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Carleman estimates for the Euler–Bernoulli plate

operator ∗

Paolo Albano

Abstract

We present some a–priori estimates of Carleman type for the Euler–
Bernoulli plate operator. As an application, we consider a problem of
boundary observability for the Euler–Bernoulli plate coupled with the
heat equation.

1 Introduction

In [1] Tataru and the author proved some estimates with singular weights for
the heat and for the wave equations. These estimates are a powerful tool for
the study of observability (and controllability) of pde’s. The present paper is
concerned with a problem of boundary observability for the following system

wtt +∆
2w = α∆θ in ]0, T [×Ω

θt −∆θ = β∆w in ]0, T [×Ω

w = ∂νw = ∆w = θ = 0 on [0, T ]× ∂Ω

(1)

here α, β ∈ R, Ω is an open domain in Rn with smooth boundary ∂Ω, T is a
positive number and by ν = (ν0, . . . , νn) we denote the unit outer normal vector
to [0, T ]× ∂Ω.
We are concerned with the following question. Knowing that ∂ν∆w and ∂νθ

are equal to 0 on [0, T ]× ∂Ω can we conclude that w and θ are 0 in [0, T ]× Ω?
More precisely, for any solution (w, θ) of problem (1), we want to prove an
observability estimate of the form

‖(w, θ)‖ ≤ C‖(∂ν∆w, ∂νθ)‖∂

where ‖ · ‖ and ‖ · ‖∂ are suitable interior and boundary Sobolev norms. In
other words, this would say that the solution (w, θ) can be reconstructed in a
stable fashion if one observes some derivatives on the boundary. Note that the
initial data cannot be recovered stably due to the parabolic regularizing effect.
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However, the final data at time T can be obtained. By duality this implies an
exact null controllability result for the adjoint problem.

The affirmative answer to the previous questions is given using a–priori es-
timates of Carleman type for the heat equation and for the following problem

wtt +∆
2w = f in ]0, T [×Ω

w = ∂νw = ∆w = 0 on [0, T ]× ∂Ω .
(2)

Our goal is to derive an estimate of the form

‖eτφw‖ ≤ C(‖∂ν∆w‖∂ + ‖e
τφf‖)

for solutions of (2).

The Carleman estimates have been introduced in [3], and were intensively
studied in [5] (for hyperbolic and elliptic operators) and in [7] (in the case of
anisotropic operators). A general approach to these estimates for boundary
value problems was developed in [11, 13]. Carleman estimates for the initial
boundary value problem for the heat equations have been independently ob-
tained in [4, 6] and [14] while the analogous results in the case of hyperbolic
equations were proved in [12]. We remark that other approaches to the ob-
servability problem for hyperbolic equations have been developed in [8] (using
multipliers method) and in [2] (using microlocal analysis). For what concerns
observability estimates for the heat equations, an observability result was proved
in [9] using microlocal analysis and Carleman estimates for elliptic equations.
A similar result was proved in [1] in the case of the wave operator instead of the
plate operator. The additional difficulty here is due to the higher order of the
operators we deal with. We also remark that since both the heat and the plate
operators are anisotropic (the weights of the time and space derivatives are 2
and 1 respectively), no lower bound on the observation time, T , is required. Fi-
nally, for simplicity we will limit our computations to the constant coefficients
case, but similar results hold true also in the case of operators of the same type
with C1 principal parts and L∞ lower order terms.

We start recalling a Carleman estimate with singular weight for the heat
equation. Next, we deduce a similar estimate for the plate operator (decoupling
such an operator as the product of two Schrödinger ones). Finally, putting
together the previous estimates we get an observability estimate for the coupled
system, which, in particular, yields an affirmative answer to our question. We
point out that the last step will require a precise control on the constant that
appear on the Carleman estimates.

2 Notation and Preliminaries

Denote by (t, x) (or (x0, x1, . . . , xn)) the coordinates in [0, T ]×Ω. We call t the
“time” variable, while the other n coordinates are called the “space” variables.
By 〈·, ·〉 and <〈·, ·〉 we denote the L2–scalar product and its real part respectively.



