Global bifurcation result for the p-biharmonic operator *

Pavel Drábek & Mitsuharu Ôtani

Abstract

We prove that the nonlinear eigenvalue problem for the p-biharmonic operator with $p > 1$, and Ω a bounded domain in \mathbb{R}^N with smooth boundary, has principal positive eigenvalue λ_1 which is simple and isolated. The corresponding eigenfunction is positive in Ω and satisfies $\frac{\partial u}{\partial n} < 0$ on $\partial\Omega$, $\Delta u_1 < 0$ in Ω. We also prove that $(\lambda_1, 0)$ is the point of global bifurcation for associated nonhomogeneous problem. In the case $N = 1$ we give a description of all eigenvalues and associated eigenfunctions. Every such an eigenvalue is then the point of global bifurcation.

1 Introduction

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with smooth boundary $\partial\Omega$. For $p \in (1, +\infty)$ consider the nonlinear eigenvalue problem

\begin{equation}
\Delta(|\Delta u|^{p-2}\Delta u) = \lambda|u|^{p-2}u \quad \text{in } \Omega \\
u = \Delta u = 0 \quad \text{on } \partial\Omega
\end{equation}

In this paper we prove that (1.1) has a principal positive eigenvalue $\lambda_1 = \lambda_1(p)$ which is simple and isolated. Moreover, we prove that there exists strictly positive eigenfunction $u_1 = u_1(p)$ in Ω associated with $\lambda_1(p)$ and satisfying $\frac{\partial u_1}{\partial n} < 0$ on $\partial\Omega$. We also study the dependence of $\lambda_1(p)$ on p and show that $p \mapsto \lambda_1(p)$ is a continuous function in $(1, +\infty)$. Making use of this result we prove that $\lambda_1(p)$ is a bifurcation point of

\begin{equation}
\Delta(|\Delta u|^{p-2}\Delta u) = \lambda|u|^{p-2}u + g(x, \lambda, u) \quad \text{in } \Omega \\
u = \Delta u = 0 \quad \text{on } \partial\Omega,
\end{equation}

from which a global continuum of nontrivial solutions emanates.

*Mathematics Subject Classifications: 35P30, 34C23.
Key words: p-biharmonic operator, principal eigenvalue, global bifurcation.
©2001 Southwest Texas State University.
In one dimensional case \((N = 1, \Omega = (0, 1))\) we obtain a complete characterization of the spectrum of the eigenvalue problem

\[
\begin{aligned}
(|u''|^p - 2 u'')'' &= \lambda |u|^p - 2 u \quad \text{in} \ (0, 1) \\
u(0) = u''(0) = u(1) = u''(1) = 0.
\end{aligned}
\]

(1.3)

We prove that the spectrum of (1.3) consists of a sequence of simple eigenvalues \(0 < \lambda_1 < \ldots < \lambda_n < \ldots \rightarrow +\infty\). The eigenfunction \(u_n\) associated with \(\lambda_n(n \geq 2)\) has precisely \(n\) bumps in \((0, 1)\) and it is reproduced from \(u_1\) by using the symmetry of (1.3). As a simple consequence we then obtain that any \(\lambda_n\) is a global bifurcation point of the symmetry of (1.3). As a simple consequence we then obtain that any \(\lambda_n\) is a global bifurcation point of the symmetry of (1.3).

\[
\begin{aligned}
(|u''|^p - 2 u'')'' &= \lambda |u|^p - 2 u + g(t, \lambda, u) \quad \text{in} \ (0, 1) \\
u(0) = u''(0) = u(1) = u''(1) = 0.
\end{aligned}
\]

(1.4)

Our main results are stated in the following theorems.

Theorem 1.1 The problem (1.1) has the least positive eigenvalue \(\lambda_1(p)\) which is simple and isolated in the sense that the set of all solutions of (1.1) with \(\lambda = \lambda_1(p)\) forms a one dimensional linear space spanned by a positive eigenfunction \(u_1\) associated with \(\lambda_1(p)\) such that \(\Delta u_1(p) < 0\) in \(\Omega\) and \(\frac{\partial u_1(p)}{\partial n} < 0\) on \(\partial \Omega\) and that there exists a positive number \(\delta\) so that \((\lambda_1(p), \lambda_1(p) + \delta)\) does not contain any eigenvalues of \((E_N)_p\). Moreover, (1.1) has a positive solution if and only if \(\lambda = \lambda_1\) and the function \(p \mapsto \lambda_1(p)\) is continuous.

Theorem 1.2 Let \(p > 1\) be fixed and the function \(g = g(x, \lambda, s), g(x, \lambda, 0) = 0\), represents higher order terms in (1.2) (see Section 4 for precise assumptions). Then there exists a continuum of nontrivial solutions \((\lambda, u)\) of (1.2) bifurcating from \((\lambda_1(p), 0)\) which is either unbounded or meets the point \((\lambda_n(p), 0)\), where \(\lambda_n(p) > \lambda_1(p)\) is some eigenvalue of (1.1).

Theorem 1.3 The set of all eigenvalues of (1.3) is formed by a sequence

\[0 < \lambda_1(p) < \lambda_2(p) < \ldots < \lambda_n(p) < \ldots \rightarrow +\infty.\]

For any \(n = 1, 2, \ldots\), the function \(p \mapsto \lambda_n(p)\) is continuous. Every \(\lambda_n(p)\) is simple and the corresponding one dimensional space of solutions of (1.3) with \(\lambda = \lambda_n(p)\) is spanned by a function having precisely \(n\) bumps in \((0, 1)\).

