
Electronic Journal of Differential Equations, Vol. 2001(2001), No. 03, pp. 1–12.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

UNIFORM EXPONENTIAL STABILITY OF LINEAR

PERIODIC SYSTEMS IN A BANACH SPACE

D. N. Cheban

Abstract. This article is devoted to the study of linear periodic dynamical sys-

tems, possessing the property of uniform exponential stability. It is proved that if

the Cauchy operator of these systems possesses a certain compactness property, then

the asymptotic stability implies the uniform exponential stability. We also show

applications to different classes of linear evolution equations, such as ordinary lin-

ear differential equations in the space of Banach, retarded and neutral functional

differential equations, some classes of evolution partial differential equations.

Introduction

Let A(t) be a τ -periodic continuous n×n matrix-function. It is well-known that
the following three conditions are equivalent:

(1) The trivial solution of equation

u′ = A(t)u (0.1)

is uniformly exponentially stable.
(2) The trivial solution of equation (0.1) is uniformly asymptotically stable.
(3) The trivial solution of equation (0.1) is asymptotically stable.

For equations in infinite-dimensional spaces the statements 1)-3) are not equivalent,
as shown by the examples in [15, 26].

It is clear that in general for the infinite-dimensional case condition 1) implies 2)
and 2) implies 3). In this article we show that if the Cauchy operator of equation
(0.1) satisfies some compactness condition, then 3) implies 1) (see Theorem 2.5
below).
Applications to different classes of linear evolution equations (ordinary linear

differential equations in a Banach space, retarded and neutral functional-differential
equations, some classes of evolutionary partial differential equations) are given.
The exponential dichotomy of asymptotically compact cocycles was studied by

R. Sacker and G. Sell [29]. The general case was studied by C. Chicone and Yu,
Latushkin [14] (see also their references), Yu. Latushkin and R. Schnaubelt [25],
and many other authors.
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1. Linear non-autonomous dynamical systems

Assume that X and Y are complete metric spaces, R (Z) be a group of real
(integer) numbers, T = R or Z,T+ = {t ∈ T : t ≥ 0},T− = {t ∈ T|t ≤ 0} and C be
the set of complex numbers.

For a system (X,T+, π), we defined the following concepts: (see [9,10])
Point dissipative, if there is K ⊆ X such that for all x ∈ X

lim
t→+∞

ρ(xt,K) = 0, (1.1)

where xt = πtx = π(t, x);
Compactly dissipative, if the equality (1.1) takes place uniformly with respect
to x on compacts of X;
Locally dissipative, if for any point p ∈ X there is δp > 0 such that the equality
(1.1) takes place uniformly with respect to x ∈ B(p, δp) = {x ∈ X : ρ(x, p) < δp}.

Denote by (X,T+, π) ((Y,T, σ)) a semigroup (group) dynamical system on
〈(X,T+, π), (Y,T, σ), h〉, where h is a homomorphism of (X,T+, π) onto (Y,T, σ),
is called a non-autonomous dynamical system.

A non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is said to be point
(compactly, locally) dissipative, if the autonomous dynamical system (X,T+, π) is
so.

Let (X,h, Y ) be a locally trivial Banach fibre bundle over Y [1]. A non-autonomous
dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is said to be linear if the mapping πt :
Xy → Xyt is linear for every t ∈ T+ and y ∈ Y, where Xy = {x ∈ X|h(x) = y}
and yt = σ(t, y). Let | · | be some norm on (X,h, Y ) such that | · | is co-ordinated
with the metric ρ on X (that is ρ(x1, x2) = |x1 − x2| for any x1, x2 ∈ X such that
h(x1) = h(x2)).

Let E be a Banach space and ϕ : T+×E×Y 7→ E be a continuous mapping with
properties: ϕ(0, u, y) = u and ϕ(t + τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all u ∈ E,
y ∈ Y and t, τ ∈ T+. A triplet 〈E,ϕ, (Y,T, σ)〉 is called a continuous cocycle on
(Y,T, σ) with fibre E.

