Periodic solutions for a class of non-coercive Hamiltonian systems

Morched Boughariou

Abstract

We prove the existence of non-constant T-periodic orbits of the Hamiltonian system

$$\begin{align*}
\dot{q} &= H_p(t, p(t), q(t)), \\
\dot{p} &= -H_q(t, p(t), q(t)),
\end{align*}$$

where H is a T-periodic function in t, non-convex and non-coercive in (p, q), and has the form $H(t, p, q) \sim |q|^{\alpha}(|p|^\beta - 1)$ with $\alpha > \beta > 1$.

1 Introduction

We study the existence of T-periodic solutions of the Hamiltonian system

$$\begin{align*}
\dot{q} &= H_p(t, p(t), q(t)), \\
\dot{p} &= -H_q(t, p(t), q(t)).
\end{align*}$$

Here, $H(t, p, q) : \mathbb{R} \times \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R}$ ($N \geq 3$) is T-periodic in t and differentiable in (p, q). We also assume that H, H_p, H_q are continuous.

Most of the existence results use coercivity (i.e., $H(t, p, q) \rightarrow \infty$ as $(p, q) \rightarrow \infty$) or convexity assumptions in $H(t, .)$; see [1, 2, 3, 4, 5] and references therein. The purpose of this paper is to study non-coercive and non-convex Hamiltonians. Typically,

$$H(t, p, q) \sim |q|^{\alpha}(|p|^\beta - 1); \quad \alpha > \beta > 1.$$

To state our existence result, we introduce the following hypotheses. For constants $\alpha > \beta > 1$, $r > 0$, $a_1, \ldots, a_8 > 0$ and functions $A_i, K_i \in C(\mathbb{R}^N, \mathbb{R})$ with $K_i(0) = 0$ ($i = 1, 2, 3$), we assume:

(H1) $H(t + \frac{T}{2}, p, q) = H(t, -p, -q)$ for all t, p, q;

(H2) (i) $H(t, p, q) \leq a_1 |q|^{\alpha} |p|^\beta$ for all t, p, q;

(ii) $H(t, p, q) \geq a_2 |q|^{\alpha} |p|^\beta - K_i(q)$ for all t, p, q;

\astMathematics Subject Classifications: 34C25, 37J45.

Key words: Hamiltonian systems, non-coercive, periodic solutions, minimax argument.

©2001 Southwest Texas State University.

(H3) \(-H(t,p,q) + H_p(t,p,q)p \geq a_3|q|^{\alpha}|p|^{\beta} + 1 - a_4\) for all \(t,p,q\);

(H4) \(|H_p(t,p,q)| \leq a_5|q|^{\alpha}|p|^{\beta-1} + 1 + a_6|q|\) for all \(t,p,q\);

(H5) \(|H_q(t,p,q)| \leq A(q)(|p|^{\beta} + 1)\) for all \(t,p,q\);

(H6) (i) \(|H_q(t,p,q)q - H_p(t,p,q)p| \geq a_7H(t,p,q) + K_2(q)\) for all \(t,p,q\);

(ii) \(|H_p(t,p,q)|^{\frac{\beta-1}{\beta}} \leq a_8|q|^{\alpha}(|q|^{\alpha}|p|^{\beta} + K_3(q))\) for all \(t,p,q\)

Our main result is as follows.

Theorem 1.1 Under assumptions (H1)-(H6), System (1.1) has at least one non-constant \(T\)-periodic solution \((p(t),q(t))\) with \(q(t) \neq 0\) for all \(t\).

Remark. If \(H(t,p,q) = a(t)|q|^{\alpha}(|p|^{\beta} - 1)\) with \(\alpha > \beta > 1\) and \(a(t) \in C(\mathbb{R}, \mathbb{R})\) is a \(\frac{T}{2}\)-periodic and positive function, then (H1)-(H6) hold.

Remark. The condition \(\alpha > \beta\) is necessarily for the existence of non-constant \(T\)-periodic solution. More precisely, in case

\[H(t,p,q) = |q|^{\alpha}(|p|^{\beta} - 1),\]

if \((p(t),q(t))\) is a non-constant \(T\)-periodic solution of (1.1), then

(i) \(\alpha > \beta\);

(ii) there exists a constant \(C > 0\) such that

\[|q(t)|^{\alpha}(|p(t)|^{\beta} - 1) = C > 0\] for all \(t \in \mathbb{R}\).

In particular, \(q(t) \neq 0\) for all \(t \in \mathbb{R}\).

Indeed, by (1.1) we have

\[\int_0^Tp\dot{q}dt = \beta \int_0^T|q|^{\alpha}|p|^{\beta}dt = \alpha \int_0^T|q|^{\alpha}(|p|^{\beta} - 1)dt.\]

Then

\[(\alpha - \beta) \int_0^T|q|^{\alpha}|p|^{\beta}dt = \alpha \int_0^T|q|^{\alpha}dt.\]

Since \((p,q)\) is non-constant, one can see that \(q \neq 0\) and \(\alpha > \beta\). Also note that (ii) follows from the conservation of the energy.

To show the existence of a \(T\)-periodic solution of (1.1), we use a variational method; we introduce the functional

\[I(p,q) = \int_0^T[p\dot{q} - H(t,p,q)]dt\]

defined on the function space

\[E = \{(p,q) \in L^\gamma(0,T;\mathbb{R}^N) \times W^{1,\frac{\gamma}{\gamma-1}}(0,T;\mathbb{R}^N); \ q(0) = q(T)\}\]
where $\gamma = \alpha + \beta$. Critical points of $I(p, q)$ on E correspond to T-periodic solutions of (1.1). We remark that the correspondence is one-to-one.

Since it is difficult to verify the Palais-Smale compactness condition for $I(p, q)$, we introduce in the following section, modified functionals and a finite dimensional approximation. We will use a minimax argument.

2 Modified functionals and other preliminaries

As stated in the introduction, we will find a critical point of the functional $I(p, q)$ on $E = P \times Q$ where

$$P = L^\gamma(0, T; \mathbb{R}^N), \quad Q = \{q \in W^{1, \frac{\gamma}{\gamma-1}}(0, T; \mathbb{R}^N); q(0) = q(T)\}.$$

We set

$$\Lambda = \{q \in Q; q(t) \neq 0 \text{ for all } t\}$$

and introduce the modified functionals

$$I_\delta(p, q) = \int_0^T \left| \dot{p} - H(t, p, q) + \frac{\delta}{|q|^{\gamma}} \right| dt,$$

$$I_{\delta, \varepsilon}(p, q) = \int_0^T \left[\dot{p} - H(t, p, q) + \frac{\delta}{|q|^{\gamma}} + \varepsilon |q|^\gamma - |p|^\gamma \right] dt$$

for $\delta, \varepsilon \in [0, 1]$. Since $\gamma \geq \beta > 1$, by (H2), (H4), and (H5), we can see that $I_{\delta, \varepsilon} \in C^1(P \times \Lambda; \mathbb{R})$.

