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Exponential stability of nonlinear time-varying

differential equations and applications ∗

N. M. Linh & V. N. Phat

Abstract

In this paper, we give sufficient conditions for the exponential stability
of a class of nonlinear time-varying differential equations. We use the Lya-
punov method with functions that are not necessarily differentiable; hence
we extend previous results. We also provide an application to exponential
stability for nonlinear time-varying control systems.

1 Introduction

The investigation of stability analysis of nonlinear systems using the second
Lyapunov function method has produced a vast body of important results and
been widely studied [4, 5, 8, 10, 20]. This is due to the theoretical interests in
powerful tools for system analysis and control design. It is recognized that the
Lyapunov function method serves as a main technique to reduce a given compli-
cated system into a relatively simpler system and provides useful applications
to control theory [6, 11, 13, 14, 20]. There have been a number of interesting de-
velopments in searching the stability criteria for nonlinear differential systems,
but most have been restricted to finding the asymptotic stability conditions
[1, 3, 7, 15]. Unlike the linear systems, where the asymptotic stability implies
the exponential stability, the exponential stability for nonlinear differential sys-
tems, in general, may not be easily verified. Only a few investigations have
dealt with exponential stability conditions for nonlinear time-varying systems
[17, 18]. Moreover, the problem of Lyapunov characterization of exponential
stability of nonlinear time-varying differential equations with non-smooth Lya-
punov functions has remained open.

The purpose of this paper is to establish sufficient conditions for the expo-
nential stability of a class of nonlinear time-varying systems. In the spirit of a
result of [18], we develop the exponential stability with more general assump-
tions on the Lyapunov function V (t, x) in two aspects:
(i) Proposing a class of Lyapunov-like functions, we prove new sufficient condi-
tions for the exponential stability of nonlinear time-varying systems with more
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general comparable conditions.
(ii) The results are extended to the systems with non-smooth Lyapunov func-
tions, which need not be differentiable in t and in x, and then the stability
results are applied to some stabilization problems of nonlinear time-varying
control systems.

The paper is organized as follows. In Section 2, we introduce notation,
definitions, and other preliminaries. Section 3 gives new sufficient conditions
for the exponential stability with the extended Lyapunov-like functions. An
application to exponential stability of a class of nonlinear time-varying control
systems is given in Section 4.

2 Preliminaries

The following notation will be used this paper: Rn is the n-dimensional Eu-
clidean vector space; R+ is the set of all non-negative real numbers; ‖x‖ is the
Euclidean norm of a vector x ∈ Rn.

Consider the nonlinear system described by the time-varying differential
equations

ẋ(t) = f(t, x(t)), t ≥ 0,
x(t0) = x0, t0 ≥ 0

(1)

where x(t) ∈ Rn, f(t, x) : R+×Rn → R
n is a given nonlinear function satisfying

f(t, 0) = 0 for all t ∈ R+. We shall assume that conditions are imposed on
system (1) such that the existence of its solutions is guaranteed.

Definition 2.1 The zero solution of system (1) is exponentially stable if any
solution x(t, x0) of (1) satisfies

‖x(t, x0)‖ ≤ β(‖x0‖, t0)e−δ(t−t0), ∀t ≥ t0,

where β(h, t) : R+ ×R+ → R
+ is a non-negative function increasing in h ∈ R+,

and δ is a positive constant.
If the function β(.) in the above definition does not depend on t0, the zero

solution is called uniformly exponentially stable. From now on, to shorten
expressions, instead of saying the zero solution is stable, we say that the system
is stable.

Associated with system (1) we consider a nonlinear time-varying control
system

ẋ(t) = f(t, x(t), u(t)), t ≥ 0, (2)

where x ∈ Rn, u ∈ Rm, f(t, x, u) : R+ × Rn × Rm → R
n.