Let [E] be a Banach space of the all linear continuous operators acting onto E
with the operator norm and U : T+ × Y 7→ [E] be a mapping with properties:
U(0, y) = I, U(t + τ, y) = U(t, σ(τ, y))U(τ, y) for all y ∈ Y and t, τ ∈ T+ and
the mapping ϕ(·, u, ·) : T+ × Y → E (ϕ(t, u, y) = U(t, y)u) is continuous for every
u ∈ E. A triplet 〈[E], U, (Y,T, σ)〉 is called a C0− cocycle on (Y,T, σ) with fibre
[E].

The dynamical system (X,T+, π) is called [17] a skew-product system if X =
E×Y and π = (ϕ, σ) (i.e. π(t, (u, y)) = (ϕ(t, u, y), σ(t, y)) for all u ∈ E, y ∈ Y and
t, τ ∈ T+).

Theorem 1.1 [12,13]. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous
dynamical system and the following conditions hold:

(1) Y is compact and minimal (i.e. Y = H(y) = {yt : t ∈ T} for all y ∈ Y );
(2) for any x ∈ X there exists Cx ≥ 0 such that |xt| ≤ Cx for all t ∈ T+;
(3) the mapping y 7→ ‖πty‖ is continuous, where ‖π

t
y‖ is a norm of linear opera-

tor πty = π
t|Xy , for every t ∈ T+ or (X,T+, π) is a skew-product dynamical

system.
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Then there exists M ≥ 0 such that the inequality

|π(t, x)| ≤M |x|

holds for all t ∈ T+ and x ∈ X.

Lemma 1.2. Let 〈[E], U, (Y,T, σ)〉 be a C0− cocycle on (Y,T, σ) with fibre [E] and
Y be a compact, then the following assertions hold:

(1) For every ` > 0 there exists a positive number M(`) such that ‖U(t, y)‖ ≤
M(`) for all t ∈ [0, `] and y ∈ Y ;

(2) The mapping ϕ : T+ × E × Y 7→ E (ϕ(t, u, y) = U(t, y)u) is continuous;
(3) There exist positive numbers N and ν such that ‖U(t, y)‖ ≤ Neνt for all
t ∈ T+ and y ∈ Y .

Proof. Let ` > 0 and u ∈ E, then there exists a positive number M(`, u) such that
|U(t, y)u| ≤M(`, u) for all (t, y) ∈ [0, `]×Y because the mapping (t, y)→ U(t, y)u is
continuous. According to principle of uniformly boundedness there exists a positive
number M(`) such that ‖U(t, y)‖ ≤M(`) for all (t, y) ∈ [0, `]× Y .
Let now (t0, u0, y0) ∈ T+ × E × Y and tn → t0, un → u0 and yn → y0, then we

have

|ϕ(tn, un, yn)− ϕ(t0, u0, y0)|

≤ |ϕ(tn, un, yn)− ϕ(tn, u0, yn)|+ |ϕ(tn, u0, yn)− ϕ(t0, u0, y0)|

≤ ‖U(tn, yn)(un − u0)‖+ |(U(tn, yn)− U(t0, y0))u0|

(1.2).

In view of first statement of Lemma 1.2 there exists the positive number M such
that

‖U(tn, yn)‖ ≤M (1.3)

for all n ∈ N. From inequalities (1.2) and (1.3) follows the continuity of mapping
ϕ : T+ × E × Y → E (ϕ(t, u, y) = U(t, y)u).
Denote by a = sup{‖U(t, y)‖ : (t, y) ∈ [0, 1] × Y } and let t ∈ T+, t = n + τ(n ∈

N, τ ∈ [0, 1)), then we obtain

‖U(t, y)‖ ≤ ‖U(n, yτ)‖‖U(τ, y)‖ ≤ an+1 ≤ Neνt

for all t ∈ T+ and y ∈ Y , where N = a and ν = ln a.

Theorem 1.3 [13]. Let 〈(X,T+, π), (Y,T, σ), h〉 be a linear non-autonomous dy-
namical system, Y be a compact , then the following conditions are equivalent:

(1) The non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is uniformly
exponentially stable, i.e. there exist two positive constants N and ν such
that |π(t, x)| ≤ Ne−νt|x| for all t ∈ T+ and x ∈ X.