To get the existence of a T-periodic solution for a symmetric Hamiltonians, we have to restrict our functionals to a subsets of E. We set

$$E_0 = \{(p, q) \in E; (p, q)(t + \frac{T}{2}) = -(p, q)(t)\}$$

with norm

$$\|(p, q)\|_{E_0} = \|p\|_\gamma + \|\dot{q}\|_{\frac{\gamma}{\gamma-1}}$$

where

$$\|u\|_s = \left(\int_0^T |u(t)|^s dt \right)^{1/s} \text{ for all } s \geq 1.$$

For $m \in \mathbb{N}$, we define

$$P_m = Q_m = \bigg\{ p(t) = \sum_{|j| \leq m} \theta_j e^{2\pi ij \frac{t}{T}}; \quad p(t + \frac{T}{2}) = -p(t), \theta_j \in \mathbb{C}^N, \theta_{-j} = \bar{\theta}_j, |j| \leq m \bigg\},$$

$$E_m = P_m \times Q_m,$$

$$\Lambda_m = \{q \in Q_m; q(t) \neq 0 \text{ for all } t\},$$

$$\partial \Lambda_m = \{q \in Q_m; q(t_0) = 0 \text{ for some } t_0\}$$
and we consider the restriction of \(I_{\delta,\varepsilon}(p, q) : \)
\[
I_{\delta,\varepsilon,m} = I_{\delta,\varepsilon}/P_m \times \Lambda_m : P_m \times \Lambda_m \to \mathbb{R}.
\]
The main reason for introducing such subspaces are the following Lemmas.

Lemma 2.1 For any \(u \in Q \) such that \(u(t + \frac{T}{2}) = -u(t) \), we have
\[
\|u\|_{\infty} \leq \int_0^T |\dot{u}| dt.
\]

Proof. Let \(u \in Q \) such that \(u(t + \frac{T}{2}) = -u(t) \). Then for all \(t \in [0, T] \), we have
\[
|u(t)| = \frac{1}{2} |u(t + \frac{T}{2}) - u(t)| = \frac{1}{2} |\int_t^{t+\frac{T}{2}} \dot{u} ds| \leq \int_0^T |\dot{u}| ds.
\]
Thus we obtain the desired result. \(\diamond \)

Lemma 2.2 Suppose \((p, q) \in P_m \times \Lambda_m \) is such that
\[
I'_{\delta,\varepsilon,m}(p, q)(h, k) = 0 \quad \text{for all } (h, k) \in E_m.
\]
Then \((p, q)\) is a critical point for \(I_{\delta,\varepsilon,m} \).

Proof. It is sufficient to remark that, by (H1), \(I'_{\delta,\varepsilon,m}(p, q) \in E_m \). Since \(I'_{\delta,\varepsilon,m}(p, q) \) belongs also to \(E_m^\perp \) from 2.1, we have the conclusion. \(\diamond \)

The proof of Theorem 1.1 will be done as follows: In section 3, we introduce a minimax method to \(I_{\delta,\varepsilon,m} \). For \(\delta, \varepsilon \in [0, 1] \) and \(m \in \mathbb{N} \), we establish the existence of a sequence \((p_{\delta,\varepsilon,m}, q_{\delta,\varepsilon,m}) \in P_m \times \Lambda_m \) such that
\[
I'_{\delta,\varepsilon,m}(p_{\delta,\varepsilon,m}, q_{\delta,\varepsilon,m}) = 0,
\]
\[
I_{\delta,\varepsilon,m}(p_{\delta,\varepsilon,m}, q_{\delta,\varepsilon,m}) \leq \bar{c}.
\]
where \(\bar{c} > 0 \) is a constant independent of \(\delta, \varepsilon \) and \(m \). From 2.2-3.2, we can find uniform estimates for \((p_{\delta,\varepsilon,m}, q_{\delta,\varepsilon,m}) \) and we can extract, in section 4, a subsequence converging to \((p_{\delta,\varepsilon}, q_{\delta,\varepsilon}) \in (P \times \Lambda) \cap E_0 \). Next in Section 5, we pass to the limit as \(\varepsilon \to 0 \) and obtain a critical points \((p, q) \in (P \times \Lambda) \cap E_0 \) of \(I_{\delta} \) such that
\[
I_{\delta}(p, q) \leq \bar{c}.
\]
Finally in Section 6, we pass to the limit as \(\delta \to 0 \). Lemma 2.1 plays a essential role to obtain a non-constant \(T \)-periodic solution \((p, q) = \lim(p_3, q_3) \) of (1.1).

In the sequel, we use the projection operator
\[
\text{proj}_m : L^1(0, T; \mathbb{R}^N) \to \text{span}\{e^{2\pi i j}\mu T; |j| \leq m\},
\]
\[
(\text{proj}_m u)(t) = \sum_{|j| \leq m} \theta_j e^{2\pi i j\mu T} \text{ for } u(t) = \sum_{j \in \mathbb{Z}} \theta_j e^{2\pi i j\mu T}.
\]
Lemma 2.3 For any $s \in [1, +\infty[$, there exists a constant $K_s > 0$ independent of $m \in \mathbb{N}$ such that

$$||\text{proj}_m u||_s \leq K_s ||u||_s \quad \text{for all} \quad u \in L^s(0, T; \mathbb{R}^N).$$

This lemma is a special case of Steckin's theorem [6, Theorem 6.3.5]. In sections 3, 4, 5, and 6, we will assume (H1)-(H6).

3 A minimax method for $I_{\delta, \varepsilon, m}$

In this part, we study the existence of critical points in $P_m \times \Lambda_m$ of $I_{\delta, \varepsilon, m}$ for $\delta, \varepsilon \in [0, 1]$ and $m \in \mathbb{N}$. First, we give some a priori estimates and verify the Palais-Smale condition (PS) for $I_{\delta, \varepsilon, m}$.

Lemma 3.1 (i) For any $M_1 > 0$, there exists a constant $C_0 = C_0(M_1) > 0$ independent of $\delta, \varepsilon \in [0, 1]$ and $m \in \mathbb{N}$ such that: If $(p_j, q_j) \in P_m \times \Lambda_m$ satisfies

$$I_{\delta, \varepsilon, m}(p_j, q_j) \leq M_1,$$

$$I_{\delta, \varepsilon, m}'(p_j, q_j) = 0,$$

then

$$\int_0^T |q|^\alpha |p|^\beta dt + \int_0^T |q|^\alpha dt \leq C_0,$$

$$\varepsilon \int_0^T \left(|q|^{\gamma} + |p|^{\gamma}\right) dt + \delta \int_0^T \frac{1}{|q|^{\gamma}} dt \leq C_0.$$

(ii) For any $\delta, \varepsilon \in [0, 1]$ and $m \in \mathbb{N}$, if $(p_j, q_j)_{j=1}^\infty \subset P_m \times \Lambda_m$ satisfies

$$(p_j, q_j) \rightharpoonup (p_0, q_0) \in P_m \times \partial \Lambda_m,$$

then $I_{\delta, \varepsilon, m}(p_j, q_j) \to +\infty$.

