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Semilinear elliptic problems on unbounded

subsets of the Heisenberg group ∗

K. Tintarev

Abstract

In this paper we discuss the applications of an abstract version of
concentration compactness to minimax problems. In particular, we prove
the existence of solutions to semilinear elliptic problems on unbounded
subsets of the Heisenberg group.

1 Introduction

Heisenberg Laplacian is a subelliptic differential operator defined as follows.
Let HN be the space RN ×RN ×R, whose elements we denote as η = (α, β, τ),
η = (x, y, t), etc, equipped with the group operation

η ◦ η′ = (α+ α′, β + β′, τ + τ ′ + 2(αβ′ − βα′)). (1.1)

This group multiplication endows HN with a structure of a Lie group. The
Laplacian ∆H is obtained from the vector fieldsXi = ∂xi+2yi∂t, Yi = ∂yi−2xi∂t,
i = 1, . . . , N , as

∆H :=
N∑
i=1

Xi ◦Xi +Yi ◦Yi =
N∑
i=1

∂2
xi + ∂2

yi + 4yi∂xi∂t− 4xi∂yi∂t + 4(x2
i + y2

i )∂2
t .

(1.2)
It can be also defined as an operator associated with a quadratic form −a in
L2(HN ), where

a(u) =
∫
HN

|Xu|2 + |Y u|2 (1.3)

(the left Haar measure of the Heisenberg group is the Lebesgue measure; we
also consider HN as endowed with the topology of R2N+1). Let D be the group
of linear operators on L2(HN ) defined by left shifts:

(gηu)(x) = u(η ◦ x), η ∈ HN . (1.4)
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2 Semilinear equations on Heisenberg group EJDE–2001/18

These operators commute with ∆H, the form a and the Lp(HN )-norms are
invariant under D. Following [4] we define the following Hilbert space associated
with the norm given by a(u) + ‖u‖2L2 : if Ω is an open subset of the Heisenberg

group,
◦
S1

2(Ω) is a closure of C∞0 (Ω) in the norm given by (1.3). The space

S1
2(HN )([3]) is identical with

◦
S1

2(Ω) for Ω = H
N . Due to the Folland-Stein ([3])

inequality

a(u) ≥ S‖u‖22∗ , S > 0, 2∗ = 2 + 2/N. (1.5)

and the Hölder inequality,
◦
S1

2(Ω) is imbedded into Lp with 2 ≤ p ≤ 2∗. For
unbounded domains the imbedding is generally not compact.

In this paper we study the existence of solutions in the Dirichlet problem
for the equation −∆Hu = f(u) on (generally unbounded) open subsets of HN .
Existence results for semilinear problems on bounded subsets of Heisenberg
group with subcritical nonlinearities (where compactness of imbedding into Lp

is used) can be found in [4], [2], [1] and [12]. This paper deals with the non-
compact case by using the concentration compactness approach ([5],[6]) in its
abstract version ([9]).

Section 2 deals with the concentration compactness for Heisenberg shifts,
structure of Palais-Smale sequences and geometric conditions for unbounded
domains to which we extend the concentration-compactness argument (the class
of “asymptotically contractive trace domains”). In Section 3 the results of
Section 2 are applied to the semilinear problems.

2 Abstract concentration compactness in appli-
cation to the Heisenberg group

Definition 2.1. Let H be a separable Hilbert space. We say that a group D
of unitary operators on H is a group of dislocations if

uk ∈ H,uk ⇀ 0, gk ∈ D, gk 6⇀ 0⇒ ∃{kj} ⊂ N, gkjukj ⇀ 0. (2.1)

Definition 2.2. Let u, uk ∈ H. We will say that uk converges to u weakly with
concentration (under dislocations D), which we will denote as

uk
D
⇀ u,

if for all ϕ ∈ H,

lim
k→∞

sup
g∈D

(g(uk − u), ϕ) = 0. (2.2)
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Theorem 2.3 ([9]). Let uk ∈ H be a bounded sequence. Then there exists
w(n) ∈ H, g(n)

k ∈ D, k, n ∈ N such that for a renumbered subsequence

g
(1)
k = id, g

(n)
k

−1
g

(m)
k ⇀ 0 for n 6= m, (2.3)

w(n) = w-lim g
(n)
k

−1
uk (2.4)∑

n∈N

‖w(n)‖2 ≤ lim sup ‖uk‖2 (2.5)

uk −
∑
n∈N

g
(n)
k w(n) D

⇀ 0. (2.6)

Let G ∈ C1(H) satisfy the following conditions:

(i) G is invariant under D: ∀g ∈ D, G ◦ g = G,

(ii) G′ is weak-to-weak continuous: uk ⇀ u⇒ G′(uk) ⇀ G′(u).