EJDE–2000/53 Paolo Albano 3

We will use the following shorter notation

Dj =
1

i

∂

∂xj
, ui1...ik = ∂i1 . . . ∂iku.

The symbol ut indicates the derivative of u with respect to t, ∇ represents the
gradient with respect to the space variables while D = i−1∇ is its selfadjoint
version and ∇2u is the Hessian matrix of u (w.r.t. the space variables). Given
two operators, A and B, as usual we define their commutator as

[A,B] := AB −BA.

By Hs we denote the classical Sobolev spaces, with norm ‖ ·‖s while ‖ ·‖ stands
for the L2 norm. In the Carleman estimates we use weighted Sobolev norms.
Set

α = (α0, α1, . . . , αn) = (α0, α
′) .

Given a nonnegative function η define the following anisotropic norm

‖u‖2
k,η
=
∑
|α|a≤k

∫
η2(k−|α|a)|∂αu|2 dt dx

where ∂α = ∂α00 . . . ∂αnn and |α|a = 2α0 + α1 + . . .+ αn.
We conclude this section recalling a Carleman estimate for the heat equation.

Consider the parabolic initial boundary value problem

θt(t, x)−∆θ(t, x) = f(t, x) in ]0, T [×Ω ,

θ = 0 on [0, T ]× ∂Ω ,

θ(0, x) = θ0(x) in Ω ,

(3)

with (f, θ0) ∈ L2([0, T ]× Ω)×H10 (Ω). A Carleman estimate for the solution of
the above problem looks like

‖eτφθ‖ ≤ ‖eτφ∂νθ‖∂ + ‖e
τφf‖ ,

with appropriate norms and a suitable function φ, uniformly with respect to the
large parameter τ . The obstruction to such an estimate is that no Sobolev norm
of the initial data can be controlled by the right hand side. Hence the only hope
is to consider a weight function φ which approaches −∞ at time 0. Estimates of
this type have been proved in ([1, 4, 6] and [14]). Thus, we introduce a function
g defined as

g(t) =
1

t(T − t)
(t ∈]0, T [) . (4)

Notice that ∣∣∣
( d
dt

)k
g(t)
∣∣∣ ≤ Ckgk(t) ∀t ∈]0, T [ (5)

for a suitable positive constant Ck. Let ψ(x) be a function such that

∇ψ(x) 6= 0 for all x ∈ Ω 1 . (6)

1This is a pseudoconvexity condition with respect to the heat operator.
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Define

φ(t, x) := g(t)
(
eλψ(x) − 2eλΦ), Φ = ‖ψ‖L∞(Ω). (7)

The weight function φ thus defined approaches−∞ at times 0, T. The additional
parameter λ is essential in order to obtain the control of the constants which
enables us to handle arbitrarily large coefficients in the coupling terms.

Theorem 2.1 Let φ be given as in (7) with ψ satisfying (6). Let θ be the
solution of problem (3). Then there exists λ0 so that for each λ > λ0 there exists
τλ so that for τ > τλ the following estimate holds uniformly in λ, τ :

C1λ‖τ̃
− 12 eτφθ‖2

2,τ̃
≤ ‖eτφf‖2 +

∫
[0,T ]×∂Ω

τ̃ e2τφ∂νψ|∂νθ|
2 dσ , (8)

here τ̃ = λτgeλψ and C1 is a suitable positive constant.

For the reader convenience we give the proof of the above result in the
appendix, for a proof in a more general setting see [1].