(iii) For any $\delta, \varepsilon \in [0, 1]$ and $m \in \mathbb{N}$, $I_{\delta, \varepsilon, m}$ satisfies the condition (PS) on $P_m \times \Lambda_m$; i.e., if $(p_j, q_j)_{j\in \mathbb{N}} \subset P_m \times \Lambda_m$ satisfies $I_{\delta, \varepsilon, m}(p_j, q_j) \to c > 0$ and $(I_{\delta, \varepsilon, m})'(p_j, q_j) \to 0$, then (p_j, q_j) possesses a subsequence converging in E_m to some $(p, q) \in P_m \times \Lambda_m$.

Proof. (i) Let $\delta, \varepsilon \in [0, 1]$ and $m \in \mathbb{N}$. We assume $(p, q) \in P_m \times \Lambda_m$ satisfies 3.1 and 3.2 for $M_1 > 0$. We have

$$I_{\delta, \varepsilon, m}'(p, q)(p, 0) = \int_0^T [p \dot{q} - H_p(t, p, q)p - \varepsilon \gamma |p|^{\gamma}] dt.$$

Hence,

$$I_{\delta, \varepsilon, m}(p, q) - I_{\delta, \varepsilon, m}'(p, q)(p, 0) = \int_0^T \left[-H(t, p, q) + H_p(t, p, q)p + \frac{\delta}{|q|^{\gamma}} + \varepsilon |q|^{\gamma} + \varepsilon (\gamma - 1)|p|^{\gamma}\right] dt.$$
By the assumptions 3.1 and 3.2, we get
\[
\int_0^T \left[-H(t, p, q) + H_p(t, p, q)p + \frac{\delta}{|q|^\gamma} + \varepsilon|q|^\gamma + \varepsilon(\gamma - 1)|p|^{\gamma} \right] dt \leq M_1.
\]
From (H3), it follows that
\[
\int_0^T \left[a_3|q|^\alpha(|p|^\beta + 1) - a_4 + \frac{\delta}{|q|^\gamma} + \varepsilon|q|^\gamma + \varepsilon(\gamma - 1)|p|^{\gamma} \right] dt \leq M_1.
\]
Thus we obtained (i).
(ii) By (H2)(i), we have for all \((p, q) \in P_m \times \Lambda_m\)
\[
I_{\delta,\varepsilon,m}(p, q) \geq \int_0^T \left[p \dot{q} - a_1|q|^\alpha|p|^{\beta} + \varepsilon(|q|^\alpha - |p|^{\gamma}) \right] dt + \delta \int_0^T \frac{1}{|q|^\gamma} dt. \tag{3.4}
\]
Since \(\delta \int_0^T \frac{1}{|q|^\gamma} dt \to \infty\), we get the conclusion easily.
(iii) Let \((p_j, q_j)_{j \in \mathbb{N}} \subset P_m \times \Lambda_m\) be a sequence satisfying the assumptions of the condition (PS). We may assume that
\[
I_{\delta,\varepsilon,m}(p_j, q_j) \to c, \tag{3.5}
\]
\[
\|I_{\delta,\varepsilon,m}'(p_j, q_j)\|_{E_m^*} \to 0. \tag{3.6}
\]
We prove that \((p_j, q_j)\) possesses a convergent subsequence to some \((p, q) \in P_m \times \Lambda_m\). By (H3) and 3.3-3.6, for large \(j\),
\[
\int_0^T \left[a_3|q_j|^\alpha(|p_j|^\beta + 1) - a_4 \right] dt + \delta \int_0^T \frac{1}{|q_j|^\gamma} dt + \varepsilon \int_0^T |q_j|^\gamma dt + \varepsilon(\gamma - 1) \int_0^T |p_j|^\gamma dt \leq 2c + \|p_j\|_{\gamma}.
\]
Thus, for some constant \(C_1 > 0\) independent of \(j\),
\[
\int_0^T |q_j|^\alpha dt, \int_0^T |p_j|^\gamma dt \leq C_1 \quad \text{for all } j \in \mathbb{N}.
\]
Since \(\dim E_m < \infty\), we can extract a subsequence - still indexed by \((p_j, q_j)\) - such that \((p_j, q_j) \to (p, q) \in E_m\). By (ii), we necessarily have \(q \in \Lambda_m\).
Next, we apply to \(I_{\delta,\varepsilon,m}\) a minimax argument related to the one in [7]. This argument will play an important role in obtaining a critical points \((p_{\delta,\varepsilon,m}, q_{\delta,\varepsilon,m}) \in P_m \times \Lambda_m\) with uniform upper bound of critical values. We define
\[
\Gamma_m = \{ A(p, \xi) \in C(P_m \times S^{N-2}, P_m \times \Lambda_m); A(p, \xi) = (p, \sigma_0(\xi)) \text{for large } \|p\|_{\beta} \}
\]
where
\[
\sigma_0 : S^{N-2} = \{ \xi = (\xi_1, \ldots, \xi_{N-1}) \in \mathbb{R}^{N-1}: \sum_{j=1}^{N-1} |\xi_j|^2 = 1 \} \to Q_m
\]
is given by
\[\sigma_0(\xi)(t) = \cos^2 \pi t T(\xi_1, \ldots, \xi_{N-1}, 0) + \sin^2 \pi t T(0, \ldots, 0, 1). \]
We remark that \(A_0(p, \xi) = (p, \sigma_0(\xi)) \in \Gamma_m \) and \(\Gamma_m \neq \emptyset \). Then we define the minimax values of \(I_{\delta, \varepsilon, m} \) as follows
\[c_{\delta, \varepsilon, m} = \inf_{A \in \Gamma_m} \sup_{(p, \xi) \in P_m \times S^{N-2}} I_{\delta, \varepsilon, m}(A(p, \xi)). \]

Proposition 3.1 For any \(\delta, \varepsilon \in [0, 1] \) and \(m \in \mathbb{N} \), there exists a constant \(c(\delta, \varepsilon) > 0 \) such that
\[c_{\delta, \varepsilon, m} \geq c(\delta, \varepsilon) > 0. \]
To prove this proposition, we need the following result.

Lemma 3.2 For any \(A \in \Gamma_m \) and \(\lambda > 0 \), we have
\[A(P_m \times S^{N-2}) \cap D_{m, \lambda} \neq \emptyset \]
where
\[D_{m, \lambda} = \left\{ (p, q) \in P_m \times \Lambda_m; p = \lambda \text{proj}_{m}(|q|^{\gamma-1}\dot{q}) \right\}. \]
The proof of this lemma will be given in the appendix.