We recall that a sequence uk is called a (PS)c-sequence if G(uk) → c and
G′(uk)→ 0. The critical set of G will be denoted as K := {u ∈ H : G′(u) = 0}.

Lemma 2.4. Assume that G satisfies (i),(ii). Then any bounded (PS)c-sequence
for G has a subsequence satisfying (2.6) with w(n) ∈ K.

Proof. Let uk be a PSc-sequence. We apply Theorem 2.3 to uk and in what
follows use the resulting renumbered subsequence. By (i),(ii)

g
(n)
k

−1
G′(uk) ⇀ G′(w(n)). (2.7)

This implies that G′(w(n)) = 0.

This statement does not provide sufficient information for problems on un-
bounded subsets of HN that are not invariant with respect to the Heisenberg
group or its subgroups. This matter will be addressed later in this section.

Let D be the group of left actions of HN on
◦
S1

2(Ω):

(gηu)(z) = u(η ◦ z), η ∈ HN . (2.8)

We will also use the notation HN
Z

for the subgroup of the Heisenberg group
whose elements have integer coordinates and DZ the correspondent group of
actions.

To use Theorem 2.3 we have to show that D (resp DZ) is a group of dis-
locations. Indeed, note first that if gηk 6⇀ 0 then ηk ∈ HN has a bounded
subsequence, otherwise, let ϕ,ψ ∈ C∞0 and observe that gηkϕ and ψ will have
disjoint supports for k sufficiently large (the left shifts by Heisenberg group ei-
ther move one of xi, yi to infinity, or, if there is a subsequence where none of
the first 2N components of ηk goes to infinity, then tk → ∞). Once ηk has
a bounded subsequence, it also has a convergent (renamed) subsequence, and
then, with any ϕ ∈ C∞0 ,

(gηkuk, ϕ) = (gηuk, ϕ) + (uk, (g−ηk − g−η)ϕ)→ 0. (2.9)



4 Semilinear equations on Heisenberg group EJDE–2001/18

Lemma 2.5. Let B = {(α, β, τ) ∈ G : |αi| < 1/2, |βi| < 1/2, i = 1, . . . , N, |τ | <
1/2}. Then the sets {η ◦ B, η ∈ HN

Z
} cover HN with multiplicity not exceeding

22N+1.

Proof. It suffices to show that for each point η ∈ HN there is at least one
and at most 22N+1 points η′ ∈ HN

Z
such that η′ ◦ η ∈ B. Indeed, each of

the inequalities |α′i + αi| ≤ 1/2, |β′i + βi| ≤ 1/2 are satisfied with at least one
and at most two integer values α′ (resp. β′), which implies that the remaining
inequality |τ ′ + τ + 2(α′β − αβ′|) ≤ 1/2 is also satisfied with at least one and,
for each choice of α, β two integer values of τ ′.

Lemma 2.6. Let Ω ⊂ HN be an invariant domain with respect to the subgroup

of HN with integer coordinates. Let q ∈ (2, 2∗) and let uk ∈
◦
S1

2(Ω) be a bounded
sequence. Then

uk
DZ⇀ 0⇔ uk → 0 in Lq(Ω). (2.10)

Same conclusion holds for Ω = H
N if DZ is replaced by D.

Proof. We prove the lemma for the case of the group of integer shifts DZ. Since
DZ ⊂ D, the concentrated weak convergence in the case of D is not weaker
than for DZ and therefore implies Lq-convergence. The proof of the converse
statement for D is a literal repetition of that for DZ.

First, assume that uk → 0 in Lq(Ω). Then for every sequence ηk ∈ HN ,
gηkuk ⇀ 0 in Lq(Ω). However, since uk is bounded in S1

2 -norm, gηkuk ⇀ 0 in
◦
S1

2(Ω).

Assume now that uk
DZ⇀ 0. In what follows we consider elements of

◦
S1

2(Ω)

extended by zero as elements of
◦
S1

2(HN ). By the Folland-Stein embedding for
bounded domains, there is a C > 0 such that∫

η◦B
|uk|q ≤ C‖uk‖2S1

2(η◦B)(
∫
η◦B
|uk|q)1−2/q, η ∈ HN

Z
. (2.11)

Due to Lemma 2.5, the sets η ◦B, η ∈ HN
Z

form a covering of finite multiplicity
for Ω, so by adding terms in (2.11) over η ∈ HN

Z
, we obtain∫

Ω

|uk|q ≤ C‖uk‖ ◦
S1

2(Ω)
sup
η∈HN

Z

(
∫
B

|g−ηuk|q)1−2/q ≤ 2C(
∫
B

|gηkuk|q)1−2/q (2.12)

for an appropriately chosen “near-supremum” sequence ηk ∈ HNZ . It remains to

note that by compactness of imbedding of
◦
S1

2 (B) into Lq(B), one has gηkuk → 0
in Lq(Ω), so that the assertion of the lemma follows from (2.12).