Definition 2.2 Control system (2) is exponentially stabilizable by the feed-
back control u(t) = h(x(t)), where h(x) : Rn → R

m, if the closed-loop system

ẋ(t) = f(t, x(t), h(x(t)))
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is exponentially stable.
Let D ⊂ Rn be an open set containing the origin, and let V (t, x) : R+×D →

R be a given function. Then we define W = R
+ ×D and

D+
f V (t, x) = lim sup

h→0+

V (t+ h, x+ hf)− V (t, x)
h

,

where f(.) is the right-hand side function of (1). D+
f V is called the upper Dini

derivative of V (.) along the trajectory of (1). Let x(t) be a solution of (1) and
denote by d+V (t, x) the upper right-hand derivative of V (t, x(t)), i.e.

d+V (t, x(t)) = lim sup
h→0+

V (t+ h, x(t+ h))− V (t, x(t))
h

.

Definition 2.3 A function V (t, x) : R+ × Rn → R is Lipschitzian in x (uni-
formly in t ∈ R+) if there is a number L > 0 such that for all t ∈ R+,

|V (t, x1)− V (t, x2)| ≤ L‖x1 − x2‖, ∀(x1, x2) ∈ Rn × Rn.

In the sequel we assume that V (t, x) is continuous in t and Lipschitzian in
x (uniformly in t) with the Lipschitz constant L > 0. In which case, d+V and
D+
f V related as follows:

V (t+ h, x(t+ h))− V (t, x(t))
= V (t+ h, x(t+ h))− V (t+ h, x+ hf(t, x))

+V (t+ h, x+ hf(t, x))− V (t, x(t)).

Also

lim sup
h→0+

V (t+ h, x+ hf(t, x)))− V (t, x(t))
h

≤ lim sup
h→0+

V (t+ h, x(t+ h))− V (t, x(t))
h

+L{ lim
h→0+

‖x(t+ h)− x(t)‖
h

− f(t, x(t))},

which gives

d+V (t, x) ≤ lim sup
h→0+

V (t+ h, x+ hf))− V (t, x)
h

= D+
f V (t, x). (3)

As shown in [12], if D+
f V (t, x) ≤ 0 and consequently, by (3), d+V (t, x) ≤ 0, the

function V (t, x(t)) is a non-increasing function of t, which means that V (t, x) is
non-increasing along a solution of (1). To study exponential stability of (2) we
need the following comparison theorem presented in [10, 19]. Consider a scalar
differential equation

u̇(t) = g(t, u), t ≥ 0, (4)

where g(t, u) is continuous in (t, u).
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Proposition 2.1 Let u(t) be the maximal solution of (4) with u(t0) = u0. If a
continuous function v(t) with v(t0) = u0 satisfies

d+v(t) ≤ g(t, u(t)), ∀t ≥ t0,

then

v(t)− v(t0) ≤
∫ t

t0

g(s, u(s))ds, ∀t ≥ t0.

Let us set

DfV (t, x) =
dV (t, x)
dt

+
dV (t, x)
dx

f(t, x).

Definition 2.4 A function V (t, x) : W → R is called a Lyapunov-like function
for (1) if V (t, x) is continuously differentiable in t ∈ R+ and in x ∈ D, and there
exist positive numbers λ1, λ2, λ3,K, p, q, r, δ such that

λ1‖x‖p ≤ V (t, x) ≤ λ2‖x‖q, ∀(t, x) ∈W , (5)

DfV (t, x) ≤ −λ3‖x‖r +Ke−δt, ∀t ≥ 0, x ∈ D \ {0} (6)

Definition 2.5 A function V (t, x) : W → R is called a generalized Lyapunov-
like function for (1) if V (t, x) is continuous in t ∈ R+ and Lipschitzian in x ∈ D
(uniformly in t) and there exist positive functions λ1(t), λ2(t), λ3(t), where λ1(t)
is non-decreasing, and there exist positive numbers K, p, q, r, δ such that

λ1(t)‖x‖p ≤ V (t, x) ≤ λ2(t)‖x‖q, ∀(t, x) ∈W , (7)

D+
f V (t, x) ≤ −λ3(t)‖x‖r +Ke−δt, ∀t ≥ 0, x) ∈ D \ {0} (8)

3 Main results

We start this section by giving a result from [18] on the exponential stability of
(1), with the existence of a uniform Lyapunov function.