3 The Plate Operator

Let us consider the following problem

wtt +∆
2w = f in ]0, T [×Ω

w = ∂νw = ∆w = 0 on [0, T ]× ∂Ω

(w(0, x), wt(0, x)) ∈ (H4(Ω) ∩H20 (Ω)) ×H
2(Ω) ,

(9)

with f ∈ L2([0, T ] × Ω). Our goal is to prove a Carleman estimate for a solu-
tion w of the above problem. The idea of the proof is the following. First, we
decompose the plate operator as the product of two Schrödinger ones. Then,
we get some Carleman estimates for such operators (see Theorem 3.1 and The-
orem 3.3 below). Finally, the result follows putting together these estimates
(see Theorem 3.4). It is clear that in order to prove a Carleman estimate for
the Schrödinger operator we need to assume a suitable condition on the weight
function. More precisely, we suppose a positive constant γ exists so that, for
any x ∈ Ω,

∇2ψ(x)ξ · ξ ≥ γ|ξ|2 ∀ξ ∈ Rn 2 . (10)

Lemma 3.1 Let u ∈ C(]0, T [;H2(Ω)) ∩ C1(]0, T [;L2(Ω)) be a solution of the
(ill posed) problem

ut + i∆u = f in ]0, T [×Ω

u = 0 on [0, T ]× ∂Ω .
(11)

2This is a strong pseudoconvexity condition for the constant coefficients Schrödinger equa-
tion.
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with f ∈ L2(]0, T [×Ω) and let φ be given as in (7) with ψ satisfying (6) and
(10). Then there exists λ0 so that for each λ > λ0 there exists τλ so that for
τ > τλ the following estimate holds uniformly in λ, τ :

C2‖e
τφτ̃

1
2 u‖21,τ̃ ≤

∫
[0,T ]×∂Ω

τ̃ e2τφ∂νψ|∂νu|
2dσ + ‖eτφf‖2 , (12)

here τ̃ = λτgeλψ and C2 is a suitable positive constant.

Proof. Let us compute the conjugated operator to P = ∂t+ i∆. We have that

Pτ = e
τφPe−τφ = iDt − τφt − iD

2 + iτ2|∇φ|2 + τ(D · ∇φ+∇φ ·D) .

Clearly, we can split the operator Pτ into its symmetric and antisymmetric parts
as follows

Pτ = P
s
τ + P

a
τ

with
P sτ = −τφt + τ(D · ∇φ+∇φ ·D)

and
P aτ = iDt − iD

2 + iτ2|∇φ|2 .

Set v = eτφu and observe that

v(0, x) = v(T, x) = 0 ∀x ∈ Ω (13)

and
v(t, x) = 0 ∀(t, x) ∈ [0, T ]× ∂Ω. (14)

So, estimate (12) reduces to

C2‖τ̃
1
2 v‖21,τ̃ ≤ 2

∫
[0,T ]×∂Ω

τ̃ ∂νψ|∂νv|
2 dσ + ‖eτφf‖2 . (15)

Clearly,
‖Pτv‖

2 = ‖P sτ v‖
2 + ‖P aτ v‖

2 + 2<〈P sτ v, P
a
τ v〉 (16)

and

2<〈P sτ v, P
a
τ v〉 = 2τ<〈(−φt +D · ∇φ+∇φ ·D)v, i(Dt −D

2 + τ2|∇φ|2)v〉.

In order to complete the proof we must only to compute explicitly the terms of
the above scalar product. It is immediate to see that

<〈φtv, iτ
2|∇φ|2v〉 = 0 . (17)

Integrating by parts and using (14), we get

2τ<〈(D · ∇φ+∇φ ·D)v, iτ2|∇φ|2v〉 = 2τ3〈v,∇φ · ∇|∇φ|2v〉 (18)

= 4τ3〈∇2φ∇φ · ∇φ v, v〉.
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Moreover, recalling (13), we have that

2τ<〈−φtv, iDtv〉 = τ<〈[−φt, iDt]v, v〉 = τ〈φttv, v〉 (= lower order term), (19)

while (13) and (14) imply that

2τ<〈(D · ∇φ+∇φ ·D)v, iDtv〉

= 2τ<(〈∇φ ·Dv, iDtv〉+ 〈(D · ∇Dtφ+D · ∇φDt)v, iv〉) (20)

= 2τ<(〈∇φ ·Dv, iDtv〉+ 〈D · ∇Dtφv, iv〉+ 〈Dtv, i∇φ ·Dv〉)

= −2τ<〈∇φt ·Dv, v〉 (= lower order term).