Each \(n\)-bump solution is constructed by the reflection and compression of the eigenfunction \(u_1\) associated with \(\lambda_1(p)\).

Theorem 1.4 Let \(p > 1\) be fixed and \(g = g(t, \lambda, s), g(t, \lambda, 0) = 0\), represents higher order terms in (1.4) (see Section 5 for precise assumptions). Then for every \(n = 1, 2, \ldots\), there exists a continuum of nontrivial solutions \((\lambda, u)\) of (1.4) bifurcating from \((\lambda_n(p), 0)\) which is either unbounded or meets the point \((\lambda_k(p), 0)\), with \(k \neq n\).
The paper is organized as follows. In Section 2 we define the notion of the solution, and prepare some auxiliary results. Section 3 contains the proof of Theorem 1.1. The essential part of it relies on the abstract result of Idogawa and Ôtani [7] and the verification of its assumptions. In Section 4 we prove the bifurcation result stated in Theorem 1.2 using the degree argument and the well-known result of Rabinowitz [R]. The last Section 5 is devoted to the one dimensional case and Theorems 1.3, 1.4 are proved there.

2 Auxiliaries

For \(p > 1 \) we define the function \(\psi_p : \mathbb{R} \to \mathbb{R} \) by \(\psi_p(s) = |s|^{p-2}s, s \neq 0 \) and \(\psi_p(0) = 0 \). Denoting \(p' = \frac{p}{p-1} \), we immediately obtain that \(z = \psi_p'(z) \) if and only if \(s = \psi_p'(z) \). The eigenvalue problem (1.1) can be thus written in the form

\[
\Delta \psi_p(\Delta u) = \lambda \psi_p(u) \quad \text{in } \Omega \\
u = \Delta u = 0 \quad \text{on } \partial \Omega. \tag{2.1}
\]

Before we define the weak solution to (2.1) we recall some properties of the Dirichlet problem for Poisson equation:

\[
-\Delta w = f \quad \text{in } \Omega \\
w = 0 \quad \text{on } \partial \Omega. \tag{2.2}
\]

It is well known that (2.2) is uniquely solvable in \(L^p(\Omega) \) for any \(p \in (1, \infty) \) and that the linear solution operator \(\Lambda : L^p(\Omega) \to W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega), \lambda f = w, \) has the properties stated in the following lemma, (see, e.g., [6]).

Lemma 2.1
(i) (Continuity) There exists a constant \(c_p > 0 \) such that

\[\| \Lambda f \|_{W^{2,p}} \leq c_p \| f \|_{L^p} \]

holds for all \(p \in (1, \infty) \) and \(f \in L^p(\Omega) \).

(ii) (Continuity) Given \(k \geq 1, k \in \mathbb{N} \), there exists a constant \(c_{p,k} > 0 \) such that

\[\| \Lambda f \|_{W^{k+2,p}} \leq c_{p,k} \| f \|_{W^{k,p}} \]

holds for all \(p \in (1, \infty) \) and \(f \in W^{k,p}(\Omega) \).

(iii) (Symmetry) The following identity

\[\int_\Omega \Lambda u \cdot vdx = \int_\Omega u \cdot \Lambda vdx \]

holds for all \(u \in L^p(\Omega) \) and \(v \in L^{p'}(\Omega) \) with \(p \in (1, \infty) \).

(iv) (Regularity) Given \(f \in L^\infty(\Omega) \), we have \(\Lambda f \in C^{1,\alpha}(\overline{\Omega}) \) for all \(\alpha \in (0,1) \); moreover, there exist \(c_\alpha > 0 \) such that

\[\| \Lambda f \|_{C^{1,\alpha}} \leq c_\alpha \| f \|_{L^\infty}. \]
(v) (Regularity and Hopf-type maximum principle) Let $f \in C(\Omega)$ and $f \geq 0$, then $w = \Lambda f \in C^{1,\alpha}(\Omega)$, for all $\alpha \in (0,1)$ and w satisfies: $w > 0$ in $\Omega, \frac{\partial w}{\partial n} < 0$ on $\partial \Omega$.

(vi) (Order preserving property) Given $f, g \in L^p(\Omega), f \leq g$ in Ω, we have $\Delta f \leq \Delta g$ in Ω.

Let us denote $v := -\Delta u$ in (1.1). Then the problem (1.1) can be restated as an operator equation

$$
\psi_p(v) = \lambda \psi_p(\Lambda v) \quad \text{in } \Omega \tag{2.3}
$$

or as

$$
v = \lambda \psi_p(\Lambda v) \quad \text{in } \Omega. \tag{2.4}
$$

Indeed, let us assume that $v \in L^p(\Omega)$ solves (2.3). Then from Lemma 2.1 (i) and the properties of the Nemytskii operator induced by ψ_p, we obtain:

$$
\begin{align*}
&u = \Lambda v \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega) \Rightarrow \psi_p(\Lambda v) \in L^{p'}(\Omega) \Rightarrow \\
&\Rightarrow \Lambda \psi_p(\Lambda v) \in W^{2,p'}(\Omega) \cap W_0^{1,p'}(\Omega) \Rightarrow \\
&\Rightarrow \psi_p(v) \in W^{2,p'}(\Omega) \cap W_0^{1,p'}(\Omega) \Rightarrow \\
&\Rightarrow -\Delta \psi_p(-\Delta u) = \lambda \psi_p(u) \text{ holds in } L^{p'}(\Omega).
\end{align*}
$$

This enables us to give the following definition of the solution of (1.1).