Theorem 3.1 ([17]) Assume that (1) admits a Lyapunov-like function, where
p = q = r. The system (1) is uniformly exponentially stable if

δ >
λ3

λ2
.

In the two theorems below, we give sufficient conditions for the exponential
stability of (1) with a more general Lyapunov-like function.

Theorem 3.2 The system (1) is uniformly exponentially stable if it admits a
Lyapunov-like function and the following two conditions hold for all (t, x) ∈W :

δ >
λ3

[λ2]r/q
, (9)

∃γ > 0 such that V (t, x)− V (t, x)r/q ≤ γe−δt. (10)
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Proof. Consider any initial time t0 ≥ 0, and let x(t) be any solution of (1)
with x(t0) = x0. Let us set

Q(t, x) = V (t, x)eM(t−t0), M =
λ3

[λ2]r/q
.

Then
Q̇(t, x(t)) = DfV (t, x)eM(t−t0) +MV (t, x)eM(t−t0).

Taking (6) into account, for all t ≥ t0, x ∈ D, we have

Q̇(t, x) ≤ (−λ3)‖x‖r +Ke−δt)eM(t−t0) +MV (t, x)eM(t−t0).

By the condition (5) we have ‖x‖q ≥ V (t,x)
λ2

, equivalently

−‖x‖r ≤ −[
V (t, x)
λ2

]r/q.

Therefore, we have

Q̇(t, x) ≤ {−V (t, x)r/q
λ3

[λ2]r/q
+Ke−δt}eM(t−t0) +MV (t, x)eM(t−t0).

Since
λ3

[λ2]r/q
= M, ∀t ≥ 0,

we have

Q̇(t, x) ≤M{V (t, x)− V (t, x)r/q}eM(t−t0) +Ke(M−δ)(t−t0).

Using (10), we obtain

Q̇(t, x) ≤ (K +Mγ)e(M−δ)(t−t0).

Integrating both sides of the above inequality from t0 to t, we obtain

Q(t, x(t))−Q(t0, x0) ≤
∫ t

t0

(K +Mγ)e()M−δ)(s−t0)ds,

= (K +Mγ)
1

M − δ
{e(M−δ)(t−t0) − 1}.

Setting δ1 = −(M − δ), by (9) we have δ1 > 0 and

Q(t, x(t)) ≤ Q(t0, x0) +
K +Mγ

δ1
− K +Mγ

δ1
e(M−δ)(t−t0)

≤ Q(t0, x0) +
K +Mγ

δ1
.

Since Q(t0, x0) = V (t0, x0) ≤ λ2‖x0‖q, we have

Q(t, x(t)) ≤ λ2‖x0‖q +
K +Mγ

δ1
.
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Setting

λ2‖x0‖q +
K +Mγ

δ1
= β(‖x0‖) > 0,

we have
Q(t, x(t)) ≤ β(‖x0‖), ∀t ≥ t0. (11)

On the other hand, from (5) it follows that

λ1‖x(t)‖p ≤ V (t, x(t)),

‖x(t)‖ ≤ {V (t, x(t))
λ1

}1/p.

Substituting V (t, x) = Q(t, x)/eM(t−t0) into the last inequality, we obtain

‖x(t)‖ ≤ { Q(t, x(t))
eM(t−t0)λ1)

}1/p. (12)

Combining (11) and (12) gives

‖x(t)‖ ≤ { β(‖x0‖
eM(t−t0)λ1

}1/p = {β(‖x0‖
λ1

}1/pe−
M
p (t−t0), ∀t ≥ t0, (13)

This inequality shows that (1) is uniformly exponentially stable. Therefore, the
present proof is complete. ♦

Note that Theorem 3.1 is a special case of Theorem 3.2: p = q = r.