Let BR denote a closed Euclidean ball in R2N+1 of radius R, centered at the
origin. We now introduce the following class of domains.
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Definition 2.7. An open set Ω ⊂ HN will be called strongly asymptotically
contractive if for every unbounded sequence ηk ∈ HNZ either | lim inf(ηk ◦Ω)| = 0
or there is a β ∈ HN and a set Z ⊂ H

N of zero measure such that, on a
renumbered subsequence, for every R > 0 the set

BR ∩ lim sup(ηk ◦ Ω) \ Z (2.13)

is a compact subset of β ◦ Ω.

(We recall that for a sequence of sets Xk, lim inf Xk := ∪n ∩k≥n Xk and
lim supXk := ∩n ∪k≥n Xk.)

This is a stronger requirement than asymptotic contractiveness defined in a
similar context in [9] for the Euclidean case. Open bounded sets are strongly
asymptotically contractive: if Ω is bounded and ηk is an unbounded sequence,
then lim sup(ηk ◦ Ω) = ∅. Another example of a strongly asymptotically con-
tractive domain will be Ω = {(x, y, t) ∈ HN : x2 + y2 < f(t)} with a continuous
function f , such that f(t) < f∞ := lims→±∞ f(s). In this case all the correspon-
dent lim sup lie in the closure of {(x, y, t) ∈ HN : x2 +y2 ≤ f∞} up to a constant
group shift. If one modifies the definition of strong asymptotic contractivenes
by using different groups on R2N+1, the property obviously becomes dependent
on the group. For example, the set {(x, y, t) ∈ R3 : y2 + t2 < x2/(1 + x2)} is
not asymptotically contractive with respect to parallel translations, but all its
limit sets with respect to unbounded sequences of H1-shifts have zero measure.

Remark 2.8. Although
◦
S1

2(Ω) is not necessarily DZ-invariant, dislocated weak

limits for sequences on
◦
S1

2(Ω) are well defined (up to extraction of subsequence
and a constant group shift), since by definition, ϕ ∈ C∞0 (Ω)⇒ ϕ((−β)◦η(n)

k ◦·) ∈
C∞0 (Ω) for sufficiently large k, and moreover, regarding uk as a sequence in
◦
S1

2(HN ), BR ∩ supp w-limuk((−η(n)
k ) ◦ β ◦ ·) is a compact subset of Ω, so that

the dislocated weak limit is an element of
◦
S1

2(Ω).

3 Application to elliptic problems

Let F ∈ C1(R), f(s) = F ′(s),

a1(u) := a(u) +
∫
u2, g(u) :=

∫
F (u), u ∈

◦
S1

2(Ω) (3.1)

and let
σ := sup

u∈
◦
S1

2(Ω)

g(u)/a1(u). (3.2)

Assume that
lim
|s|→∞

|f(s)|/|s|2
∗
→ 0 (3.3)
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and

lim
s→0

f(s)
s

= 0, (3.4)

Let

G(u) := a1(u)− 2g(u), u ∈
◦
S1

2(Ω). (3.5)

It is clear that G ∈ C1(
◦
S1

2(Ω)).

Lemma 3.1. Let Ω ⊂ HN be a strongly asymptotically contractive open set.
Then any bounded (PS)c-sequence for G has a convergent subsequence.

Proof. Let uk be a bounded PSc-sequence. Consider the asymptotic decompo-

sition of its extension to
◦
S1

2(HN ) by Theorem 2.3 and note that w(1) = w-limuk

in the sense of
◦
S1

2(Ω), while for n > 1, the essential support of w(n) inter-
sected with any closed ball is a compact subset of Ω. Let φ ∈ C∞0 (Ω). Then
φ(ηn)

k ◦ ·) ∈ C∞0 (Ω) for k sufficiently large. Then, understanding G′ as an ex-

tended map
◦
S1

2(Ω)→
◦
S1

2(HN ), due to Remark 2.8 we have (G′(uk), φ(ηn)
k ◦·))→

(G′(w(n)), φ) = 0, where the terms in the last scalar product can be identified as

elements of
◦
S1

2(Ω). However, for all n > 1, suppw(n) has an open complement
in Ω, which contradicts to the maximum principle ([4]), unless w(n) = 0. Since
all dislocated weak limits w(n), n > 1, of uk equal zero, by Theorem 2.3 and

Lemma 2.6, uk → w(1) in Lp(HN ) for any p ∈ (2, 2∗). Since uk ∈
◦
S1

2(Ω), one has

also convergence in Lp(Ω). Since G′(uk)→ 0 in
◦
S1

2(Ω), uk is also convergent in
◦
S1

2(Ω).