Definition 2.2 The function $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ is called a solution of (1.1) if $v = -\Delta u$ solves (2.3) in $L^{p'}(\Omega)$. The parameter λ_e is called an eigenvalue of (1.1) if there is a nonzero solution u_e of (1.1) with $\lambda = \lambda_e$. The function u_e is then called the eigenfunction associated with the eigenvalue λ_e.

Lemma 2.3 (Duality). Let $\lambda_e = \lambda_e(p) \neq 0$ be the eigenvalue of $(E_N)_p$ and $u_e(p)$ be the eigenfunction associated with λ_e. Define $\lambda_e(p')$ and $u_e(p')$ by $\lambda_e(p') = \lambda_e^{-1}(p')e$ and $u_e(p') = \lambda_e^{-1}(p')\psi_p(\Delta u_e(p))$. Then $\lambda_e(p')$ becomes an eigenvalue of $(E_N)_{p'}$ with $p' = \frac{p}{p-1}$ and $u_e(p')$ gives the eigenfunction associated with $\lambda_e(p')$.

Proof. We have

$$
\begin{align*}
\Delta \psi_p(\Delta u_e(p)) &= \lambda_e(p)\psi_p(u_e(p)) \quad \text{in } \Omega \\
u_e(p) &= \Delta u_e(p) = 0 \quad \text{on } \partial \Omega. \tag{2.5}
\end{align*}
$$

Let $w_p := \psi_p(\Delta u_e(p))$, then $w_p \in W^{2,p'}(\Omega) \cap W_0^{1,p'}(\Omega)$. It is easy to see that to solve (2.5) is nothing but to find $(u_e(p), w_p)$ satisfying the system

$$
\begin{align*}
\Delta w_p &= \lambda_e(p)\psi_p(u_e(p)) \\
\Delta u_e(p) &= \psi_p'(w_p). \tag{2.6}
\end{align*}
$$
Since \(u_e(p') = \frac{1}{\lambda_e(p')} w_p \in W^{2,p'}(\Omega) \cap W^{1,p'}_0(\Omega) \) satisfies \(\psi_{p'}(u_e(p')) = \lambda_e(p')^{1-p'} \psi_{p'}(w_p) = \lambda_e(p')^{-1} \psi_{p'}(w_p) \), we easily find that \((u_e(p'), w_p)\) with \(w_p = u_e(p) \) solves (2.6) with \(p = p' \).

Remark 2.4 The duality proved in the previous lemma enables us to deduce several properties of (1.1) for \(p > 2 \) from those for \(p \in (1, 2) \) and vice versa.

The following technical lemma will be useful for the verification of certain abstract assumptions in the next section.

Lemma 2.5 Let \(A, B, C \) and \(p \) be real numbers satisfying \(A \geq 0, B \geq 0, C \geq \max\{B - A, 0\} \) and \(p > 1 \). Then
\[
|A + C|^p + |B - C|^p \geq A^p + B^p. \tag{2.7}
\]

Proof. If \(C = 0 \) (i.e., \(B \leq A \)), then (2.7) is trivial. So it suffices to show (2.7) when \(B \geq A \). Due to the strict convexity of the function \(s \mapsto s^p \) in \((0, +\infty)\) we have
\[
|A + C|^p \geq B^p + pB^{p-1}[C - (B - A)],
\]
\[
|B - C|^p \geq A^p - pA^{p-1}[C - (B - A)].
\]
Adding these inequalities, we derive the assertion. \(\Box \)

3 Eigenvalue problem

Let us define convex functionals \(f^1_p, f^2_p : L^p(\Omega) \to \mathbb{R} \) as follows:
\[
f^1_p(v) = \frac{1}{p} \int_\Omega |v|^p dx, \quad f^2_p(v) = \frac{1}{p} \int_\Omega |\Lambda v|^p dx.
\]
Then it is clear that \(f^1_p \) and \(f^2_p \) are Fréchet differentiable in \(L^p(\Omega) \). Since for every Fréchet differentiable convex functional \(f \), its subdifferential \(\partial f \) coincides with its Fréchet derivative \(f' \), we get that (2.3) is equivalent to
\[
\partial f^1_p(v) = \lambda \partial f^2_p(v) \quad \text{in} \quad L^p(\Omega), \tag{3.1}
\]
where \(\partial f^i_p \) are the subdifferentials of \(f^i_p \), \(i = 1, 2 \). We are going to verify the hypotheses (A0), (A0)', (6.1) - (6.10) of [7] with \(A = \partial f^1_p, B = \partial f^2_p \) and \(V = L^p(\Omega) \). The assumptions (6.1) (i)--(iii), (6.2) (i)--(iii), (6.3), (6.4) (i) and (6.5) are clearly satisfied. Concerning (6.4) (ii) we should verify that
\[
f^2_p(\max\{u, w\}) + f^2_p(\min\{u, w\}) \geq f^2_p(u) + f^2_p(w) \tag{3.2}
\]
for any \(u, w \in L^p(\Omega) \) satisfying \(u \geq 0 \) and \(w \geq 0 \) a.e. in \(\Omega \). We have \(\max\{u, w\} = u + (w - u)^+ \) and \(\min\{u, w\} = w - (w - u)^+ \). By Lemma 2.1
by Sobolev’s embedding theorem and the property of the Nemytskii operator, we obtain
\begin{equation}
\int_{\Omega} |Au + \Lambda (w - u)^+|^p dx + \int_{\Omega} |Aw - \Lambda (w - u)^+|^p dx \geq \int_{\Omega} |Au|^p dx + \int_{\Omega} |Aw|^p dx.
\end{equation}
(3.3)
Then (3.3) implies (3.2). The assumption (6.10) is a consequence of Lemma 2.1 (vi). Hence it remains to verify (A0) and \((A0)^*\).

