

Thus

x′(t) ≤ r(T )1/σx′(T )
1

r(t)1/σ
, t ≥ T,

which after integrating yields

x(t)− x(T ) ≤ r(T )1/σx′(T )

∫ t
T

ds

r(s)1/σ
.

The left hand side tends to −∞ in view of (5), which is a contradiction. Thus
x′(t) is eventually positive, and thus x(t) ≥ c1 eventually for some positive
constant c1. Furthermore, the same reasoning just used also leads to

x(t) ≤ x(T0) + r(T0)
1/σx′(T0)

∫ t
T0

ds

r(s)1/σ
,

for t ≥ T0, where T0 is a number such that x(t) > 0 and x′(t) > 0 for t ≥ T0.
Since R0 = ∞, thus there is c2 > 0 such that x(t) ≤ c2R(T, t) for all large t.
The proof is complete. ♦
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3 The case R0 <∞

We have shown in the previous section that when x(t) is an eventually positive
solution of (2), then (r(t)(x′(t))σ)′ is eventually decreasing and x′(t) is even-
tually of constant sign. We have also shown that under the assumption that
R0 <∞, x(t) must converge to some (nonnegative) constant. As a consequence,
under the condition R0 < ∞, we may now classify an eventually positive solu-
tion x(t) of (2) according to the limits of the sequences x(t) and r(t)(x′(t))σ.
For this purpose, we first denote the set of eventually-positive solutions of (2)
by P . We then single out eventually-positive solutions of (2) which converge to
zero or to positive constants, and denote the corresponding subsets by P0 and
Pα respectively. But for any x(t) in Pα, since r(t)(x

′(t))σ either tends to a finite
limit or to −∞, we can further partition P+ into P βα and P

−∞
α .

Theorem 1 Suppose R0 < ∞. Then any eventually positive solutions of (2)
must belong to one of the following classes:

P0 =
{
x(t) ∈ P | lim

t→∞
x(t) = 0

}
,

P βα =
{
x(t) ∈ P | lim

t→∞
x(t) = α > 0, lim

t→∞
r(t)(x′(t)σ) = β

}
,

P−∞α =
{
x(t) ∈ P | lim

t→∞
x(t) = α > 0, lim

t→∞
r(t)(x′(t)σ) = −∞

}
.

To justify the above classification scheme, we will derive several existence
theorems.

Theorem 2 Suppose R0 < ∞. Then a necessary and sufficient condition for
(2) to have an eventually positive solution x(t) which belong to Pα is that for
some C > 0, ∫ ∞

0

(
1

r(t)

∫ t
0

f(s, C,C)ds

)1/σ
dt <∞ . (6)

Proof. Let x(t) be any eventually positive solution of (2) such that
limt→∞ x(t) = c > 0. Thus, in view of (H6), there exist C1 > 0, C2 > 0 and
T ≥ 0 such that C1 ≤ x(t) ≤ C2, C1 ≤ x(∆(t, x(t))) ≤ C2 for t ≥ T . On the
other hand, using Lemma 4 we have∫ ∞

T

(
1

r(t)

∫ t
0

f(s, x(s), x(∆(s, x(s))))ds

)1/σ
dt <∞.

Since f(t, u, v) is nondecreasing in u and v for each fixed t, thus we have∫ ∞
T

(
1

r(t)

∫ t
0

f(s, C1, C1)ds

)1/σ
dt <∞.

Conversely, let a = C/2. In view of (6), we may choose a T ≥ 0 so large that∫ ∞
T

(
1

r(t)

∫ t
0

f(s, C,C)ds

)1/σ
dt < a. (7)
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Define the set

Ω =

{
x ∈ C([T−1,+∞),R) : x(t) = a, for T−1 ≤ t < T,
and a ≤ x(t) ≤ 2a, for t ≥ T

}
.

Then Ω is a bounded, convex and closed subset of C([T−1,+∞),R). Let us
further define an operator F : Ω→ C([T−1,+∞),R) by

Fx(t) =

{
a+
∫∞
t

(
1
r(s)

∫ s
0
f(u, x(u), x(∆(u, x(u))))du

)1/σ
ds, t ≥ T,

Fx(T ), T−1 ≤ t ≥ T.
(8)

The mapping F have the following properties. F maps Ω into Ω. Indeed, if
x(t) ∈ Ω, then

a ≤ Fx(t) = a+

∫ ∞
t

(
1

r(s)

∫ s
0

f(u, x(u), x(∆(u, x(u))))du

)1/σ
ds

≤ a+

∫ ∞
t

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds ≤ 2a.