Example 3.1 Consider a nonlinear differential equation

ẋ = −1
4
x

3
5 + xe−2t, t ≥ 0. (14)

Let us take a Lyapunov function V (t, x) : R+ ×D → R
+, V (t, x) = x6, where

D = {x : |x| ≤ 1}. Note that

|x|7 ≤ V (t, x) ≤ |x|6, ∀x ∈ D.

Then condition (5) holds with λ1 = λ2 = 1, p = 7, q = 6. On the other hand,
we have

V̇ (t, x) = 6x5ẋ = 6x5(−1
4
x

3
5 + xe−2t) = −3

2
x

28
5 + 6x6e−2t.

Therefore,

V̇ (t, x) ≤ −3
2
x

28
5 + 6e−2t, ∀x ∈ D.

Conditions (9), (10) of Theorem 3.2 are also satisfied with λ3 = 3/2, K = 6,
δ = 2, r = 28/5. Moreover, we also have

V (t, x)− V (t, x)r/q = x6 − x 28
5 = x

28
5 (x

2
5 − 1) ≤ 0 ≤ e−2t, ∀x ∈ D .

Therefore, (14) is exponentially stable.

We now give a sufficient condition for the exponential stability of (1) admit-
ting a generalized Lyapunov-like function.
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Theorem 3.3 System (1) is exponentially stable if it admits a generalized
Lyapunov-like function and the following two conditions hold for all (t, x) ∈W :

δ > inf
t∈R+

λ3(t)
[λ2(t)]r/q

> 0 . (15)

∃γ > 0 such that V (t, x)− [V (t, x)]r/q ≤ γe−δt. (16)

Proof. We consider the function Q(t, x(t)) = V (t, x(t))eM(t−t0), where

M = inf
t∈R+

λ3(t)
[λ2(t)]r/q

We see that M < δ and

D+
f Q(t, x) = D+

f V (t, x)eM(t−t0) +MV (t, x(t))eM(t−t0).

By the same arguments used in the proof of Theorem 3.2, we arrived at the fact
that

D+
f Q(t, x) ≤ (−λ3(t)‖x‖r +Ke−δt)eM(t−t0) +MV (t, x)eM(t−t0).

Taking condition (7) into account and since, by the assumption, λ2(t) > 0 for
all t ∈ R+, we have

‖x‖q ≥ V (t, x)
λ2(t)

,

equivalently

−‖x‖r ≤ −[
V (t, x)
λ2(t)

]r/q.

Therefore, we have

D+
f Q(t, x) ≤ {−V (t, x)r/q

λ3(t)
[λ2(t)]r/q

+Ke−δt}eM(t−t0) +MV (t, x)eM(t−t0).

Since
λ3(t)

[λ2(t)]r/q
≥M, ∀t ≥ 0,

and by the condition (16) we obtain

D+
f Q(t, x) ≤ M{V (t, x)− V (t, x)r/q}eM(t−t0) +Ke(M−δ)(t−t0)

≤ Mγe−δteM(t−t0) +Ke−δteM(t−t0)

= (K +Mγ)e−δteM(t−t0)

≤ (K +Mγ)e−δ(t−t0)eM(t−t0).

Therefore, D+
f Q(t, x) ≤ (K +Mγ)e(M−δ)(t−t0). Thus, applying Proposition 2.1

to the case

v(t) = Q(t, x(t)), g(t, u(t)) = (K +Mγ)e(M−δ)(t−t0),
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we obtain

Q(t, x(t))−Q(t0, x0) ≤
∫ t

t0

(K +Mγ)e(M−δ)(s−t0)ds

= (K +Mγ)
1

M − δ
{(e(M−δ)(t−t0) − 1}.

Setting δ1 = −(M − δ), by condition (15) we have δ1 > 0 and

Q(t, x(t)) ≤ Q(t0, x0) +
K +Mγ

δ1
− K +Mγ

δ1
e(M−δ)(t−t0)

≤ Q(t0, x0) +
K +Mγ

δ1
.

Since Q(t0, x0) = V (t0, x0) ≤ λ2(t0)‖x0‖q, we get

Q(t, x(t)) ≤ λ2(t0)‖x0‖q +
K +Mγ

δ1
.