Lemma 3.1 Let \(v \in L^p(\Omega)\) solve (2.3) in \(L^{p'}(\Omega)\). Then \(v \in C(\Omega)\).

Proof. The main part of the proof is to show the following fact:

Suppose, that \(v \in L^{p_0}(\Omega)\), then we find that

(i) \(v \in L^{p_1}(\Omega)\) with \(\frac{1}{p_1} = \frac{1}{p_0} - \frac{N}{2p'}\) if \(p_0 < \frac{N}{2p'}\).

(ii) \(v \in C(\Omega)\) if \(p_0 > \frac{N}{2p'}\), \(p' = \frac{p}{p-1}\).

Let \(v \in L^{p_0}(\Omega)\), and \(p_0 < \frac{N}{2p'}\), then \(Av \in W^{2,p_0}(\Omega)\) by Lemma 2.1(i). Then, by Sobolev’s embedding theorem and the property of the Nemytskii operator: \(r \mapsto \psi_p(r)\), we get \(Av \in L^{r_0}(\Omega)\) and \(\psi_p(Av) \in L^{\frac{2r_0}{N}}\) with \(r_0 = \frac{Np_0}{2N}\). Again, by Sobolev’s embedding theorem and the property of the Nemytskii operator, we obtain

\[\Lambda \psi_p(Av) \in W^{2,\frac{2r_0}{N}}(\Omega) \hookrightarrow L^{r_1}(\Omega) \]

and

\[\psi_p'(\Lambda \psi_p(Av)) \in L^{\frac{2r_1}{N}}(\Omega) = L^{r_1(p-1)}(\Omega) \]

with \(r_1 = \frac{N^{r_0}}{N(p-1) - 2r_0}\). Consequently, (2.4) implies that \(v \in L^{p_1}(\Omega)\) with \(p_1 = r_1(p-1)\), i.e., \(\frac{1}{p_1} = \frac{1}{p_0} - \frac{2p'}{N}\), whence follows assertion (i). If \(\frac{N}{2p'} < p_0 < \frac{N}{2}\) or \(p_0 = \frac{N}{2p'}\) (or \(p_0 = \frac{N}{2}\)), noting that \(W^{2,\frac{2r_0}{N}}(\Omega) \hookrightarrow C(\Omega)\) (or \(W^{2,\frac{2r_0}{N}}(\Omega) \hookrightarrow C(\Omega)\) for sufficiently large \(r\)) we easily see that \(v \in C(\Omega)\). Then assertion (ii) is verified. Now take suitable \(p_0 \in (1, p]\) and \(k \in \mathbb{N}\) such that

\[p_{k-1} < \frac{N}{2p'} < p_k \text{ with } \frac{1}{p_k} = \frac{1}{p_0} - \frac{2p'}{N}k. \]

Then applying assertion (i) with \(p_0 = p_0, p_1, \ldots, p_{k-1}\), we deduce \(v \in L^{p_k}(\Omega)\). Hence from assertion (ii), \(v \in C(\Omega)\) follows. \(\square\)

Remark 3.2 In particular, it follows from above proof that given bounded sequences \(\{p_n\} \subset (1, \infty)\) and \(\{\lambda_n\} \subset (0, \infty)\), the sequence of elements \(v_n\) solving (2.3) with \(\lambda = \lambda_n\) and \(p = p_n\) which are normalized by \(\|v_n\|_{L^q} = 1, q \in (1, \infty)\), we find a constant \(c > 0\) (independent of \(n\)) such that

\[\|v_n\|_{L^\infty} \leq c. \]
By the same reason, if \(\lambda_n \to \lambda_0 \) and \(v_0 \) solves (2.3) with \(\lambda = \lambda_0, \| v_0 \|_{L^p} = 1 \), the proof of Lemma 3.1 implies that
\[
\lim_{n \to \infty} \| v_n - v_0 \|_{L^\infty} = 0.
\]

Lemma 3.3 Let \(p \geq 2 \) and \(v \in L^p(\Omega), v \geq 0 \) a.e. in \(\Omega \), and let \(v \) solve (2.3) in \(L^p(\Omega) \). Then \(v \in C^1(\Omega), v > 0 \) everywhere in \(\Omega \) and \(\frac{\partial v}{\partial n} = -\infty \) on \(\partial \Omega \).

Proof. It follows from Lemma 2.1 (v), Lemma 3.1 and (2.3) that \(w := \psi_p(v) \) satisfies \(w \in C^{1,\alpha}(\bar{\Omega}), \alpha \in (0,1), w > 0 \) in \(\Omega \) and \(\frac{\partial w}{\partial n} < 0 \) on \(\partial \Omega \). This fact assures that \(v > 0 \) in \(\Omega \) and \((p-1)|v|^{p-2} \frac{\partial v}{\partial n} < 0 \) on \(\partial \Omega \). Then \(\frac{\partial v}{\partial n} = -\infty \) follows from the fact that \(v = 0 \) on \(\partial \Omega \). \(\square \)

For \(p \geq 2 \) the assumption \((A0)' \) now follows from Lemma 3.3 while instead of \((A0)' \) we obtain the following property - \((A0)'^* \): Every positive solution \(v \) of (3.1) satisfies \(v \in C^1(\Omega), v = 0 \) on \(\partial \Omega \) and \(\frac{\partial v}{\partial n} = -\infty \) on \(\partial \Omega \).