Lemma 3.3 For sufficiently small \(\lambda_{\varepsilon} > 0 \), there exists a constant \(c(\delta, \varepsilon) > 0 \) such that
\[I_{\delta, \varepsilon, m}(p, q) \geq c(\delta, \varepsilon) > 0 \]
for all \((p, q) \in D_{m, \lambda_{\varepsilon}} \) where \(D_{m, \lambda_{\varepsilon}} \) is given in Lemma 3.2.

Proof. Let \((p, q) \in D_{m, \lambda} \). We recall that \(\gamma = \alpha + \beta \). By the Young’s inequality,
\[a_1 \int_0^T |q|^\alpha |p|^\beta dt \leq \frac{\alpha}{\gamma} \varepsilon \int_0^T |q|^\gamma dt + \frac{\beta}{\gamma} \left(\frac{a_1}{\varepsilon \gamma} \right)^{\frac{\beta}{\gamma}} \int_0^T |p|^\gamma dt. \]
Thus, from 3.4,
\[I_{\delta, \varepsilon, m}(p, q) \geq \int_0^T p \dot{q} dt - a(\varepsilon) \int_0^T |p|^\gamma dt + \delta \int_0^T \frac{1}{|q|^\gamma} dt \]
where \(a(\varepsilon) = \varepsilon + \frac{\beta}{\gamma} \left(\frac{a_1}{\varepsilon \gamma} \right)^{\frac{\beta}{\gamma}} > 0 \). Since \((p, q) \in D_{m, \lambda} \),
\[\int_0^T p \dot{q} dt = \lambda \int_0^T |q|^{\frac{\gamma}{\gamma-1}} dt. \]
Moreover, by Lemma 2.1 and Lemma 2.3
\[T^{\frac{1}{\gamma}} \| \dot{q} \|^{\frac{\gamma}{\gamma-1}} \geq \int_0^T |q| dt \geq \| q \|_\infty. \]
\[
\int_0^T |p|^\gamma dt = \lambda^\gamma \|\text{proj}_m(|q|^\gamma^{-1})\|_2 \leq \lambda^\gamma K_\gamma \|q\|_{\gamma^{-1}}. \tag{3.9}
\]

By 3.7 and 3.9, we get
\[
I_{\delta,\varepsilon,m}(p,q) \geq (\lambda - a(\varepsilon) K_\gamma \lambda^\gamma) \|\dot{q}\|_{\gamma^{-1}} \delta T + \int_0^T \frac{1}{|q|^\gamma} dt.
\]

Taking \(\lambda_\varepsilon\) small enough so that
\[
A_{\varepsilon} = \lambda_\varepsilon - a(\varepsilon) K_\gamma \lambda^\gamma > 0,
\]
from 3.8, for all \((p,q) \in D_{m,\lambda_\varepsilon}\), we have
\[
I_{\delta,\varepsilon,m}(p,q) \geq \inf_{q \in \Lambda} \left(\frac{A_{\varepsilon}}{T^{-1}} \|q\|_{\infty}^{\gamma^{-1}} + \frac{\delta T}{\|q\|_{\infty}} \right) = c(\delta,\varepsilon) > 0.
\]

Proof of Proposition 3.1 Let \(\lambda_\varepsilon > 0\) be as in Lemma 3.3. By Lemma 3.2, we have
\[
A(P_m \times S^{N-2}) \cap D_{m,\lambda_\varepsilon} \neq \emptyset
\]
for all \(A \in \Gamma_m\).

Thus, we find that
\[
c_{\delta,\varepsilon,m} = \inf_{A \in \Gamma_m} \sup_{(p,\xi) \in P_m \times S^{N-2}} I_{\delta,\varepsilon,m}(A(p,\xi))
\geq \inf_{(p,q) \in D_{m,\lambda_\varepsilon}} I_{\delta,\varepsilon,m}(p,q)
\geq c(\delta,\varepsilon) > 0.
\]

We choose \(c(\delta,\varepsilon) = c(\delta,\varepsilon)\), we get the desired result. \(\diamondsuit\)

Now, we prove an existence result

Proposition 3.2 For any \(\delta,\varepsilon \in [0,1]\) and \(m \in \mathbb{N}\), we have

(i) \(0 < c(\delta,\varepsilon) \leq c_{\delta,\varepsilon,m} \leq \bar{c}\)

where \(\bar{c}\) is independent of \(\delta,\varepsilon\) and \(m\).

(ii) If \(|p|_\beta\) is sufficiently large, then for all \(\xi \in S^{N-2}\),
\[
I_{\delta,\varepsilon,m}(A_0(p,\xi)) \leq 0.
\]

(iii) There exists a critical point \((p_{\delta,\varepsilon,m},q_{\delta,\varepsilon,m}) \in P_m \times \Lambda_m\) of \(I_{\delta,\varepsilon,m}\) such that
\[
I_{\delta,\varepsilon,m}(p_{\delta,\varepsilon,m},q_{\delta,\varepsilon,m}) = c_{\delta,\varepsilon,m}.
\]

Proof. (i) By (H2)(ii), we have
\[
I_{\delta,\varepsilon,m}(A_0(p,\xi)) \leq \int_0^T |p| \frac{d}{dt}\sigma_0(\xi) dt - a_2 \int_0^T |\sigma_0(\xi)|^\alpha |p|^{\beta} dt
+ \int_0^T K_1(\sigma_0(\xi)) dt + \int_0^T \left(\frac{1}{|\sigma_0(\xi)|^\gamma} + |\sigma_0(\xi)|^\gamma \right) dt
\leq k_1 |p|_\beta - k_2 |p|_\beta^\gamma + k_3 \tag{3.10}
\]
for some positive constants k_1,k_2,k_3 independent of δ, ε and m. Since $\beta > 1$, there exists a constant $\bar{c} > 0$ independent of δ, ε and m such that

$$c_{\delta, \varepsilon, m} \leq \sup_{(p, \xi) \in P_m \times S^{N-2}} I_{\delta, \varepsilon, m}(A_0(p, \xi)) \leq \bar{c}.$$

(ii) follows clearly from 3.10.

(iii) Since $I_{\delta, \varepsilon, m}$ satisfies the (PS) condition and property (ii) of Lemma 3.1, then by a standard argument using the deformation theorem and (ii), we can see that $c_{\delta, \varepsilon, m} > 0$ is a critical value of $I_{\delta, \varepsilon, m}$. By Lemma 2.2, we get (iii).

As a corollary to (i) of Lemma 3.1 and the uniform estimates of $c_{\delta, \varepsilon, m}$, we have the following statements.