(Here and in the sequel, lower order terms means terms which can be absorbed
in the LHS of (15) taking τ large enough.)
Finally, integrating by parts once and recalling (14), we get

2τ<〈−φtv,−iD
2v〉 = −2τ<〈∇φt ·Dv, v〉 (= lower order term). (21)

Now, it remains to compute the higher order terms. Using once more integra-
tions by parts and (14) we obtain that

−2τ<〈(D · ∇φ+∇φ ·D)v, iD2v〉

= −2τ<
n∑
k=1

〈Dk((D · ∇φ+∇φ ·D)v), iDkv〉 − 4τ

∫
[0,T ]×∂Ω

∂νφ|∂νv|
2 dσ

= −2τ<
n∑
k=1

〈(D · ∇(Dkφ) +∇(Dkφ) ·D)v), iDkv〉

−2τ

∫
[0,T ]×∂Ω

∂νφ|∂νv|
2 dσ (22)

= 2τ<
n∑
k=1

〈(D · ∇φk +∇φk ·D)v), Dkv〉 − 2τ

∫
[0,T ]×∂Ω

∂νφ|∂νv|
2 dσ

= 2τ<
( ∫
]0,T [×Ω

2∇2φDv ·Dv +
1

i
v∇(∆φ) ·Dv dt dx

)

−2τ

∫
[0,T ]×∂Ω

∂νφ|∂νv|
2 dσ

Substituting (17)–(22) in (16), we get

‖Pτv‖
2

≥ 4τ3〈∇2φ∇φ · ∇φ v, v〉+ τ〈φttv, v〉 − 4τ<〈∇φt ·Dv, v〉

+2τ

n∑
j=1

<〈∆(Djφ)Dj v, v〉 − 2τ

∫
[0,T ]×∂Ω

∂νφ|∂νv|
2 dσ + 4τ

n∑
j,k=1

〈φjkDkv , Djv〉

≥ <〈(4τ3∇2φ∇φ · ∇φ+ τφtt − (4τ |∇φt|)
2 − (2τ |∇(∆φ)|)2)v, v〉

+

∫
]0,T [×Ω

4τ∇2φDv ·Dv − 2|Dv|2 dt dx− 2τ

∫
[0,T ]×∂Ω

∂νφ|∂νv|
2 dσ.
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Moreover, it is not difficult to verify that

4τ3∇2φ∇φ · ∇φ+ τφtt − (4τ |∇φt|)
2 − (2τ |∇(∆φ)|)2 ≈ λτ̃3

and
4τ∇2φ− 2I ≈ τ̃ I

provided that λ and τ are sufficiently large. So,

‖Pτv‖
2 + 2

∫
[0,T ]×∂Ω

τ̃ ∂νψ|∂νv|
2 dσ ≥ C2‖τ̃

1
2 v‖2

1,τ̃
,

provided that λ and τ are sufficiently large. ♦

Theorem 3.2 Let u, φ and ψ be as in Lemma 3.1. Then there exists λ0 so
that for each λ > λ0 there exists τλ so that for τ > τλ the following estimate
holds uniformly in λ, τ :

C3‖e
τφu‖21,τ̃ ≤

∫
[0,T ]×∂Ω

e2τφ∂νψ|∂νu|
2 dσ + ‖eτφτ̃−

1
2 f‖2 , (23)

here τ̃ = λτgeτψ and C3 is a suitable positive constant.

Proof. Set P = ∂t + i∆. Applying Lemma 3.1 to τ̃
− 12u we obtain

C2‖e
τφu‖21,τ̃ ≤

∫
[0,T ]×∂Ω

e2τφ∂νψ|∂νu|
2dσ + ‖eτφ([P, τ̃−

1
2 ] + τ̃−

1
2P )u‖2 ,

for large enough τ the commutator is small compared to the LHS therefore we
get

C3‖e
τφu‖21,τ̃ ≤

∫
[0,T ]×∂Ω

e2τφ∂νψ|∂νu|
2dσ + ‖eτφτ̃−

1
2 f‖2 ,

and the conclusion follows. ♦
The next result follows arguing as in Lemma 3.1 and in Theorem 3.2.