It is easy to see that the results of [7] remain true even if \((A0)' \) is substituted by \((A0)'^* \). Applying now the results of [7] we deduce that, for \(p \geq 2 \),
\[
0 < \lambda_1(p) := \left(\sup_{v \in L^p(\Omega), v \neq 0} \frac{\int_\Omega \rho^2(v)}{\int_\Omega \rho_1(v)} \right)^{-1},
\]
is the least simple eigenvalue of (3.1) with associated positive eigenfunction \(v_1(p), \| v_1(p) \|_{L^p} = 1 \) and (3.1) has a positive solution if and only if \(\lambda = \lambda_1(p) \). The assertion for \(p \in (1,2) \) now follows from Lemma 2.3 and Remark 2.4.

As a consequence of this fact we find that \(u_1(p) = \Lambda v_1(p) \) is the corresponding first eigenfunction of (E_N)p satisfying \(u_1(p) > 0 \) in \(\Omega, \Delta u_1(p) < 0 \) in \(\Omega \) and \(\frac{\partial u_1(p)}{\partial n} < 0 \) on \(\partial \Omega \) due to Lemma 2.1 (vi). Moreover, if \(u \) is another positive solution of (E_N)p then \(v = -\Delta u > 0 \) solves (2.3) in \(L^p(\Omega) \). Therefore (2.4) holds with \(\Lambda v = u \). Hence according to the above mentioned argument, it holds that \(\lambda = \lambda_1(p) \) and \(v = v_1(p) \), i.e. \(u = u_1(p) \).

Lemma 3.4 \(\lambda_1(p) \) is isolated, i.e. there is \(\delta > 0 \) such that the interval \((\lambda_1(p), \lambda_1(p) + \delta) \) does not contain any eigenvalue of (3.1).

Proof. Assume the contrary, i.e., there are sequences \(\{\lambda_n\}, \{v_n\} \) such that \(\lambda_n \to \lambda_1(p), \| v_n \|_{L^p} = 1 \) and that \(v_n \) solves (3.1) with \(\lambda = \lambda_n \). Then both \(v_n \) and \(\Lambda v_n \) must change sign in \(\Omega \) and
\[
\lim_{n \to \infty} \| v_n - v_1(p) \|_{L^\infty} = 0
\]
according to Remark 3.2. But Lemma 2.1 (iv) implies that \(\Lambda v_n \to \Lambda v_1(p) \) in \(C^{1,\alpha}(\bar{\Omega}) \) for some \(\alpha \in (0,1) \) which leads to a contradiction with the fact that \(\Lambda v_1(p) > 0 \) in \(\Omega \) and \(\frac{\partial \Lambda v_1(p)}{\partial n} < 0 \) on \(\partial \Omega \). \(\square \)
It remains to show the continuity of \(p \mapsto \lambda_1(p) \). Let us note first that

\[
\lambda_1(p) = \inf \frac{1}{\int_\Omega f(v)}
\]

where the infimum is taken over all \(v \in L^p(\Omega) \), \(\|v\|_{L^p} = p \). It follows from Lemma 2.1 (i) that \(\lambda_1(p) \) is bounded uniformly away from zero and infinity for any \(p \) belonging to a compact subinterval of \((1, \infty)\). Let \(p_n \to p \in (1, \infty) \). Then \(\{\lambda_1(p_n)\} \) is a bounded sequence. Denote by \(v_1(p_n) \) the positive eigenfunction associated with \(\lambda_1(p_n) \) and normalized by

\[
\|v_1(p_n)\|_{L^p} = p.
\]

(3.4)

Extracting a suitable subsequence we can assume that

\[
\lambda_1(p_n) \to \lambda_0, v_1(p_n) \to v_0 \in L^p(\Omega).
\]

(3.5)

In particular, we derive from (3.5) that \(v_0 \geq 0 \, \text{a.e.} \) in \(\Omega \), and the compactness of \(\Lambda \) (cf. Lemma 2.1 (i)) yields \(\Lambda v_1(p_n) \to \Lambda v_0 \) in \(L^p(\Omega) \). Extracting again to a subsequence we get

\[
\Lambda v_1(p_n) \to \Lambda v_0 \, \text{a.e. in } \Omega.
\]

(3.6)

It follows from Remark 3.2 and Lemma 2.1 (iv) that there is a constant \(c > 0 \) independent of \(n \) such that

\[
|\Lambda v_1(p_n)| \leq c.
\]

(3.7)

Hence it follows from (3.6), (3.7) and Lemma 2.1 (iv) that

\[
\Lambda \psi_{p_n}(\Lambda v_1(p_n)) \to \Lambda \psi_p(\Lambda v_0) \, \text{a.e. in } \Omega, \quad \text{i.e.,}
\]

\[
\psi_{p_n}(\Lambda \psi_{p_n}(\Lambda v_1(p_n))) \to \psi_p(\Lambda(\psi_p(\Lambda v_0))) \, \text{a.e. in } \Omega.
\]

(3.8)

Now taking arbitrary \(\varphi \in L^p(\Omega) \), it follows from (3.4), (3.5), (3.7), (3.8), Lemma 2.1 (iv) and the Lebesgue dominated convergence theorem that

\[
\int_{\Omega} \psi_{p_n}(\Lambda \psi_{p_n}(\Lambda v_1(p_n))) \varphi dx \to \int_{\Omega} \psi_p(\Lambda(\psi_p(\Lambda v_0))) \varphi dx.
\]

(3.9)

It also follows from (3.5) that

\[
\int_{\Omega} v_1(p_n) \varphi dx \to \int_{\Omega} v_0 \varphi dx.
\]

(3.10)

So it follows from (2.4), (3.9) and (3.10) that

\[
v_0 = \lambda_0^{\frac{1}{p-1}} \psi_p(\Lambda(\psi_p(\Lambda v_0))).
\]