Corollary 3.1 Let $(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}) \in P_m \times \Lambda_m$ be a critical point of $I_{\delta, \varepsilon, m}$ obtained by Proposition 3.2. Then, there exists a constant $C_2 > 0$ independent of δ, ε and m, such that for all $\delta, \varepsilon \in [0,1]$ and $m \in \mathbb{N}$, we have

(i) $$\int_0^T |q_{\delta, \varepsilon, m}|^\alpha |p_{\delta, \varepsilon, m}|^\beta dt + \int_0^T |q_{\delta, \varepsilon, m}|^\alpha dt \leq C_2,$$

(ii) $$\varepsilon \int_0^T (|q_{\delta, \varepsilon, m}|^\gamma + |p_{\delta, \varepsilon, m}|^\gamma) dt \leq C_2,$$

(iii) $$\delta \int_0^T \frac{1}{|q_{\delta, \varepsilon, m}|^\gamma} dt \leq C_2.$$

4 Limiting process as $m \to \infty$

Proposition 4.1 For any $\delta, \varepsilon \in [0,1]$, $(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m})$ possesses a subsequence converging in E to $(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}) \in (P \times \Lambda) \cap E_0$. Moreover,

$$I_{\delta, \varepsilon}(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}) \leq \bar{c}, \quad (4.1)$$

$$I'_{\delta, \varepsilon}(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}) = 0. \quad (4.2)$$

Proof. By (ii) of Corollary 3.1, we can extract a subsequence - still indexed by m- such that

$$(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}) \rightharpoonup (p_{\delta, \varepsilon}, q_{\delta, \varepsilon}) \quad \text{weakly in } L^\gamma(0, T; \mathbb{R}^N).$$

We remark that $H(t, p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}) = 0$ is equivalent to

$$\dot{q}_{\delta, \varepsilon, m} = \text{proj}_m[H_p(t, p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}) + \varepsilon \gamma |p_{\delta, \varepsilon, m}|^{\gamma - 2} p_{\delta, \varepsilon, m}], \quad (4.3)$$

$$\dot{p}_{\delta, \varepsilon, m} = -\text{proj}_m[H_q(t, p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}) + \delta \gamma \frac{q_{\delta, \varepsilon, m}}{|q_{\delta, \varepsilon, m}|^\gamma} - \varepsilon \gamma |q_{\delta, \varepsilon, m}|^{\gamma - 2} q_{\delta, \varepsilon, m}]. \quad (4.4)$$

By (H4) and Lemma 2.3, we have from 4.3

$$\left\| \dot{q}_{\delta, \varepsilon, m} \right\|_{\gamma} \leq K \left[a_5 \| |q_{\delta, \varepsilon, m}|^\alpha |p_{\delta, \varepsilon, m}|^{(\beta - 1)} \|_{\gamma} + a_\gamma \| q_{\delta, \varepsilon, m} \|_{\alpha \gamma} \right] + a_6 \| q_{\delta, \varepsilon, m} \|_{\gamma} + \varepsilon \gamma \| p_{\delta, \varepsilon, m} \|_{\gamma - 1}.$$
Using a Hölder’s inequality and (i)-(ii) of Corollary 3.1, we can find a constant $C_3 > 0$ independent of $m \in \mathbb{N}$, such that

$$\|q_{\delta, \varepsilon, m}\|_{W^{1, \frac{\gamma}{\gamma-1}}(0, T; \mathbb{R}^N)} \leq C_3.$$

Thus we can see from (iii) of Corollary 3.1 that

$$q_{\delta, \varepsilon, m} \rightarrow q_{\delta, \varepsilon} \in \Lambda \text{ uniformly in } [0, T]. \quad (4.5)$$

On the other hand, by (H5) and Lemma 2.3, we have from 4.4

$$\|\dot{p}_{\delta, \varepsilon, m}\|_{\frac{\gamma}{\gamma-1}} \leq K\|A(q_{\delta, \varepsilon, m})\|_{\frac{\gamma}{\gamma-1}} + \|A(q_{\delta, \varepsilon, m})\|_{\frac{\gamma}{\gamma-1}} + \gamma||\delta \frac{q_{\delta, \varepsilon, m}}{|q_{\delta, \varepsilon, m}|^{\gamma+2}} - \varepsilon |q_{\delta, \varepsilon, m}|^{-2} q_{\delta, \varepsilon, m}\|_{\frac{\gamma}{\gamma-1}}.$$

Using 4.5, we find

$$\|p_{\delta, \varepsilon, m}\|_{W^{1, \frac{\gamma}{\gamma-1}}(0, T; \mathbb{R}^N)} \leq C_4$$

where $C_4 > 0$ is a constant independent of m. The injection $W^{1, \frac{\gamma}{\gamma-1}}(0, T; \mathbb{R}^N) \subset L^{\gamma}(0, T; \mathbb{R}^N)$ is compact, thus we have

$$p_{\delta, \varepsilon, m} \rightarrow p_{\delta, \varepsilon} \text{ strongly in } L^{\gamma}(0, T; \mathbb{R}^N) \text{ and uniformly in } [0, T]. \quad (4.6)$$

By (i) and (iii) of Proposition 3.2, we deduce that

$$I_{\delta, \varepsilon}(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}) = \lim_{m \to \infty} I_{\delta, \varepsilon, m}(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m}) \leq \bar{c},$$

$$I'_{\delta, \varepsilon}(p_{\delta, \varepsilon}, q_{\delta, \varepsilon})(h, k) = \lim_{m \to \infty} I'_{\delta, \varepsilon, m}(p_{\delta, \varepsilon, m}, q_{\delta, \varepsilon, m})(h, k) = 0$$

for all sums

$$h = \sum_{|j| \leq n} \theta_j e^{2\pi i j t}, \quad k = \sum_{|j| \leq n} \psi_j e^{2\pi i j t} \quad (\theta_j, \psi_j \in \mathbb{C}^N).$$

Therefore, $I'_{\delta, \varepsilon}(p_{\delta, \varepsilon}, q_{\delta, \varepsilon})(h, k) = 0$ for all $(h, k) \in E$.

5 Limiting process as $\varepsilon \to 0$

We take the limit as $\varepsilon \to 0$ to obtain a critical point $(p_{\delta}, q_{\delta}) \in (P \times \Lambda) \cap E_0$ of I_{δ} with uniform upper bound for critical values. As a consequence to Corollary 3.1, and 4.5, 4.6 we have the following lemma.