(2) ‖πt‖ → 0 as t→ +∞, where ‖πt‖ = sup{|πtx| : x ∈ X, |x| ≤ 1}.
(3) The non-autonomous dynamical system 〈(X,T+, π), (Y,T, σ), h〉 is locally
dissipative.

2. Exponential stable linear periodic dynamical systems.

Lemma 2.1 [15, Chapter 9]. Let m : T+ 7→ T+ be a positive and continuous
function. If there exists a positive constant M such that m(t+ s) ≤Mm(t) for all

s ∈ [0, 1] and t ∈ T+, then
∫ +∞
0
m(t)dt < +∞ implies m(t)→ 0 as t→ +∞.
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Theorem 2.2. Let 〈[E], U, (Y,T, σ)〉 be the C0− cocycle on (Y,T, σ) with fibre
[E] and (Y,T, σ) be a periodical dynamical system (i.e. there are y0 ∈ Y and
τ ∈ T (τ > 0) such that Y = {y0t : 0 ≤ t < τ}). Then the following conditions are
equivalent:

(i)
lim
t→+∞

‖U(t, y0)‖ = 0. (2.1)

(ii) There exist positive constants N and ν such that for all t ∈ T+ and y ∈ Y ,

‖U(t, y)‖ ≤ Ne−νt . (2.2)

(iii) There exists p ≥ 1 such that for all u ∈ E,

∫ +∞
0

|U(t, y0)u|
pdt < +∞ . (2.3)

Proof. We remark that from equality (2.1) follows the condition

lim
n→+∞

sup
0≤s≤τ

‖U(s + nτ, y0)‖ = 0. (2.4)

In fact, by virtue of Lemma 1.2 there exists a positive constant M such that

‖U(s, y)‖ ≤M (2.5)

for all s ∈ [0, τ ] and y ∈ Y . Therefore,

‖U(s + nτ, y0)‖ = ‖U(s, y0)U(nτ, y0)‖ ≤M‖U(nτ, y0)‖ (2.6)

for all 0 ≤ s ≤ τ . Consequently, from (2.1) and (2.6) results the condition (2.4).
We will show that under the condition (2.4) the equality

lim
t→+∞

sup
y∈Y
‖U(t, y)‖ = 0 (2.7)

holds. In fact, let y ∈ Y then there exists a number s ∈ [0, τ) such that y = y0s
and, consequently, for t ∈ T+ (t = nτ + t̄, t̄ ∈ [0, τ)) we obtain

‖U(t, y)‖ = ‖U(t, y0s)‖ = ‖U(nτ + t̄, y0s)‖

= ‖U((n − 1)τ + t̄+ s, y0τ)U(τ − s, y0s)‖

≤M max{ sup
0≤s≤τ

‖U((n − 1)τ + s, y0)‖, sup
0≤s≤τ

‖U(nτ + s, y0)‖}.
(2.8)

From (2.4) and (2.8) results the equality (2.7). For finishing the proof that (i)
implies (ii) is sufficient to apply Theorem 1.3 .
The fact that (ii) implies (iii) is obvious. Now we prove that (iii) implies (i).

Indeed, let u ∈ E and we consider the function m(t) = |U(t, y0)u|p (t ≥ 0). We
note that

m(t+ s) =|U(t+ s, y0)u|
p = |U(s, y0t)U(t, y0)u|

p

≤‖U(s, y0t)‖
p|U(t, y0)u|

p ≤Mpm(t)
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for all t ∈ T+ and s ∈ [0, 1], where M = sup
0≤s≤1,y∈Y

‖U(s, y)‖. By Lemma 2.1

m(t)→ 0 as t→ +∞ and, consequently,

lim
t→+∞

|U(t, y0)u|
p = 0 (2.9)

for all u ∈ E. Let now y ∈ Y , then there exists s ∈ [0, τ) such that y = y0s and for
t ≥ τ − s we have

U(t, y)u = U(t, y0s)u = U(t− τ + s, y0)U(τ − s, y0s)u. (2.10)