Theorem 3.3 Let u ∈ C(]0, T [;H4(Ω))∩C1(]0, T [;H2(Ω))∩C2(]0, T [×L2(Ω))
be a solution of the (ill posed) problem

ut − i∆u = f in ]0, T [×Ω

u = ∂νu = 0 on [0, T ]× ∂Ω
(24)

and let φ be given as in (7) with ψ satisfying (6) and (10). Then there exists λ0
so that for each λ > λ0 there exists τλ so that for τ > τλ the following estimate
holds uniformly in λ, τ :

C4‖e
τφu‖21,τ̃ ≤ ‖e

τφτ̃−
1
2 f‖2 , (25)

here τ̃ = λτgeτψ and C4 is a suitable positive constant.
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Now, the main result of this section can be easily proved.

Theorem 3.4 Let w be the solution of the problem (9) and let φ be given as in
(7) with ψ satisfying (6) and (10). Then there exists λ0 so that for each λ > λ0
there exists τλ > 0 so that for τ > τλ the following estimate holds uniformly in
λ, τ :

C‖eτφw‖22,τ̃ ≤

∫
[0,T ]×∂Ω

e2τφ∂νψ|∂ν∆w|
2 dσ + ‖eτφτ̃−

1
2 f‖2 , (26)

here τ̃ = λτgeλψ and C is a suitable positive constant.

Proof – Clearly, problem (9) can be recast as follows

wt − i∆w = u in ]0, T [×Ω

w = ∂νw = 0 on [0, T ]× ∂Ω
(27)

and
ut + i∆u = f in ]0, T [×Ω

u = 0 on [0, T ]× ∂Ω .
(28)

Now, applying Theorem 3.3 to the solution of problem (27) we get

C4‖e
τφw‖21,τ̃ ≤ ‖e

τφτ̃−
1
2 u‖2 (29)

whilst using Theorem 3.2, we deduce that the solution of (28) satisfies

C3‖e
τφu‖21,τ̃ ≤

∫
[0,T ]×∂Ω

e2τφ∂νψ|∂ν∆w|
2 dσ + ‖eτφτ̃−

1
2 f‖2 (30)

for sufficiently large λ and τ. Now, the conclusion follows putting together (29)
and (30). ♦

Remark 3.5 We note that a stronger estimate could be proved. In fact, the in-
terior (microlocal) Carleman estimate for the plate operator shows that one can
replace the H2 (anisotropic) norm in the LHS of (26) with the H3 (anisotropic)
norm (see e.g. [12]).

4 The observability estimate

In this section we prove the observability result for the system (1).

Theorem 4.1 Suppose that (w, θ) is a solution of the system (1) and let φ be
given as in (7) with ψ satisfying (6) and (10). Then there exists λ0 so that for
each λ > λ0 there exists τλ > 0 so that for τ > τλ the following estimate holds
uniformly in λ, τ

‖eτφw‖2
2,τ̃
+ ‖eτφτ̃−

1
2 θ‖2

2,τ̃
≤ C

( ∫
[0,T ]×∂Ω

e2τφ∂νψ|∂ν∆w|
2 dσ

+

∫
[0,T ]×∂Ω

τ̃ e2τφ∂νψ|∂νθ|
2 dσ
)
, (31)

for a suitable positive constant C.
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Remark 4.2 This estimate shows that solutions to (1) can be reconstructed
in a stable manner if one observes their normal derivative on the boundary. As
one can see from the above estimate, this observation needs not be on the entire
boundary; it suffices to observe (w, θ) in the region Γ, given by

Γ = [0, T ]× {x ∈ ∂Ω; ∂νψ(x) > 0} .