Lemma 5.1 For any $\delta, \varepsilon \in [0, 1]$, $(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}) \in (P \times \Lambda) \cap E_0$ satisfies

(i) \[\int_0^T |q_{\delta, \varepsilon}|^\alpha |p_{\delta, \varepsilon}|^3 \, dt + \int_0^T |q_{\delta, \varepsilon}|^\alpha \, dt \leq C_2, \]

(ii) \[\varepsilon \int_0^T (|q_{\delta, \varepsilon}|^\gamma + |p_{\delta, \varepsilon}|^\gamma) \, dt \leq C_2, \]

(iii) \[\delta \int_0^T \frac{1}{|q_{\delta, \varepsilon}|^\gamma} \, dt \leq C_2. \]
Proposition 5.1 For any $\delta \in [0, 1]$, $(p_{\delta, \varepsilon}, q_{\delta, \varepsilon})$ possesses a subsequence converging in E to $(p_\delta, q_\delta) \in (P \times \Lambda) \cap E_0$. Moreover,

$$I'_\delta(p_\delta, q_\delta) = 0,$$
$$I_\delta(p_\delta, q_\delta) \leq \bar{c}.$$

Proof. Since $I'_\delta(p_{\delta, \varepsilon}, q_{\delta, \varepsilon}) = 0$, we have

$$q_{\delta, \varepsilon} = H_p(t, p_{\delta, \varepsilon}, q_{\delta, \varepsilon}) + \varepsilon \gamma |p_{\delta, \varepsilon}|^{\gamma - 2} p_{\delta, \varepsilon}, \quad (5.1)$$
$$\dot{p}_{\delta, \varepsilon} = -[H_q(t, p_{\delta, \varepsilon}, q_{\delta, \varepsilon}) + \delta \gamma q_{\delta, \varepsilon} |q_{\delta, \varepsilon}|^{\gamma - 2} - \varepsilon \gamma |q_{\delta, \varepsilon}|^{\gamma - 2} q_{\delta, \varepsilon}]. \quad (5.2)$$

By (H4) and 5.1, we can see from (i)-(ii) of Lemma 5.1 that

$$\int_0^T |\dot{q}_{\delta, \varepsilon}| dt \leq a_5 \left[\int_0^T |q_{\delta, \varepsilon}|^\alpha |p_{\delta, \varepsilon}|^{\beta - 1} dt + \int_0^T |q_{\delta, \varepsilon}|^\gamma dt \right] + a_6 \int_0^T |q_{\delta, \varepsilon}| dt + \varepsilon \gamma \int_0^T |p_{\delta, \varepsilon}|^{\gamma - 1} dt$$
$$\leq C_5$$

where $C_5 > 0$ is a constant independent of ε. Thus, we deduce that $(q_{\delta, \varepsilon})_\varepsilon$ is bounded in $L^\infty(0, T; \mathbb{R}^N)$.

By (H4) and (5.1) again, we have

$$||\dot{q}_{\delta, \varepsilon}||_{\gamma^{\frac{\gamma - 1}{\gamma}}} \leq a_5 ||(q_{\delta, \varepsilon}|^\alpha |p_{\delta, \varepsilon}|^{\beta - 1})||_{\gamma^{\frac{\gamma - 1}{\gamma}}} + a_5 ||q_{\delta, \varepsilon}||_{\alpha^{\frac{\gamma - 1}{\gamma}}}$$
$$+ a_6 ||q_{\delta, \varepsilon}||_{\gamma^{\frac{\gamma - 1}{\gamma}}} + \varepsilon \gamma ||p_{\delta, \varepsilon}||_{\gamma^{\frac{\gamma - 1}{\gamma}}}^{-1}.$$

Here we will apply the Hölder’s inequality

$$||fg||_s \leq ||f||_s ||g||_s$$

with $f(t) = |q_{\delta, \varepsilon}|^\frac{s}{(\gamma - 1)^\frac{\beta - 1}{\alpha}}$, $g(t) = (|q_{\delta, \varepsilon}|^\alpha |p_{\delta, \varepsilon}|^\beta)^{\frac{\alpha - 1}{\alpha}}$, $s = \frac{\gamma}{\gamma - 1}$, $\mu = \frac{(\gamma - 1)\beta}{\alpha}$ and $\nu = \frac{(\gamma - 1)\beta}{(\gamma - 1)^\frac{\beta - 1}{\alpha}}$.

We verify that $\frac{1}{s} + \frac{1}{\mu} = 1$. Then we have

$$||(|q_{\delta, \varepsilon}|^\alpha |p_{\delta, \varepsilon}|^{\beta - 1})||_{\gamma^{\frac{\gamma - 1}{\gamma}}} = ||(|q_{\delta, \varepsilon}|^\frac{s}{(\gamma - 1)^\frac{\beta - 1}{\alpha}})(|q_{\delta, \varepsilon}|^\alpha |p_{\delta, \varepsilon}|^\beta)^{\frac{\alpha - 1}{\alpha}}||_{\gamma^{\frac{\gamma - 1}{\gamma}}}$$
$$\leq ||(|q_{\delta, \varepsilon}|^\frac{s}{(\gamma - 1)^\frac{\beta - 1}{\alpha}})||_{\frac{\gamma}{\gamma - 1}} ||(|q_{\delta, \varepsilon}|^\alpha |p_{\delta, \varepsilon}|^\beta)^{\frac{\alpha - 1}{\alpha}}||_{\frac{\gamma}{\gamma - 1}}$$
$$= ||q_{\delta, \varepsilon}||_{\gamma s} ||(|q_{\delta, \varepsilon}|^\alpha |p_{\delta, \varepsilon}|^\beta)^{\frac{\alpha - 1}{\alpha}}||_{\gamma^{\frac{\gamma - 1}{\gamma}}}$$
$$\leq C_6$$

where $C_6 > 0$ is a constant independent of ε.
Finally \((q_\delta, \varepsilon)\) is bounded in \(W^{1, \frac{\gamma}{\gamma-1}}(0, T; \mathbb{R}^N)\). That is we can extract a subsequence -still indexed by \(\varepsilon\)- such that
\[
q_\delta, \varepsilon \to q_\delta \in \Lambda \quad \text{uniformly in } [0, T].
\] (5.3)
Since \(\int_0^T |q_\delta, \varepsilon| \alpha |p_\delta, \varepsilon| \beta \, dt \leq C_2\), we get
\[
\int_0^T |p_\delta, \varepsilon| \beta \, dt \leq C_7
\] (5.4)
for some constant \(C_7 > 0\) independent of \(\varepsilon\). By (H5) and 5.2-5.4, there exists a constant \(C_8 > 0\) independent of \(\varepsilon\) such that
\[
\int_0^T |\dot{p}_\delta, \varepsilon| \gamma \, dt \leq C_8
\]
and
\[
\int_0^T |\dot{q}_\delta, \varepsilon| \gamma \, dt \leq C_8.
\]
So we can extract a subsequence -still indexed by \(\varepsilon\)- such that
\[
p_\delta, \varepsilon \to p_\delta \quad \text{strongly in } L^\gamma(0, T; \mathbb{R}) \text{ and uniformly in } [0, T].
\] (5.5)
By 5.3 and 5.5, a passage to the limit on 4.1-4.2 similar as in Section 4 completes the proof.