Next, we show that F is continuous. To see this, let ε > 0. Choose M ≥ T so
large that ∫ ∞

t

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds <

ε

2
. (9)

Let {x(n)} be a sequence in Ω such that x(n) → x. Since Ω is closed, x ∈ Ω.
Furthermore, for any s ≥ t ≥M ,∣∣∣Fx(n)(t)− Fx(t)∣∣∣
≤

∫ ∞
t

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds+

∫ ∞
t

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds

≤ 2

∫ ∞
t

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds < ε .

For T ≤ t ≤ s ≤M ,∣∣∣Fx(n)(t)− Fx(t)∣∣∣
≤

∫ ∞
M

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds+

∫ ∞
M

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds

+

∫ M
t

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds−

∫ M
s

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds

≤ ε+

∫ s
t

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds

≤ ε+ max
T≤u≤M

1

r(u)

∫ u
0

f(v, C,C)dv |s− t|

≤ ε+ C0 |s− t| < 2ε, if |s− t| <
ε

C0
,
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where C0 = maxT≤u≤M
∫ u
0
f(v, C,C) dv/r(u). And for T−1 ≤ t ≤ s < T ,

|Fx(n)(t)− Fx(t)| = 0 .

These statements show that ‖Fx(v) − Fx‖ tends to zero, i.e., F is continuous.
When s, t ≥M , by (9) we have

|Fx(s) − Fx(t)| ≤

∫ ∞
t

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds

+

∫ ∞
t

(
1

r(s)

∫ s
0

f(u,C,C)du

)1/σ
ds < ε ,

which holds for any x ∈ Ω. Therefore, FΩ is precompact. In view of Schauder’s
fixed point theorem, we see that there is an x∗ ∈ Ω such that Fx∗ = x∗. It
is easy to check that x∗ is an eventually positive solution of (2). The proof is
complete. ♦

Theorem 3 Suppose R0 <∞. A necessary and sufficient condition for (2) to
have an eventually-positive solution x(t) which belongs to P βα is that (6) holds
for some C > 0 and that for some D > 0,∫ ∞

0

f(t,D,D)dt <∞ . (10)

Proof. If x(t) is an eventually-positive solution in P βα , then, in view of The-
orem 2, we see that (6) holds. Furthermore, as in the proof of Theorem 2,
0 < C1 ≤ x(t) ≤ C2, C1 ≤ x(∆(t, x(t))) ≤ C2 for t ≥ T . In view of (2), we see
that ∫ ∞

T

f(s, C1, C1)ds ≤

∫ ∞
T

f(s, x(s), x(∆(s, x(s))))ds

= r(T )(x′(T ))σ − lim
t→∞

rm(t)(x
′(t))σ <∞ .

Conversely, in view of (10), we can choose a T ≥ 0 such that∫ ∞
T

f(t,D,D)dt <

(
D

2R0

)σ
.

We define the subset Ω of C([T−1,+∞),R) as follows

Ω =

{
x ∈ C([T−1,+∞),R) : x(t) = D/2 for T−1 ≤ t < T,
and D/2 ≤ x(t) ≤ D, for t ≥ T

}
.

Then Ω is a bounded, convex and closed subset of C([T−1,+∞),R). In view of
R0 and (10), we can further define an operator F : Ω→ C([T−1,+∞),R) as

Fx(t) =

{
D −

∫∞
t

(
1
r(s)

∫∞
s
f(u, x(u), x(∆(u, x(u))))du

)1/σ
ds t ≥ T,

Fx(T ) T−1 ≤ t ≥ T .
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Then, arguments similar to those in the proof of Theorem 2 show that F has a
fixed point u which satisfies

r(t)(u′(t))σ =

∫ ∞
t

f(s, u(s), u(∆(s, u(s))))ds, t ≥ T .

Hence limt→∞ r(t)(u
′(t))σ = 0 as required. Choose a T ≥ 0 such that

∫ ∞
T

f(t,D,D)dt <

(
D

4R0

)σ
and R(t) <

(
D

4R0

)σ

for t ≥ T , and let

Fx(t) =

{
D −

∫∞
t

(
1
r(s) +

1
r(s)

∫ s
0
f(u, x(u), x(∆(u, x(u))))du

)1/σ
ds, t ≥ T,

Fx(T ), T−1 ≤ t < T .

Then under the same conditions (6) and (10), we can shows that F has a fixed
point u which satisfies limt→∞ u(t) = D > 0 and

r(t)(u′(t))σ = 1 +

∫ ∞
t

f(s, u(s), u(∆(s, u(s))))ds, t ≥ T .

Therefore, limt→∞ r(t)(u
′(t))σ = 1 > 0, and the present proof is complete. ♦

In view of Theorem 3, the following result is obvious.