(3.11)

On the other hand (3.6), (3.7) the definition of \(\lambda_1 \) and the Lebesgue dominated convergence theorem imply

\[
1 = \lim_{n \to \infty} \lambda_1(p_n) \int_{\Omega} |\Lambda v_1(p_n)|^{p_n} dx = \lambda_0 \int_{\Omega} |\Lambda v_0|^p dx,
\]
i.e. \(v_0 \neq 0 \). It follows from here and (3.11) that \(v_0 \) is a positive solution of (2.3) with \(\lambda = \lambda_0 \). According to the first part of Theorem 1.1 (cf. [7]) it must be \(\lambda_0 = \lambda_1(p) \), \(v_0 = v_1(p) \). Since the above argument does not depend on the choice of subsequences, the continuity of the function

\[p \mapsto \lambda_1(p) \]

is proved. This also completes the proof of Theorem 1.1

4 Global bifurcation result

For \(p > 1 \) set \(X = L^p(\Omega) \). Then \(X^* = L^{p'}(\Omega) \) and the Nemytskii operator

\[\Psi_p : v \mapsto \psi_p(v) \]

is one to one mapping between \(X \) and \(X^* \).

Lemma 4.1 \(\Psi_p \) satisfies condition \((S_+)\), i.e.

\[v_n \rightharpoonup v_0 \text{ weakly in } X. \tag{4.1} \]

and

\[\limsup_{n \to \infty} \int_{\Omega} \psi_p(v_n)(v_n - v_0)dx \leq 0 \tag{4.2} \]

imply \(v_n \to v_0 \) strongly in \(X \).

Proof. The monotonicity of \(\psi_p \), (4.1) and (4.2) imply

\[
0 \geq \limsup_{n \to \infty} \int_{\Omega} \psi_p(v_n)(v_n - v_0)dx = \\
= \limsup_{n \to \infty} \int_{\Omega} (\psi_p(v_n) - \psi_p(v_0))(v_n - v_0)dx \\
\geq \limsup_{n \to \infty} \left[\left(\int_{\Omega} |v_n|^p dx \right)^{1/p'} - \left(\int_{\Omega} |v_0|^p dx \right)^{1/p'} \right]^* \\
\times \left[\left(\int_{\Omega} |v_n|^p dx \right)^{1/p} - \left(\int_{\Omega} |v_0|^p dx \right)^{1/p} \right] \geq 0
\]

Hence \(\|v_n\|_X \to \|v_0\|_X \), which together with (4.1) yields the desired strong convergence.

Let the function \(g : \Omega \times \mathbb{R}^2 \to \mathbb{R} \) be a Carathéodory function, i.e. \(g(x, \cdot, \cdot) \) is continuous for a.e. \(x \in \Omega \) and \(g(\cdot, \lambda, s) \) is measurable for all \((\lambda, s) \in \mathbb{R}^2 \). Moreover, let \(g(x, \lambda, 0) = 0 \) for any \((x, \lambda) \in \Omega \times \mathbb{R} \) and given any bounded interval \(J \subset \mathbb{R} \) we assume that there exists an exponent \(q \in (p, p^{**}) \) with
Note that (1.2) can be written in the equivalent form
\[|g(x, \lambda, s)| \leq \varepsilon |s|^{p-1} + C_\varepsilon |s|^{q-1} \quad \text{for a.e. } x \in \Omega \text{ and all } \lambda \in J, s \in \mathbb{R}. \tag{4.3} \]
Due to (4.3) the right hand side of (4.4) defines an operator
\[T_{\lambda, g} : v \mapsto \lambda \Lambda \psi_p(\Lambda v) + \Lambda g(x, \lambda, \Lambda v). \tag{4.4} \]
Due to (4.3) the right hand side of (4.4) defines an operator
\[T_{\lambda, g} : v \mapsto \lambda \Lambda \psi_p(\Lambda v) + \Lambda g(x, \lambda, \Lambda v) \]
from \(X \) into \(X^* \) which is compact. Indeed, by Lemma 2.1 (i) we get \(\Lambda v \in W^{2,p}(\Omega) \) and \(\Lambda \psi_p(\Lambda v) \in W^{2,p'}(\Omega) \). Furthermore by using (4.3) and the fact that \(W^{2,p}(\Omega) \subset L^q(\Omega) \), we find that \(\Lambda g(x, \lambda, \Lambda v) \in W^{2,q'}(\Omega) \). Thus \(T_{\lambda, g} \) maps any bounded set of \(X \) onto a bounded set of \(W^{2,q'}(\Omega) \), which is compactly embedded in \(X^* \), since \(q < p^{**} \). Then this fact and Lemma 4.1 imply that \(\Psi_p - T_{\lambda, g} \) satisfies condition \((S_+)\). So, given an open and bounded set \(D \subset X \) such that \(\Psi_p(v) - T_{\lambda, g}(v) \neq 0 \) for any \(v \in \partial D \), the generalized degree of Browder and Petryshin
\[\text{Deg}[\Psi_p - T_{\lambda, g}; D, 0] \]
is well defined.

Lemma 4.2 \(\|\Lambda g(x, \lambda, \Lambda v)\|_{X^*} = o(\|v\|_{X}^{p-1}) \) as \(\|v\|_{X} \to 0 \).