6 Proof of Theorem 1.1

We take a limit as \(\delta \to 0\) to obtain a \(T\)-periodic solution of (1.1). Let \((p_\delta, q_\delta) \in (P \times \Lambda) \cap E_0\) be a critical point of \(I_\delta(p, q)\) obtained by Proposition 5.1. By Lemma 5.1, 5.3 and 5.5, we have

Lemma 6.1 For any \(\delta \in [0, 1]\),

(i) \[
\int_0^T |q_\delta| \alpha |p_\delta| \beta \, dt + \int_0^T |q_\delta| \alpha \, dt \leq C_2,
\]

(ii) \[
\delta \int_0^T \frac{1}{|q_\delta| \gamma} \, dt \leq C_2.
\]

By (i) of Lemma 6.1, we can extract a subsequence -still indexed by \(\delta\)- such that
\[
q_\delta \to q \quad \text{weakly in } L^\gamma(0, T; \mathbb{R}^N).
\]

We also remark that \(I_\delta'(p_\delta, q_\delta) = 0\) is equivalent to
\[
\dot{q}_\delta = H_p(t, p_\delta, q_\delta),
\]
\[
\dot{p}_\delta = -H_q(t, p_\delta, q_\delta) + \delta \frac{q_\delta}{|q_\delta|^{\gamma+2}}.
\] (6.1) (6.2)

Lemma 6.2 \(q_\delta \to q \in \Lambda\) uniformly in \([0, T]\).
Proof. By (H4) and 6.1, we have

\[\int_0^T |\dot{q}_\delta| dt \leq a_5 \int_0^T |q_\delta|^\alpha |p_\delta|^{\beta-1} dt + a_5 \int_0^T |q_\delta|^\alpha dt + a_6 \int_0^T |q_\delta| dt. \]

Using (i) of Lemma 6.1, we can see that \(\|q_\delta\|_{W^{1,1}(0,T;\mathbb{R}^N)} \) is bounded. Thus we can find a constant \(C_9 > 0 \) independent of \(\delta \), such that

\[\int_0^T |\dot{q}_\delta|^{\beta-1} dt \leq C_9. \]

Consequently, we obtain \(q_\delta \to q \) uniformly in \([0,T]\).

We now argue indirectly and suppose that \(q(t_0) = 0 \) for some \(t_0 \in [0,T] \).

We may assume \(t_0 = 0 \). By 6.1, for any \(t \in [0,T] \) we have

\[|\log |q_\delta(t)| - \log |q_\delta(0)|| \leq \int_0^t \frac{|q_\delta(s)|}{|q_\delta|} ds = \int_0^t \frac{|H_p(s,p_\delta,q_\delta)|}{|q_\delta|} ds. \] (6.3)

By (H4),

\[\int_0^t \frac{|H_p(s,p_\delta,q_\delta)|}{|q_\delta|} ds \leq a_5 \int_0^t |q_\delta|^\alpha |p_\delta|^{\beta-1} ds + a_5 \int_0^t |q_\delta|^\alpha ds + a_6 T. \]

Since \(\alpha > \beta > 1 \) and \(\int_0^T |q_\delta|^\alpha |p_\delta|^{\beta} dt \leq C_2 \), there exists a constant \(C_{10} > 0 \) independent of \(\delta \), such that

\[\int_0^t \frac{|H_p(s,p_\delta,q_\delta)|}{|q_\delta|} ds \leq C_{10}. \] (6.4)

Passing to the limit in 6.3, we see that \(q_\delta \to 0 \) uniformly in \([0,T]\). By 6.1-6.2, we have

\[I_\delta(p_\delta,q_\delta) = \int_0^T H_p(t,p_\delta,q_\delta) p_\delta dt - \int_0^T H(t,p_\delta,q_\delta) dt + \delta \int_0^T \frac{1}{|q_\delta|^{\gamma}} dt \]

\[= \int_0^T H_q(t,p_\delta,q_\delta) q_\delta dt - \int_0^T H(t,p_\delta,q_\delta) dt + \delta(\gamma + 1) \int_0^T \frac{1}{|q_\delta|^{\gamma}} dt. \]

Hence

\[\int_0^T [H_q(t,p_\delta,q_\delta) q_\delta - H_p(t,p_\delta,q_\delta) p_\delta] dt + \delta \gamma \int_0^T \frac{1}{|q_\delta|} dt = 0. \]

From (H6)(i) and (H2)(ii), it follows that

\[a_7 a_2 \int_0^T |q_\delta|^\alpha |p_\delta|^{\beta} dt - a_7 \int_0^T K_1(q_\delta) dt + \int_0^T K_2(q_\delta) dt + \delta \gamma \int_0^T \frac{1}{|q_\delta|^{\gamma}} dt \leq 0 \]
for small δ. Since $q_\delta \to 0$ uniformly in $[0, T]$, we find
\[\int_0^T |q_\delta|^\alpha |p_\delta|^\beta \, dt \to 0 \text{ as } \delta \to 0. \quad (6.5) \]

Thus we can see from 6.1, 6.5 and (H6)(ii),
\[\int_0^T \frac{|q_\delta|^\alpha}{|q_\delta|^{\frac{\alpha}{\gamma}} - 1} |q_\delta|^\beta \, dt \leq a_8 \int_0^T \frac{\|q_\delta\|^\beta}{\|q_\delta\|_\infty^{\frac{\beta}{\gamma}}} \, dt \to 0 \text{ as } \delta \to 0. \quad (6.6) \]

In other hand, we have from Lemma 2.1
\[\int_0^T \frac{|\dot{q}_\delta|^\beta}{|q_\delta|^{\frac{\beta}{\gamma}}} \, dt \geq \frac{\left(\int_0^T |\dot{q}_\delta| \, dt \right)^{\frac{\beta}{\gamma}}}{T^{\frac{1}{2}} \|q_\delta\|_\infty^{\frac{\beta}{\gamma}}} \geq \frac{1}{T^{\frac{1}{2}} \|q_\delta\|_\infty^{\frac{\beta}{\gamma}}} \to +\infty \text{ as } \delta \to 0. \]

This is a contradiction to 6.6 which proves the Lemma 6.2.