Theorem 4 Suppose R0 <∞. A necessary and sufficient condition for (2) to
have an eventually-positive solution x(t) which belongs to P−∞α is that (6) holds
for some C > 0 and that for any D > 0,∫ ∞

0

f(t,D,D)dt =∞ (11)

Our final result concerns with the existence of eventually-positive solutions
in P0 .

Theorem 5 Suppose R0 <∞ and σ = 1. If for some C > 0,∫ ∞
0

f(t, CR(t), CR(∆∗(t)))dt <∞, (12)

then (2) has an eventually-positive solution in P0. Conversely, if (2) has an
eventually-positive solution x(t) such that limt→∞ x(t) = 0 and
limt→∞ r(t)(x

′(t))σ = d 6= 0, then for some C > 0,

∫ ∞
0

f(t, CR(t), CR(∆∗(t)))dt <∞ .
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Proof. Suppose (12) holds. Then there exists a T ≥ 0 such that∫ ∞
t

f(s, CR(s), CR(∆∗(s)))ds <
C

2
for t ≥ T .

Consider the equation

x(t) =



R(t)

(
C
2 +
∫ t
T
f(s, x(s), x(∆(s, x(s))))ds

)
+
∫∞
t
R(s)f(s, x(s), x(∆(s, x(s))))ds t ≥ T,

Fx(T ) T−1 ≤ t < T .

(13)

It is easy to check that a solution of (13) must be a solution of (2). We shall
show that (13) has a positive solution x(t) which belongs to P0 by means of
the method of successive approximations. Consider the sequence {xk(t)} of
successive approximating sequences defined as follows.

x1(t) = 0 for t ≥ T−1,

xk+1(t) = Fxk(t), for t ≥ T−1, k = 1, 2, . . . ,

where F is defined by

Fx(t) =



R(t)

(
C
2 +
∫ t
T
f(s, x(s), x(∆(s, x(s))))ds

)
+
∫∞
t
R(s)f(s, x(s), x(∆(s, x(s))))ds t ≥ T,

Fx(T ) T−1 ≤ t < T .

In view of (H3), it is easy to see that 0 ≤ xk(t) ≤ xk+1(t) for t ≥ T and
k = 1, 2, . . .. On the other hand,

x2(t) = Fx1(t) =
C

2
R(t) ≤ CR(t), t ≥ T ,

and inductively,

Fxk(t) ≤
C

2
R(t) +R(t)

∫ t
T

f(s, CR(s), CR(∆∗(s)))ds

+R(t)

∫ ∞
t

f(s, CR(s), CR(∆∗(s)))ds

≤
C

2
R(t) +R(t)

∫ ∞
T

f(s, CR(s), CR(∆∗(s)))ds

≤ CR(t) ,

for k ≥ 2. Therefore, by means of Lebesgue’s dominated convergence theorem,
we see that Tx∗ = x∗. Furthermore, it is clear that x(t) converges to zero as
t→∞.
Let x(t) be an eventually positive solution of (2) such that x(t) → 0 and

r(t)(x′(t))σ → d < 0 (the proof of the case d > 0 being similar). Then there
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exist C1 > 0, C2 > 0 and T ≥ 0 such that −C1 < r(t)(x′(t))σ < −C2, for t ≥ T .
Hence,

−C1/σ1
1

r(t)1/σ
< x′(t) < −C1/σ2

1

r(t)1/σ
,

and, after integrating,

−C1/σ1 R(s, t) < x(s)− x(t) < −C
1/σ
2 R(s, t),

for s > t ≥ T . Let s → ∞, then −C1/σ1 R(t) < −x(t) < −C
1/σ
2 R(t). That is,

C
1/σ
2 R(t) < x(t) < C

1/σ
1 R(t). On the other hand, by (2),

r(t)(x′(t))σ = r(T )(x′(T ))σ +

∫ t
T

f(s, x(s), x(∆(s, x(s))))ds, t ≥ T .

Since limt→∞r(t)(x
′(t))σ = d < 0, we have

∫ ∞
T

f(s, x(s), x(∆(s, x(s))))ds = r(T )(x′(T ))σ − d <∞ .

Thus,∫ ∞
T

f(s, C
1/σ
1 R(s), C

1/σ
1 R(∆∗(s)))ds ≤

∫ ∞
T

f(s, x(s), x(∆(s, x(s))))ds <∞ .