Letting

λ2(t0)‖x0‖q +
K +Mγ

δ1
= β(‖x0‖, t0) > 0,

we have
Q(t, x(t)) ≤ β(‖x0‖, t0), ∀t ≥ t0. (17)

Furthermore, from condition (7), it follows that

λ1(t)‖x(t)‖p ≤ V (t, x(t)),

‖x(t)‖ ≤ {V (t, x(t))
λ1(t)

}1/p.

Since λ1(t) is non-decreasing, λ1(t) ≥ λ1(t0), we have

‖x(t)‖ ≤ {V (t, x(t))
λ1(t0)

}1/p.

Substituting

V (t, x) =
Q(t, x)
eM(t−t0)

,

into the last inequality, we obtain

‖x(t)‖ ≤ { Q(t, x(t))
eM(t−t0)λ1(t0)

}1/p. (18)

Combining (17) and (18),

‖x(t)‖ ≤ { β(‖x0‖, t0)
eM(t−t0)λ1(t0)

}1/p = {β(‖x0‖, t0)
λ1(t0)

}
1
p e−

M
p (t−t0), ∀t ≥ t0, (19)

The relation (19) shows that system (1) is exponentially stable. Theorem is
proved. ♦
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Remark 3.1. Note that in Theorem 3.3 we assume that the function λ1(t) is
non-decreasing. In the case if the function λ1(t) satisfies the condition

∃a > 0 : a < M, λ1(t) ≥ e−at, ∀t ≥ 0, (20)

then we can replace the non-decreasing assumption by the above condition (20),
where

M = inf
t∈R+

λ3(t)
[λ2(t)]r/q

.

The examples below illustrate our results in the case the Lyapunov func-
tion satisfies either more general comparable conditions or non-differentiability
conditions, which include, as a special case, the results of [17, 18].

Example 3.2 Consider the system

ẋ = −1
6
etx

3
5 +

x

12
+ e−

3t
2 sinx, t ≥ 0. (21)

We take the Lyapunov function V (t, x) : R+ ×D → R
+, where D is defined as

in Example 3.1, given by
V (t, x) = e−t/2x6.

In this case, we have p = q = 6, λ1(t) = e−t/2, λ2(t) = 1, and

V̇ (t, x) = −1
2
e−t/2x6 + 6e−t/2x5(−1

6
etx

3
5 +

x

12
+ e−

3t
2 sinx)

= −e t2x 28
5 + 6x5e−2t sinx,

V̇ (t, x) ≤ −e t2x 28
5 + 6e−2t, ∀x ∈ D.

Therefore, we see that r = 28/5, δ = 2, K = 6, λ3(t) = et/2, and

M = inf
t∈R+

λ3(t)
[λ2(t)]r/q

= 1 < δ = 2,

Moreover, we see that (20) holds: a = 1
2 < M = 1, and we can check condition

(16) of Theorem 3.3 as follows:

V (t, x)− [V (t, x)]r/q = e−t/2x6 − {e−t/2x6}28/30

= e−t/2x6 − e−14t/30x28/5 ≤ 0 ≤ e−2t, ∀x ∈ D,

because of x ∈ D = {x : ‖x‖ ≤ 1}, and

e−t/2x6 ≤ e−t/2x 28
5 ≤ e− 14t

30 x
28
5 .

System (21) is exponentially stable.
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Example 3.3 Consider the system

ẋ = −1
5
x1/3 + xe−2t (22)

with the Lyapunov function V (t, x) = |x|5, where D is defined the same as in
Example 3.1. We have

V (t, x) =

{
x5, if x ≥ 0
−x5 if x < 0 .

Then we calculate

D+
f V (t, x) =

{
5x4(− 1

5x
1/3 + xe−2t) = −x−13/3 + 5x5e−2t if x ≥ 0

−5x4(− 1
5x

1/3 + xe−2t) = x14/3 − 5x5e−2t if x < 0

Therefore,

D+
f V (t, x) = −|x|13/3 + 5|x|5e−2t ≤ −|x|13/3 − 5e−2t, ∀x ∈ D .