From equalities (2.9) and (2.10),

lim
t→+∞

|U(t, y)u|p = 0 (2.11)

for all u ∈ E and y ∈ Y. According to Theorem 1.1 there exists a positive number
M such that ‖U(t, y)‖ ≤ M for all t ∈ T+ and y ∈ Y . Let t > 0 and u ∈ E, then
we obtain

t|U(t, y0)u|
p =

∫ t
0

|U(t, y0)u|
pds ≤

∫ t
0

|U(t− s, y0s)|
p|U(s, y0)u|

pds

≤Mp
∫ t
0

|U(s, y0)u|
pds ≤Mp

∫ +∞
0

|U(s, y0)u|
pds = Cu

for all t ≥ 0. By virtue of principle of uniformly boundedness there exists a positive
number C such that

t‖U(t, y0)‖
p ≤ C

for all t > 0 and, consequently

‖U(t, y0)‖ ≤ C
1
p t−

1
p → 0

as t→ +∞. This completes the present proof.

Remark 2.3.

(1) Theorem 2.2 (the equivalence of assertions (ii) and (iii)) is a variant of the
Datko-Pazy theorem (see [15-17,19]) for cocycle over periodic dynamical
systems.

(2) Periodic, almost periodic and asymptotically almost periodic mild solutions
of inhomogeneous periodic Cauchy problems considered recently by C. J.
K. Batty, W.Hutter and F. Räbiger [2] and W. Hutter [23].

The operator U(τ, y0) is called operator of monodromy for τ - periodic cocycle
U(t, y). The number 0 6= λ ∈ C is called multiplicator of operator of monodromy
U(τ, y0) if there exists u0 ∈ E (u0 6= 0) such that U(τ, y0)u0 = λu0 (or, what is the
same, U(t+ τ, y0)u0 = λU(t, y0)u0 for all t ∈ T+).
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Remark 2.4.

(a) Condition (2.1) and the equality

lim
n→+∞

‖U(nτ, y0)‖ = 0. (2.12)

are equivalent. We show that (2.12) implies (2.1) as follows. Let now
t = nτ + s, 0 ≤ s < τ , then U(t, y0) = U(s + nτ, y0) = U(s, y0)U(nτ, y0)
and, consequently,

‖U(t, y0)‖ ≤ max
0≤s≤τ

‖U(s, y0)‖‖U(nτ, y0)‖. (2.13)

From conditions (2.12) and (2.13) results (2.1).
(b) Condition (2.2) and the inequality

‖U(t, y0)‖ ≤ N1e
−ν1t (∀t ∈ T+) (2.14)

are equivalent, where N1 and ν1 are some positive constants. Indeed, from
(2.14), taking into account (2.10), we obtain (2.2).

(c) Condition (2.12) is satisfied if and only if σ(U(τ, y0)) ⊂ D = {z ∈ C : |z| <
1}, where σ(U(τ, y0)) is a spectrum of operator of monodromy U(τ, y0).
In fact, from (2.2) results that rU(τ,y0) = lim

n→+∞
sup(‖U(nτ, y0))‖)1/n ≤

e−ν < 1, because Un(τ, y0) = U(nτ, y0). If γ = rU(τ,y0) < 1, then for all

ε > 0 there exists a n(ε) ∈ N such that (‖U(nτ, y0)‖)1/n ≤ γ + ε for all
n ≥ n(ε) and, consequently, ‖U(nτ, y0)‖ ≤ (γ + ε)n for all n ≥ n(ε). Thus
‖U(nτ, y0)‖ → 0 as n→ +∞.

A continuous mapping P : E → E is called [21] asymptotically compact if, for
any nonempty bounded set B ⊂ E for which P (B) ⊆ B, there is a compact set
K ⊂ B such that K attracts B, i.e. lim

n→+∞
sup
x∈B
ρ(Pnx,K) = 0, where ρ(x,K) =

inf
y∈K
|x− y|.