Proof. Since \(\Lambda \) is symmetric, we have
\[\|\Lambda g(x, \lambda, \Lambda v)\|_{X^*} = \sup_{\|\varphi\|_{X} \leq 1} \int_{\Omega} \Lambda g(x, \lambda, \Lambda v) \varphi dx = \sup_{\|\varphi\|_{X} \leq 1} \int_{\Omega} g(x, \lambda, \Lambda v) \Lambda \varphi dx. \tag{4.5} \]
Then, for any \(\varepsilon > 0 \), by virtue of (4.3) and Lemma 2.1 (i), we find
\[\left| \int_{\Omega} g(x, \lambda, \Lambda v) \Lambda \varphi dx \right| \leq \int_{\Omega} \varepsilon |\Lambda v|^{p-1} |\Lambda \varphi| dx + \int_{\Omega} C_\varepsilon |\Lambda v|^{q-1} |\Lambda \varphi| dx \]
\[\leq \varepsilon \|\Lambda v\|_{L^p}^{p-1} \|\Lambda \varphi\|_{L^p} + C_\varepsilon \|\Lambda v\|_{L^q}^{q-1} \|\Lambda \varphi\|_{L^q} \]
\[\leq \varepsilon c_p^p \|v\|_{X}^{p-1} \|\varphi\|_{X} + C_\varepsilon c_q^q \|\Lambda v\|_{W^{2,p}}^{q-1} \|\Lambda \varphi\|_{W^{2,p}} \]
\[\leq \varepsilon c_p^p \|v\|_{X}^{p-1} + C_\varepsilon c_q^q \|\varphi\|_{X}^{q-1}, \tag{4.6} \]
where \(c_p \) is the constant appearing in Lemma 2.1 (i) and \(c > 0 \) is the embedding constant for \(W^{2,p}(\Omega) \hookrightarrow L^q(\Omega) \). Thus the assertion follows from (4.5) and (4.6), since \(p < q \). \(\square \)

Let \(\delta > 0 \) be as in Lemma 3.4 and consider \(\lambda < \lambda_1(p) + \delta, \lambda \neq \lambda_1(p) \). Then Lemma 4.2 and simple homotopy argument yields
\[\text{Deg}[\Psi_p - T_{\lambda, g}; B_r(0), 0] = \text{Deg}[\Psi_p - T_{\lambda, 0}; B_\lambda(0), 0] \tag{4.7} \]
if \(r > 0 \) is chosen sufficiently small (cf. [4], [5], [2], [3] or [R]). Here \(B_r(0) \) is the ball centred at the origin and with radius \(r > 0 \).
Lemma 4.3 Deg[Ψ_p - T_{λ,0}; B_r(0), 0] = ±1 for λ < λ_1(p) + δ, λ ≠ λ_1(p) and sgn(λ_1(p) − λ) = ±1.

Proof. To prove the “jump” of the degree we adopt the method developed in [5] (see also [4]). Thus we just sketch the proof and refer to [DKN, Theorem 3.7] or [D, Theorem 14.18] for the details. Consider the functional

\[F_λ(v) = \frac{1}{p} \int_Ω |v|^p dx - \frac{λ}{p} \int_Ω |∇v|^p dx. \]

It follows from the variational characterization of λ_1(p) (see Section 3) that for λ < λ_1(p) we have

\[\langle F'_λ(v), v \rangle_X > 0 \]

for v ∈ ∂B_r(0) and v = 0 is the only critical point of F_λ (here \(\langle \cdot, \cdot \rangle_X \) denotes the duality between \(X^* \) and \(X \)) and hence

\[\text{Deg}[Ψ_p - T_{λ,0}; B_r(0), 0] = \pm 1 \] (4.8)

by the properties of the degree (cf.[9]). Let now λ ∈ (λ_1(p), λ_1(p) + δ). As in (DKN, Theorem 3.7) we define a function η : \(\mathbb{R} \to \mathbb{R} \) by

\[η(t) = \begin{cases} 0, & \text{for } t < K, \\ \frac{2δ}{λ_1(p)}(t - 2K), & \text{for } t \geq 3K, \end{cases} \]

The function η(t) is continuously differentiable, positive and strictly convex in \((K, 3K), K > 0 \). Let us modify \(F_λ \) as follows

\[\tilde{F}_λ(v) := F_λ(v) + η(\frac{1}{p} \int_Ω |v|^p dx). \]

The properties of λ_1(p) stated in Theorem 1.1 now imply the following properties of \(\tilde{F}_λ \):

- \(\tilde{F}_λ \) is continuously Fréchet differentiable and its critical point \(v_0 ∈ X \) corresponds to a solution of the equation

\[\psi_p(v_0) - \frac{λ}{1 + η'(\frac{1}{p} \int_Ω |v_0|^p dx)} Λψ_p(Λv_0) = 0. \]

- For λ ∈ (λ_1(p), λ_1(p) + δ) the only nontrivial critical points of \(\tilde{F}_λ \) occur if

\[η'\left(\frac{1}{p} \int_Ω |v_0|^p dx\right) = \frac{λ}{λ_1(p)} - 1. \]

- Due to the definition of η we then have

\[\frac{1}{p} \int_Ω |v_0|^p dx ∈ (K, 3K) \]

and due to the simplicity of λ_1(p), either \(v_0 = -tv_1(p) \) or \(v_0 = tv_1(p) \), for some \(t ∈ ((pK)^{1/p}, (3pK)^{1/p}) \), \(v_1(p) \) as in the Section 3.
Global bifurcation result for the p-biharmonic operator

\tilde{F}_λ has precisely three isolated critical points $-tv_1(p), 0, tv_1(p)$.

\tilde{F}_λ is weakly lower semicontinuous and even.

\tilde{F}_λ is coercive, i.e.

$$\lim_{\|v\|_X \to \infty} \tilde{F}_\lambda(v) = \infty$$

$-tv_1(p), tv_1(p)$ are the points of the global minimum of \tilde{F}_λ; 0 is an isolated critical point of “saddle type”.