It follows that the conditions (8) and (15) hold for λ1 = λ2 = λ3 = 1, p = q =
K = 5, δ = 2, r = 13/3, δ > λ3/λ

r/q
2 = 1. Condition (16) of Theorem 3.3 is

also true because of:

V (t, x)− [V (t, x)]r/q = |x|5 − |x|13/3 = |x|13/3(|x|2/3 − 1) ≤ 0, ∀x ∈ D.

Then system (22) is uniformly exponentially stable.

Example 3.4 For the system

ẋ = −x1/3 + x3e−2t,

we take V (t, x) = |x| with x ∈ D. We have λ1 = λ2 = p = q = 1, and

D+
f V (t, x) =

{
−x1/3 + x3e−2t if x ≥ 0,
x1/3 − x3e−2t if x < 0 .

Then, for all x ∈ D, we have

D+
f V (t, x) = −|x|1/3 + |x|3e−2t ≤ −|x|1/3 + e−2t.

All the conditions of Theorem 3.3 hold with λ3 = 1, r = 1/3, δ = 2, K = 1.
The system is uniformly exponentially stable.

4 Applications to control systems

Consider the nonlinear control system (2), assuming that f(t, 0, 0) = 0, for all
t ≥ 0. We recall that system (2) is asymptotically stabilizable by a feedback
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control u(t) = h(x, t), where h(x) : Rn → R
m, h(0) = 0, if the zero solution of

the system without control

ẋ(t) = f(t, x(t), h(x)), t ≥ 0,
x(t0) = x0, t0 ≥ 0

(23)

is asymptotically stable in the Lyapunov sense [11, 19]. If the zero solution of
(23) is exponentially stable, we say that (2) is exponentially stabilizable.

Stabilization problem of system (2) has attracted a lot of attention from
many researches in control theory in the last decade [11, 13, 14, 20]. Some
sufficient conditions bellow for stability using Lyapunov functions were obtained
for a class of time-invariant systems of the form

ẋ(t) = f(x(t), u(t)), t ≥ 0, (24)

using smooth Lyapunov functions.

Theorem 4.1 ([11]) Consider time-invariant system (24). If there exist a
function h(x) : Rn → R

m, h(0) = 0, where h(x) is continuously differentiable
in x and a positive definite function V (x) : Rn → R

+, which is continuously
differentiable in x such that
(i) V (x)→∞ as ‖x‖ → ∞.
(ii) ∂V

∂xi
f i(x, h(x)) < 0, i = 1, 2, . . . , n, for all x 6= 0. Then the system is

asymptotically stabilizable by the feedback control u(t) = h(x(t)).

Some other sufficient conditions for stabilization of (24) using Lyapunov
control functions can be found in [2, 9, 16], where the Lyapunov function V (x)
is assumed to be proper (i.e. the condition (i) in Theorem 4.1 holds) and has
a negative lower Dini derivative along a solution of the system. Based on the
stability results obtained in the previous section, we can derive the following
sufficient conditions for the exponential stability of nonlinear control system (2)
with non-smooth Lyapunov functions.

Theorem 4.2 Assume that there is a function h(x) : Rn → R
m, h(0) = 0 with

h(x) continuous in x, such that system (23) admits a Lyapunov-like function
satisfying (9) and (10). Then the nonlinear control system (2) is exponentially
stabilizable by feedback u(t) = h(x(t)).

Theorem 4.3 Assume that there is a function h(x) : Rn → R
m with h(0) = 0

and h(x) continuous in x, such that system (23) admits a generalized Lyapunov-
like function satisfying (15), (16). Then the nonlinear control system (2) is
exponentially stabilizable by feedback control u(t) = h(x(t)).

Conclusions Exponential stability of a class of nonlinear time-varying sys-
tems by the second Lyapunov method has been studied. New sufficient condi-
tions for the exponential stability and applications to exponential stabilization
problem of nonlinear control systems were given.
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