Theorem 2.5. Let 〈[E], U, (Y,T, σ)〉 be a C0− cocycle on (Y,T, σ) with fibre [E],
(Y,T, σ) be a periodic dynamical system and U(τ, y0) be asymptotically compact (i.e.
if kn → +∞ (kn ∈ N), the sequences {un} ⊆ E and {U(knτ, y0)un} are bounded;
then the sequence {U(knτ, y0)un} is precompact). Then the following conditions are
equivalent

(i) Equality (2.1) holds.
(ii) For all u ∈ E,

lim
t→+∞

|U(t, y0)u| = 0 . (2.15)

Proof. It is evidently that (i) implies (ii). Now, under the conditions of Theorem
2.5 the mapping P = U(τ, y0) : E 7→ E is asymptotically compact because Pn =
U(nτ, y0). ¿From condition (2.15) according to uniform boundedness principle it
follows that there is a positive constantM such that ‖Pn‖ ≤M for all n ∈ Z+ and,
consequently, the set B = ∪{Pnx : |x| ≤ 1, n ∈ Z+} is bounded and P (B) ⊂ B.
Since the mapping P is asymptotically compact in virtue of Corollary 2.2.4 from
[21] the set

ω(B) = ∩n≥0∪m≥nPm(B)
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is nonempty, compact, and invariant and ω(B) attracts B.

Now we will prove that lim
n→+∞

‖Pn‖ = 0. If we suppose the contrary, then there

are ε0 > 0, {xn}(|xn| ≤ 1) and nk → +∞({nk} ⊂ Z+) such that

|Pnkxk| ≥ ε0. (2.16)

Since P is asymptotically compact without loss of generality we can suppose that
the sequence {Pnkxk} is convergent. Let x̄ = lim

k→+∞
Pnkxk, then x̄ ∈ ω(B) and

from (2.16) we have |x̄| ≥ ε0 > 0. According to the invariance of the set ω(B) there
exists a beside sequence {wn}n∈Z ⊂ ω(B) such that: w0 = x̄ and P (wn) = wn+1
for all n ∈ Z. We note that

inf
n∈Z−

|wn| = 0. (2.17)

Suppose that it is not true, then there is a positive number ` such that

|wn| ≥ ` (2.18)

for all n ∈ Z−. Let p = lim
k→+∞

wnk and {zn} ⊆ αw0 , where

αw0 =
⋂
n≤0

⋃
m≤n

wm,

be a beside sequence such that z0 = p and P (zn) = zn+1 for all n ∈ Z. ¿From
the inequality (2.18) results that |zn| ≥ ` for all n ∈ Z. On the other hand in view
of (2.15) lim

n→+∞
|wn| = lim

n→+∞
|Pnw0| = 0. The obtained contradiction proves the

equality (2.17).

Let now nr → −∞ and |wnr | → 0, then w0 = P
−nrwnr for all r ∈ N and,

consequently, |w0| = 0 because |w0| ≤ ‖P−nr‖|wnr | ≤ M |wnr |. On the other hand
|w0| = |x̄| ≥ ε0 > 0. The obtained contradiction finishes the proof of our assertion.
The Theorem is proved.

Remark 2.6. C.Buşe wrote several papers [3-5] on evolutions periodic processes
that are in the spirit of the current paper. In particularly, in [5] it is proved that
a trivial solution of equation u′(t) = A(t)u(t) with p− periodic coefficients on a
separable Hilbert space H is uniformly exponentially stable if the mild solution uµx
of a well-posed inhomogeneous Cauchy problem u′(t) = A(t)u(t)+eiµtx(t ≥ 0), µ ∈
R, u(0) = 0 satisfies the following condition sup

µ∈R
sup
t>0
|uµx(t)| < +∞,∀x ∈ H.

3. Some classes of linear uniformly exponentially
stable periodic differential equations.

Let Λ be the complete metric space of linear operators that act on Banach
space E and C(R,Λ) be the space of all continuous operator-functions A : R → Λ
equipped with open-compact topology and (C(R,Λ),R, σ) be the dynamical system
of shifts on C(R,Λ).