Proof of Theorem 4.1: Applying Theorem 3.4 to w we deduce that

C‖eτφw‖2
2,τ̃
≤

∫
[0,T ]×∂Ω

e2τφ∂νψ|∂ν∆w|
2 dσ + ‖eτφτ̃−

1
2α∆θ‖2. (32)

On the other hand, Theorem 2.1 implies that

λC1‖e
τφτ̃−

1
2 θ‖2

2,τ̃
≤ ‖eτφβ∆w‖2 +

∫
[0,T ]×∂Ω

τ̃ e2τφ∂νψ|∂νθ|
2 dσ . (33)

Then, the conclusion follows by adding (32) and (33) provided that λ is suffi-
ciently large. ♦
Combining the straightforward energy estimates3 with (31) we obtain the

following consequence:

Theorem 4.3 For all solutions (w, θ) of the system (1) we have

‖∇θ(T )‖2L2(Ω)+‖wt(T )‖
2
L2(Ω)+‖∆w(T )‖

2
L2(Ω) ≤ C(‖∂ν∆w‖

2
L2(Γ)+‖∂νθ‖

2
L2(Γ))

for a suitable positive constant C.

The next example shows in the case of Ω a ball of Rn how one can choose
the function φ.

Example 4.4 Let Ω = {x ∈ Rn : |x| < 1} and fix x ∈ Rn \ Ω. Then, define

ψ(x) = |x− x|2

and

φ(t, x) =
1

t(T − t)
(eλψ(x) − 2eλ supy∈Ω ψ(y)).

It is immediate to verify that φ satisfies all the assumption of Theorem 4.1.
Moreover, if (w, θ) is a solution of equation (1) and ∂ν∆w and ∂νθ are equal to
0 on

Γ = {(t, x) ∈ [0, T ]× ∂Ω : x · (x− x) > 0},

then w and θ are equal to 0 in ]0, T [×Ω.

3Here the energy is defined by E(t) = 2−1
∫
Ω
|∇θ(t, x)|2 + w2t (t, x) + |∆w(t, x)|

2 dx.
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A Proof of Theorem 2.1

Set

Q(D) = ∂t −∆.

As usual, with the substitution v = eτφθ, the estimate (8) reduces to

C1λ‖τ̃
− 12 v‖2

2,τ̃
≤ ‖Qτv‖

2 +

∫
[0,T ]×∂Ω

τ̃∂νψ|∂νv|
2 dσ , (34)

where Qτ is the conjugated operator defined as

Qτ (t, x,D) := e
τφQ(D)e−τφ.

Notice that

v(0, x) = v(T, x) = 0 ∀x ∈ Ω

and

v(t, x) = 0 ∀(t, x) ∈ [0, T ]× ∂Ω.

Split Qτ into

Qτ (t, x,D) = Q
a
τ (t, x,D) +Q

s
τ (t, x,D)

where

Qaτ (t, x,D) = ∂t + τ (∇ · ∇φ +∇φ · ∇)

is the skew-symmetric part of Qτ while

Qsτ (t, x,D)v = −∆− τ
2|∇φ|2 − τφt

is the symmetric part of Qτ . Since

‖Qτv‖
2 = ‖Qsτv‖

2 + ‖Qaτv‖
2 + 2〈Qsτv,Q

a
τv〉 , (35)

the crucial step of the proof will be to estimate from below

2〈Qsτv,Q
a
τv〉 = −2〈(∆ + τ

2|∇φ|2 + τφt)v, (∂t + τ(∇ · ∇φ+∇φ · ∇))v〉

integrating by parts. It is easy to see that 〈∂tv , Qsτv〉 is a lower order term
compared to the left hand side in (34) since

2〈∂tv , Q
s
τv〉 = 〈[Qsτ , ∂t]v, v〉

= +〈(∂t(τ
2|∇φ|2 + τφt)v, v〉

therefore

|〈∂tv , Q
s
τv〉| ≤ cλτ

2‖g3/2v‖2 ,

for a suitable positive constant cλ. Similarly, for some cλ > 0,

|〈 τ(∇ · ∇φ+∇φ · ∇)v, τφtv〉| ≤ cλτ
2‖g3/2v‖2 .
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Then it remains to estimate

−2τ 〈(∇ · ∇φ+∇φ · ∇ )v, (∆ + τ2|∇φ|2)v〉 .