Lemma 6.3 There exists a constant C_{11} independent of $\delta \in [0, 1]$ such that
\[\|p_\delta\|_{W^{1, \gamma}(0, T; \mathbb{R}^N)} \leq C_{11}. \]

Proof. Since $q_\delta \to q \in \Lambda$ uniformly in $[0, T]$ and $\int_0^T |q_\delta|^\alpha |p_\delta|^\beta \, dt \leq C_2$, there exists a constant $C_{12} > 0$ independent of $\delta \in [0, 1]$ such that
\[\int_0^T |p_\delta|^\beta \, dt \leq C_{12}. \]

By (H5) and 6.2, one deduce that $\int_0^T |p_\delta| \, dt$ is bounded. Thus we can see for some constant $C_{11} > 0$ independent of $\delta \in [0, 1]$
\[\|p_\delta\|_{W^{1, \gamma}(0, T; \mathbb{R}^N)} \leq C_{11}. \]

We complete the proof of Theorem 1.1 as follows: By Lemmas 6.2 and 6.3, we can extract a subsequence -still indexed by δ- such that $p_\delta \to p$ strongly in $L^\gamma(0, T; \mathbb{R}^N)$ and $(p_\delta, q_\delta) \to (p, q) \in (P \times \Lambda) \cap E_0$ uniformly in $[0, T]$. Since $I_\delta'(p_\delta, q_\delta) = 0$, we get
\[I'(p, q)(h, k) = 0 \quad \text{for all } (h, k) \in E. \]
That is $(p, q) \in (P \times \Lambda) \cap E_0$ is a non-constant T-periodic solution of (1.1).
7 Remarks on the prescribed energy problem

If \(H(t,p,q) \) does not depend on \(t \), then the energy surface

\[
S_h = H^{-1}(h) = \{(p,q) \in \mathbb{R}^N \times \mathbb{R}^N; \ H(p,q) = h \} \ (h > 0)
\]

is not compact for such Hamiltonian functions. Moreover, \(S_h \) is equal to

\[
\tilde{H}^{-1}(1) = \{(p,q) \in \mathbb{R}^N \times \mathbb{R}^N \setminus \{0\}; \ \tilde{H}(p,q) = 1\}
\]

where

\[
\tilde{H}(p,q) = \frac{H(p,q) - h}{|q|^\alpha} + 1. \quad (7.1)
\]

It is clear that, if \(H(p,q) \sim |q|^\alpha(|p|^\beta - 1) \), then

\[
\tilde{H}(p,q) \sim |p|^\beta - \frac{h}{|q|^\alpha}. \quad (7.2)
\]

In the last few years, the existence of periodic solutions of singular Hamiltonian systems has been studied via variational methods under the situation related to two-body problem in celestial mechanics. That is, situation \(\tilde{H}(p,q) \) is of the form

\[
\tilde{H}(p,q) = \frac{1}{2} |p|^2 + V(q)
\]

where \(V(q) \in C^1(\mathbb{R}^N \setminus \{0\}, \mathbb{R}) \) and \(V(q) \rightarrow -\infty \) as \(q \rightarrow 0 \). See [8, 9, 10] and references therein. Results dealing with more general singular Hamiltonians of the form (7.2) can be found in [7, 11] for fixed period problems, and in [12, 13] for fixed energy problems.

According to the fundamental lemma of Rabinowitz (see [1] and [14, lemma 3.1]), it follows that the Hamiltonian system (1.1) has, for \(H \) and \(\tilde{H} \) which are related by 7.1, the same orbits on \(S_h \). Therefore, under suitable conditions on \(H \) including \(|q|^\alpha(|p|^\beta - 1) \) with \(\alpha > \beta > 1 \), the theorem of [12] carries a non-collision orbit of the singular Hamiltonian system

\[
\begin{align*}
\dot{q} &= \tilde{H}_p(p(t), q(t)) \\
\dot{p} &= -\tilde{H}_q(p(t), q(t)) \\
\tilde{H}(p,q) &= 1,
\end{align*}
\]

which corresponds to a non-constant periodic solution of (1.1) with energy \(h \).

Appendix: Proof of Lemma 3.2

The proof of Lemma 3.2 is a special case of [7, lemma 3.1]. We fix \(A \in \Gamma_m \) and take \(R > 0 \) such that

\[
R > \lambda \max_{\xi \in S^{N-2}} \| \text{proj}_m \frac{d}{dt}(\sigma_0)(\xi)(t) \|^\alpha \frac{1}{\gamma - 1} \frac{d}{dt}(\sigma_0)(\xi)(t) \|^\beta,
\]
A(p, ξ) = (p, σ_0(ξ)) \quad \text{if} \quad ||p||_β ≥ R.

We note that

\[A(p, ξ) = (x(p, ξ), y(p, ξ)), \quad (A.1) \]

\[B(ρ) = \{ p \in P_m; \; ||p||_β ≤ ρ \}, \quad ρ > 0. \]

Then we define the function \(φ(ρ) ∈ C(ℝ, [0, 1]) \) such that

\[φ(ρ) = \begin{cases} 1, & ρ ≤ R, \\ 0, & ρ ≥ 2R. \end{cases} \]

Using the notation (A.1), we define a mapping \(F: P_m × S^{N-2} × [0, T]/\{0, T\} \sim P_m × S^{N-2} × S^1 \to P_m × S^{N-1} \) by

\[F(p, ξ, t) = (x(p, ξ) − λφ(||p||_β)proj_m(||\dot{y}(p, ξ)||^{1−1}_γ − 1\dot{y}(p, ξ)), \tilde{σ}(ξ)(t)) \]

where \(\tilde{σ}(ξ)(t) = \frac{σ(ξ)(t)}{|σ(ξ)(t)|} \) and \(σ(ξ)(t) = (3 + \cos\frac{2πt}{T})(ξ_1, \ldots, ξ_{N-1}, 0) − (3, 0, \ldots, 0) + (0, \ldots, 0, \sin\frac{2πt}{T}). \)

We remark that \(F(p, ξ, t) = (p, \tilde{σ}(ξ)(t)) \) for \(||p||_β ≥ 2R \) and the degree of the map \(\tilde{σ}: S^{N-2} × S^1 \to S^{N-1} \) is not equal to zero.

Thus, there exists \(R’ ≥ 2R \) such that the degree of the mapping

\[F: (B(R’) × S^{N-2} × S^1; ∂B(R’) × S^{N-2} × S^1) \to (B(R’) × S^{N-1}; ∂B(R’) × S^{N-1}) \]

is not equal to zero. Then it follows the existence of \((p, ξ) \) such that

\[x(p, ξ) − λφ(||p||_β)proj_m(||\dot{y}(p, ξ)||^{1−1}_γ − 1\dot{y}(p, ξ)) = 0. \]

By the definition of \(R \), we have necessarily \(||p||_β ≤ R \). That is

\[x(p, ξ) = λproj_m(||\dot{y}(p, ξ)||^{1−1}_γ − 1\dot{y}(p, ξ)) \]

and then

\[A(P_m × S^{N-2}) \bigcap D_m,λ ≠ \emptyset. \]

Acknowledgments. The author wishes to thank Professors Abbas Bahri, Leila Lassoued, and Eric Séré for their helpful discussions.
References

Morched BOUGHARIOU
Faculté des Sciences de Tunis
Département de Mathématiques
Campus Universitaire, 1060 Tunis, Tunisie.
e-mail: Morched.Boughariou@fst.rnu.tn