8 D. N. Cheban EJDE–2001/03

3.1 Ordinary linear differential equations. Let Λ = [E] and consider the
linear differential equation

u′ = A(t)u , (3.1)

where A ∈ C(R,Λ). Along with equation (3.1), we shall also consider its H−class,
that is, the family of equations

v′ = B(t)v , (3.2)

where B ∈ H(A) = {As : s ∈ R},As(t) = A(t + s) (t ∈ R) and the bar denotes
closure in C(R,Λ). Let ϕ(t, u,B) be the solution of equation (3.2) that satisfies the
condition ϕ(0, v,B) = v. We put Y = H(A) and denote the dynamical system of
shifts on H(A) by (Y,R, σ), then the triple 〈[E], U, (Y,R, σ)〉 is the linear cocycle
on (Y,R, σ), where U(t, B) = ϕ(t, ·, B) for all t ∈ R and B ∈ Y .

Lemma 3.1 [6,7].

(i) The mapping (t, u,A) 7→ ϕ(t, u,A) of R×E×C(R, [E]) to E is continuous,
and

(ii) the mapping U : A → U(·,A) of C(R, [E]) to C(R, [E]) is continuous, where
U(·,A) is the Cauchy operator [12] of equation (3.1).

Theorem 3.2. Let A ∈ C(R,Λ) be τ− periodic (i.e. A(t + τ) = A(t) for all
t ∈ R), then the following conditions are equivalent:

(1) The trivial solution of (3.1) is uniformly exponentially stable, i.e. there
exist positive numbers N and ν such that ‖U(t,A)U(τ,A)−1‖ ≤ Ne−ν(t−τ)

for all t ≥ τ .
(2) There exist positive numbers N and ν such that ‖U(t,B)U(τ,B)−1‖ ≤
Ne−ν(t−τ) for all t ≥ τ and B ∈ H(A) = {As : s ∈ [0, τ)}.

(3) lim
t→+∞

‖U(t,A)‖ = 0.

(4) There exists p ≥ 1 such that
∫ +∞
0
|U(t,A)u|pdt < +∞ for all u ∈ E.

Proof. Applying Theorem 2.2 to the cocycle 〈[E], U, (Y,R, σ)〉, generated by equa-
tion (3.1) we obtain the equivalence of conditions 2), 3) and 4) According to Lemma
3 [7] the conditions 1) and 2) are equivalent. The theorem is proved.

Theorem 3.3. Let A ∈ C(R,Λ) be τ− periodic and U(τ,A) be asymptotically
compact, then the following conditions are equivalent:

(1) The trivial solution of equation (3.1) is uniformly exponentially stable.
(2) lim

t→+∞
|U(t,A)u| = 0 for every u ∈ E.

Proof. Applying Theorem 2.5 to non-autonomous system 〈(X,R+, π), (Y,R, σ), h〉
generated by equation (3.1), we obtain the equivalence of conditions 1) and 2). The
theorem is proved.

3.2 Partial linear differential equations. Let Λ be some complete metric space
of linear closed operators acting into a Banach space E (for example Λ = {A0 +
B|B ∈ [E]}, where A0 is a closed operator that acts on E). We assume that the
following conditions are fulfilled for equation (3.1) and its H− class (3.2):

(a) for any v ∈ E and B ∈ H(A) equation (3.2) has exactly one mild solution
defined on R+ and satisfies the condition ϕ(0, v,B) = v;

(b) the mapping ϕ : (t, v,B)→ ϕ(t, v,B) is continuous in the topology of R+ ×
E × C(R; Λ);
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Under the assumptions above, (3.1) generates a linear cocycle 〈[E], U, (Y,R, σ)〉,
where U(t, B) = ϕ(t, ·, B).
Applying the results from § 2 to this cocycle, we will obtain the analogous asser-

tions for different classes of partial differential equations.
We will consider examples of partial differential equations which satisfy the above

conditions a. and b.
Example 3.1. A closed linear operator A : D(A) → E with dense domain of

definition D(A) is said [22] to be a sectorial if one can find a θ ∈ (0, π2 ), an M ≥ 1,
and a real number a such that the sector