Compute first the leading zero order terms. Integrating by parts, we get

−2τ 〈(∇ · ∇φ+∇φ · ∇)v , τ2|∇φ|2v〉 = 2τ3 〈v, ∇φ · ∇|∇φ|2)v〉 .

Since ∇φ = λgeλψ∇ψ, the highest order terms occur when the derivative falls
on the exponential. Hence we get

−2τ 〈(∇ · ∇φ+∇φ · ∇)v , τ2|∇φ|2v〉 = 4λ〈τ̃3|∇ψ|4v , v〉+R (36)

where R stands for lower order terms,

R = O(‖τ̃−1/2v‖2
2,τ̃
).

Now compute the leading first order terms integrating by parts the expression

−2τ 〈(∇ · ∇φ+∇φ · ∇)v , ∆v〉 .

Since one operator is symmetric and the other is skew-symmetric, we need to
compute their commutator. In fact, we have that

−2τ 〈∆v, (∇ · ∇φ+∇φ · ∇)v〉

= τ 〈(∇ · ∇φ+∇φ · ∇)∆v, v〉 − τ 〈∆v, (∇ · ∇φ+∇φ · ∇)v〉.

Hence, using the equality

τ 〈∆v, (∇ · ∇φ+∇φ · ∇)v〉 = −τ

∫
]0,T [×Ω

∇v · ∇((∇ · ∇φ+∇φ · ∇)v) dt dx

+2τ

∫
[0,T ]×∂Ω

∂νφ|∂νv|
2 dσ

we deduce that

−2τ 〈∆v, (∇ · ∇φ+∇φ · ∇)v〉

= −τ〈[∆, (∇ · ∇φ+∇φ · ∇)]v, v〉 − 2τ

∫
[0,T ]×∂Ω

∂νφ|∂νv|
2 dσ.

Then,

τ〈[∆, (∇ · ∇φ+∇φ · ∇)]v, v〉 = 2τ
n∑
k=1

〈(∇ · ∇φk +∇φk · ∇)vk, v〉

= −2τ

∫
]0,T [×Ω

∇2φ∇v · ∇v +
n∑
k=1

vk∇ · (∇φkv) dt dx

= −4τ

∫
]0,T [×Ω

∇2φ∇v · ∇v dt dx+ τ〈(∆2φ)v, v〉
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and

−2τ 〈∆v, (∇ · ∇φ+∇φ · ∇)v〉

= 4

∫
]0,T [×Ω

τ̃λ|∇ψ · ∇v|2dt dx+R− 2

∫
[0,T ]×∂Ω

τ̃∂νψ|∂νv|
2 dσ. (37)

Hence, if we put together (36) and (37) then we get

4λ

∫
]0,T [×Ω

τ̃3|v|2 + τ̃ |∇ψ · ∇v|2 dt dx ≤ 2〈Qsτv,Q
a
τv〉

+2

∫
[0,T ]×∂Ω

τ̃ ∂νψ|∂νθ|
2 dσ +R .

Substituting this in (35) we obtain

4λ

∫
]0,T [×Ω

τ̃3|v|2 + τ̃ |∇ψ · ∇v|2 dt dx+ ‖Qsτv‖
2 + ‖Qaτv‖

2 ≤ ‖Qτv‖
2

+2

∫
[0,T ]×∂Ω

τ̃ ∂νψ|∂νθ|
2 dσ +R .

In the first term on the left we already control the appropriate weighted L2

norm of v. The corresponding norm of ∂tv is easily obtained from the second
and the fourth term, while the weighted L2 norms of ∇v, respectively ∇2v are
obtained in an elliptic fashion from the first and the third term to obtain

Cλ‖τ̃−
1
2 v‖2

2,τ̃
≤ ‖Qτv‖

2 + 2

∫
[0,T ]×∂Ω

τ̃ ∂νψ|∂νθ|
2 dσ +R .

Now the lower order terms in R are negligible (i.e. much smaller than the left
hand side) for sufficiently large λ, τ and we obtain (34). ♦
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