The proof is complete. ♦

4 The case R0 =∞

In this section, we assume that R0 =∞. Let P denotes the set of all eventually-
positive solutions of (2). Recall that if x(t) belongs to P , then r(t)(x′(t))σ is
eventually decreasing. Furthermore, in view of Lemma 5, we see that x′(t), and
hence r(t)(x′(t))σ , are eventually positive. Hence x(t) either tends to a positive
constant or to positive infinity, and r(t)(x′(t))σ tends to a nonnegative constant.
Note that if x(t) tends to a positive constant, then r(t)(x′(t))σ must tend to
zero. Otherwise r(t)(x′(t))σ ≥ d > 0 for t larger than or equal to T , so that

x′(t) ≥ d1/σ
1

r1/σ(t)
,

and

x(t) ≥ x(T )d1/σ
∫ t
T

1

r1/σ(s)
ds→∞ , as t→∞ ,

which is a contradiction.
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Theorem 6 Suppose that R0 =∞. Then any eventually-positive solution x(t)
of (2) must belong to one of the following classes:

P 0α =
{
x(t) ∈ P | lim

t→∞
x(t) ∈ (0,∞), lim

t→∞
r(t)(x′(t))σ = 0

}
,

P 0∞ =
{
x(t) ∈ P | lim

t→∞
x(t) = +∞, lim

t→∞
r(t)(x′(t))σ = 0

}
,

P β∞ =
{
x(t) ∈ P | lim

t→∞
x(t) = +∞, lim

t→∞
r(t)(x′(t))σ = β 6= 0

}
.

In order to justify our classification scheme, we present the following two
results.

Theorem 7 Suppose that R0 = ∞. A necessary and sufficient condition for
(2) to have an eventually-positive solution x(t) which belongs to P 0α is that for
some C > 0, ∫ ∞

0

(
1

r(t)

∫ ∞
t

f(s, C,C)ds

)1/σ
dt <∞ . (14)

Proof. Let x(t) be an eventually-positive solution of (2) which belong to
P 0α, i.e., limt→∞ x(t) = α > 0 and limt→∞ r(t)(x

′(t))σ = 0. Then there ex-
ist two positive constants C1, C2 and T ≥ 0 such that C1 ≤ x(t) ≤ C2,
C1 ≤ x(∆(t, x(t)) ≤ C2 for t ≥ T . On the other hand, in view of (2) we
have

r(t)(x′(t))σ =

∫ ∞
t

f(s, x(s), x(∆(s, x(s))))ds ,

for t ≥ T . After integrating, we see that

∫ ∞
T

(
1

r(t)

∫ ∞
t

f(s, C,C)ds

)1/σ
dt

≤

∫ ∞
0

(
1

r(t)

∫ ∞
t

f(s, x(s), x(∆(s, x(s))))ds

)1/σ
dt

≤ α− x(T ).

The proof of the converse is similar to that of Theorem 1 and hence is sketched.
In view of (14), we may choose a T ≥ 0 so large that

∫ ∞
T

(
1

r(t)

∫ ∞
t

f(s, C,C)ds

)1/σ
<
C

2
. (15)

Define a bounded, convex, and closed subset Ω of C([T−1,∞),R) and an oper-
ator F : Ω→ Ω as

Ω =

{
x ∈ C([T−1,+∞),R) : x(t) =

C
2 for T−1 ≤ t < T,

and C2 ≤ x(t) ≤ C, for t ≥ T ,

}
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and

Fx(t) =

{
C
2 +
∫∞
t

(
1
r(s)

∫∞
s
f(u, x(u), x(∆(u, x(u))))du

)1/σ
ds t ≥ T,

Fx(T ) T−1 ≤ t < T ,

respectively. As in the proof of Theorem 3, we prove that F maps Ω into Ω,
that F is continuous, and that FΩ is precompact. The fixed point x∗(t) of F
will converge to C/2 and satisfies (2). The proof is complete. ♦

We remark that Theorem 7 extends Theorem 6 of Bainov, Markova and
Simeonov [3]. The proof of the following result is again similar to that of The-
orem 3 and hence is omitted.

Theorem 8 Suppose R0 =∞. If for a positive constant C,∫ ∞
0

f(t, CR(t, 0), CR(∆∗(t), 0))dt <∞ (16)

then (2) has a solution in P β∞. Conversely, if (2) has a solution x(t) in P
β
∞,

then for some positive constant C,∫ ∞
0

f(t, CR(t, 0), CR(∆∗(t), 0))dt <∞ .

We remark that our Theorem 8 extends Theorem 5 of Bainov, Markova and
Simeonov [3]. In view of Theorems 7 and 8, the following result is clear.

Theorem 9 Suppose R0 = ∞. If for any positive constant C and for some
positive constant D such that

∫ ∞
0

(
1

r(t)

∫ ∞
t

f(s, C,C)ds

)1/σ
dt =∞ ,∫ ∞

0

f(t,DR(t, 0), DR(∆∗(t), 0))dt <∞ ,

then (2) has a solution in P 0∞.

We remark that our Theorem 9 extends Theorem 7 in [3], and that several
oscillation statements for (2) can be proven. Since the method is similar to that
of [3], we omit them here.
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