Sa,θ = {λ : θ ≤ | arg(λ− a)| ≤ π, λ 6= a}

lies in the resolvent set ρ(A) of A and ‖(λI −A)−1‖ ≤M |λ− a|−1 for all λ ∈ Sa,θ.
If A is a sectorial operator, then there exists a1 > 0 such that Reσ(A + a1I) > 0
(σ(A) = C \ ρ(A)). Let A1 = A+ a1I. For 0 < α < 1, one defines the operator [14]

A−α1 =
sinπα

π

∫ +∞
0

λ−α(λI +A1)
−1dλ,

which is linear, bounded, and one-to-one. Set Eα = D(Aα1 ), and let us equip the
space Eα with the norm |u|α = |Aα1 u|, E

0 = E,X1 = D(A). Then Eα is a Banach
space with the norm | · |α, and is densely continuously embedded in E. If the
operator A admits a compact resolvent, then the embedding Eα → Eβ is compact
for α > β ≥ 0 [22]. An important class of a sectorial operators is formed by elliptic
operators [22,24].
Consider the differential equation

u′ = (A0 +A(t))u, (3.3)

where A0 is a sectorial operator that does not depend on t ∈ R, and A ∈ C(R, [E]).
The results of [14] imply that equation (3.3) satisfies conditions a. and b.
Under the assumptions above, (3.3) generates a linear cocycle 〈[E], U, (Y,R, σ)〉,

where Y = H(A) and U(t, B) = ϕ(t, ·, B). Applying the results from § 2 to this
system, we will obtain the following results.

Theorem 3.4. Let A0 - be the sectorial operator and A ∈ C(R,Λ) be τ -periodic,
then the following conditions are equivalent:

(1) The trivial solution of equation (3.3) is uniformly exponentially stable, i.e.
there exist positive numbers N and ν such that ‖U(t,A0 + A)U(τ,A0 +
A)−1‖ ≤ Ne−ν(t−τ) for all t ≥ τ.

(2) There exist positive numbers N and ν such that ‖U(t,A0 + B)U(τ,A0 +
B)−1‖ ≤ Ne−ν(t−τ) for all t ≥ τ and B ∈ H(A).

(3) lim
t→+∞

‖U(t,A0 +A)‖ = 0.

(4) There exists p ≥ 1 such that
∫ +∞
0
|U(t,A0 +A)u|pdt < +∞ for all u ∈ E.

(5) σ(U(τ,A0 +A)) ⊂ D.

Theorem 3.5. Let A0 - be the sectorial operator with compact resolvent and A ∈
C(R,Λ) be τ - periodic, then the following conditions are equivalent:

(1) The trivial solution of equation (3.3) is uniformly exponentially stable.
(2) lim

t→+∞
|U(t,A0 +A)u| = 0 for every u ∈ E.

(3) |λ| < 1 for every multiplicator λ of operator of monodromy U(τ,A0 +A).
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Proof. Since the sectorial operator A0 admits a compact resolvent, then in view of
Lemma 7.2.2 [14] the operator U(τ,A0 +A) is compact and, consequently (see,for
example [30, p.391-396]), every 0 6= λ ∈ σ(U(τ,A0 + A)) is a multiplicator for
operator of monodromy U(τ,A0 + A). Applying Theorem 3.4 (see also Remark
2.3) to linear cocycle 〈[E], U, (Y,R, σ)〉 generated by equation (3.3), we obtain the
equivalence of conditions 1., 2. and 3. The theorem is proved.

3.3 Linear functional-differential equations. Let r > 0, C([a, b],Rn) be the
Banach space of all continuous functions ϕ : [a, b]→ Rn with sup-norm. If [a, b] =
[−r, 0], then we put C = C([−r, 0],Rn). Let σ ∈ R, α ≥ 0 and u ∈ C([σ − r, σ +
α],Rn). For any t ∈ [σ, σ + α] we define ut ∈ C by equality ut(θ) = u(t+ θ),−r ≤
θ ≤ 0. Denote by A = A(C,Rn) the Banach space of all linear continuous operators
acting from C into Rn, equipped by operator norm. Consider the equation

u′ = A(t)ut , (3.4)