Theorem 3.2. Let Ω ⊂ H be a HN
Z

-invariant or a strongly asymptotically
contractive open set. Assume (3.3) and (3.4). If, in addition

σ > 1, (3.6)

then for every ε > 0 there exists a η ∈ [1− ε, 1] and a u ∈
◦
S1

2(Ω) \ {0} satisfying

−∆Hu+ u = ηf(u). (3.7)

Note that condition (3.6) is satisfied if F (s)/s2 →∞ when s→ +∞.

Proof. It is easy to see that the functional G has the classical mountain pass
geometry (the proof repeats with trivial modifications similar calculations for
semilinear equations with the Laplace operator and can be omitted): G(0) = 0,
G(u) ≥ 1

2a1(u) for all a1(u) sufficiently small (due to 3.4), and by (3.6) there is

a e ∈
◦
S1

2(Ω) such that G(e) < 0. Let λ > 1 and let Gλ = λa1 − 2g. Let

Φλ = {ϕ ∈ C([0, 1]) : ϕ(0) = 0, ϕ(1) = e,Gλ(ϕ([0, 1])) ≤ s}, s ∈ R. (3.8)
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We assume that s = s(λ) is sufficiently large so that Φ 6= ∅. Let

cλ := inf
ϕ∈Φλ

maxG(ϕ([0, 1]). (3.9)

By Theorem 2.1 in [10] there is a sequence uk ∈
◦
S1

2(Ω) and θk ∈ [0, 1] satisfying

(1− θk)G′(uk) + θkG
′
λ(uk)→ 0, G(uk)→ cλ > 0, (3.10)

and such that
Gλ(uk) ≤ s. (3.11)

Note now that from G(uk) → cλ and (3.11) follows immediately that ‖uk‖2 ≤
(s − cλ)/λ. On a renumbered subsequence such that θk → θ ∈ [0, 1] one has
therefore

uk − ηg′(uk)→ 0, (3.12)

with η = (1 + θ(λ − 1))−1. If Ω is HN
Z

-invariant, then by Lemma 2.4, the
dislocated weak limits w(n) of uk satisfy the equation wn = g′(w(n)). If wn = 0
for all n, then by Theorem 2.3, uk

D
⇀ 0 and by Lemma 2.6 uk → 0 in Lq(Ω)

for any q ∈ (2, 2∗). Then g′(uk) → 0 and so, by (3.12), uk → 0 in
◦
S1

2(Ω), in
which case G(uk) → 0 which contradicts (3.10). Therefore at least one of the
dislocated limits is a non-zero critical point. The theorem is proved for this
case.

In case when Ω is strongly asymptotically contractive, due to Lemma 3.1 uk
converges to its weak limit w(1) and w(1) = g′(w(1)). Then G(w(1)) 6= 0 due to
(3.10).

Corollary 3.3. Assume in addition to the conditions of Theorem 3.2 that there
exists a µ > 2 such that

f(s)s > µF (s) (3.13)

for s sufficiently large. Then there exists a u ∈
◦
S1

2(Ω) \ {0} satisfying

−∆Hu+ u = f(u). (3.14)

Note that in this case the condition (3.6) follows from (3.13).

Proof. We will now allow λ from the previous proof to vary. Let uλ be the
corresponding critical point. By considering appropriate linear combination of
equations (G′(uλ), uλ) = 0 and G(uλ) = cλ ↓ c∞ > 0, it is easy to deduce from

(3.13) that uλ are bounded in the
◦
S1

2(Ω)-norm for all λ close to 1. Let us consider
now a sequence λk → 1 and a corresponding sequence uλk . If Ω is HN

Z
-invariant,

applying Theorem 2.3 to uλk we obtain that all dislocated weak limits of this
sequence are critical points for G. If all of them equal zero, then uλk

D
⇀ 0, and

repeating the argument at the end of the previous proof we conclude that (on
a renamed subsequence) G(uλk) → 0, a contradiction. In the remaining case,
when Ω is strongly asymptotically contractive, we apply Lemma 3.1 to uλk , in
which case it is a convergent sequence, and so its limit is a non-zero critical
point.
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