where A ∈ C(R,A). We put H(A) = {Aτ : τ ∈ R},Aτ (t) = A(t + τ) and the bar
denotes the closure in the topology of uniform convergence on compacts of R.
Along with equation (3.4) we also consider the family of equations

u′ = B(t)ut , (3.5)

where B ∈ H(A). Let ϕt(v,B) be a solution of equation (3.5) with condition
ϕ0(v,B) = v defined on R+. We put Y = H(A) and denote by (Y,R, σ) the
dynamical system of shifts on H(A). Let X = C × Y and π = (ϕ, σ) the dy-
namical system on X, defined by the equality π(τ, (v,B)) = (ϕτ (v,B),Bτ ). The
non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉 (h = pr2 : X → Y ) is
linear. The following assertion takes place.

Lemma 3.6 [12]. Let H(A) be compact in C(R,A), then the non-autonomous
dynamical system 〈(X,R+, π), (Y,R, σ), h〉 generated by equation (3.4) is completely
continuous, i.e. for every bounded set A ⊂ X there exists a positive number ` such
that π`A is precompact.

Theorem 3.7. Let A be τ− periodic. Then the following assertions are equivalent:

(1) The trivial solution of equation (3.4) is uniformly exponentially stable.
(2) lim

t→+∞
|U(t,A)u| = 0 for every u ∈ E.

(3) |λ| < 1 for every multiplicator λ of operator of monodromy U(τ,A).

Proof. Let 〈(X,R+, π), (Y,R, σ), h〉 be the linear non-autonomous dynamical sys-
tem, generated by equation (3.4). According to Lemma 3.6 this system is com-
pletely continuous and, consequently, there exists a number k ∈ N such that
Uk(τ, y0) = U(kτ, y0) is precompact. By virtue of theory of Riesz-Schauder (see for
example [30, p.391-395]) every 0 6= λ ∈ σ(U(τ,A)) is a multiplicator of operator of
monodromy U(τ,A). To finish the proof it is sufficient to refer to Theorems 2.2,
2.5 and Remark 2.3.

Consider the neutral functional differential equation

d

dt
Dut = A(t)ut , (3.6)

where A ∈ C(R,A) and D ∈ A is nonatomic at zero operator [20, p.67]. As well as
in the case of equation (3.4), the equation (3.6) generates a linear non-autonomous
dynamical system 〈(X,R+, π), (Y,R, σ), h〉, where X = C × Y, Y = H(A) and
π = (ϕ, σ). The following statement holds.



EJDE–2001/03 Uniform exponential stability 11

Lemma 3.8 [12]. Let H(A) be compact and the operator D is stable, i.e. the zero
solution of homogeneous difference equation Dyt = 0 is uniformly asymptotically
stable. Then the linear non-autonomous dynamical system 〈(X,R+, π), (Y,R, σ), h〉,
generated by equation (3.6), is asymptotically compact.

Theorem 3.9. Let A ∈ C(R,A) be τ− periodic and D is stable, then the following
assertions are equivalent:

(1) The trivial solution of equation (3.6) is uniformly exponentially stable;
(2) lim

t→+∞
|U(t,A)u| = 0 for every u ∈ E;

(3) |λ| < 1 for every multiplier λ of operator of monodromy U(τ,A).

Proof. Let 〈(X,R+, π), (Y,R, σ), h〉 be the linear non-autonomous dynamical sys-
tem, generated by equation (3.6). According to Lemma 3.8 this system is asymptot-
ically compact. . According to results of [20, Chapter 12] every 0 6= λ ∈ σ(U(τ, y0))
is a multiplier of operator of monodromy U(τ, y0). To finish the proof of Theorem
3.8 it is sufficient to refer to Theorems 2.2, 2.5 and Remark 2.3. The theorem is
proved.

Remark 3.10.

(1) The equivalence of conditions 1. and 3. in Theorem 3.5 (Theorem 3.7,
Theorem 3.9) was proved in [22, p.219] (resp. in [20, p.233], [20, p.365]).

(2) All the statements from § 3 hold also for difference equations and can be
proved in the same way.
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