$\langle \tilde{F}_\lambda'(v), v \rangle_X > 0$ for $\|v\|_X = R$ if $R > 0$ is large enough.

The properties of the degree now imply that for small $\rho > 0$ and large $R > 0$ we have

$$\text{Deg}[\tilde{F}_\lambda'; B_\rho(\pm tv_1(p)), 0] = \text{Deg}[\tilde{F}_\lambda'; B_R(0), 0] = 1.$$

The additivity property of the degree then yields for $0 < r < (pK)^{1/p}$,

$$\text{Deg}[\Psi_p - T_{\lambda,0}; B_r(0), 0] = \text{Deg}[\tilde{F}_\lambda'; B_r(0), 0] = -1. \quad (4.9)$$

The assertion of Lemma 4.3 follows now from (4.8) and (4.9). □

If we combine (4.7) with Lemma 4.3 we come to the following conclusion: for $r > 0$ sufficiently small

$$\text{Deg}[\Psi_p - T_{\lambda,0}; B_r(0), 0] = \pm 1$$

for $\text{sgn}(\lambda_1(p) - \lambda) = \pm 1$. Following the proof of [R, Theorem 1.3] we prove that continuum of nontrivial solutions $(\lambda, v) \in \mathbb{R} \times X$ of (4.4) bifurcates from $(\lambda_1(p), 0)$ and it is either unbounded in $\mathbb{R} \times X$ or meets the point $(\lambda_e(p), 0)$, where $\lambda_e(p) > \lambda_1(p)$ is an eigenvalue of (3.1). The assertion of Theorem 1.2 now follows from the fact that (λ, u) solves $(\text{BP}_N)_p$ if and only if $(\lambda, -\Delta u)$ solves (4.4).

5 One-dimensional problem

Let $N = 1$ and $\Omega = (0, 1)$. Then $(E_N)_p$ reduces to (1.3) and obviously the assertions of Theorems 1.1, 1.2 remain true. We point out that $W^{2,p}(0, 1) \hookrightarrow C^1([0, 1])$ in the case $N = 1$, and so $\psi_p(v) \in C^1([0, 1])$, $v(0) = v(1) = 0$ for any solution v of (2.3). Hence we do not need Lemmas 3.1 and 3.3 in this case. For the sake of brevity we shall write $\lambda_1 := \lambda_1(p), u_1 := u_1(p)$. It follows from the symmetry of (1.3) and Theorem 1.1 (simplicity of λ_1) that $u_1(t) = u_1(1 - t)$ for $t \in [0, 1]$, i.e. u_1 is even with respect to $\frac{1}{2}$. Making use of this observation, we give a precise description of all eigenvalues and eigenfunctions of $(E_1)_p$. Indeed,
Then $u_n(t), t \in [0, 1]$, is an eigenfunction of (1.3) associated with the eigenvalue $\lambda_n = n^{2p}\lambda_1$. On the other hand, let $u = u(t)$ be an eigenfunction of $(E_1)_p$ associated with some eigenvalue λ_e. According to Theorem 1.1 it must be $\lambda_e > \lambda_1$ and u changes sign in $(0, 1)$. By Lemma A.4 the number of nodes of u in $(0, 1)$ is finite. Assume first that $\lambda_e = \lambda_n$, for some $n > 1$. Let us normalize u as follows: $u'(0) = u_n'(0) > 0$. Note that since u and u_n are oscillatory, we must have, according to Lemma A.3, that

$$(\psi_p(u''(t)))'|_{t=0} < 0 \quad \text{and} \quad (\psi_p(u''_n(t)))'|_{t=0} < 0,$$

respectively. Let $(\psi_p(u''(t)))'|_{t=0} = (\psi_p(u''_n(t)))'|_{t=0}$. Then Lemma A.1 implies that $u(t) = u_n(t), t \in [0, 1]$. Let $(\psi_p(u''(t)))'|_{t=0} \neq (\psi_p(u''_n(t)))'|_{t=0}$. Then Lemma A.2 implies that $u(1) \neq 0$, a contradiction. Let $\lambda_e \neq \lambda_k$ for any $k \geq 2$.

Define

$$\tilde{u}(t) = u_1 \left(\left(\frac{\lambda_e}{\lambda_1} \right)^{1/(2p)} t \right), \quad t \in \left[0, \left(\frac{\lambda_1}{\lambda_e} \right)^{1/(2p)} \right],$$

$$\tilde{u}(t) = -u_1 \left(\left(\frac{\lambda_e}{\lambda_1} \right)^{1/(2p)} t - 1 \right), \quad t \in \left[\left(\frac{\lambda_1}{\lambda_e} \right)^{1/(2p)}, \left(\frac{\lambda_1}{\lambda_e} \right)^{1/(2p)} \right], \quad \text{etc.}$$

Then $\tilde{u}(1)\tilde{u}'(1) < 0$. Let us normalize u as $u'(0) = \tilde{u}'(0) > 0$. Then it follows from Lemma A.2 that $u(1) = u''(1) = 0$ cannot hold at the same time. Thus Theorem 1.3 is proved.

Let $X = C([0, 1])$. Let $g : [0, 1] \times \mathbb{R}^2 \to \mathbb{R}$ be a continuous function satisfying $g(t, \lambda, 0) = 0$ for any $(t, \lambda) \in (0, 1) \times \mathbb{R}$ and given any bounded interval $J \subset \mathbb{R}$ we assume that

$$|g(t, \lambda, s)| = o(|s|^{p-1}) \quad (5.1)$$

holds near $s = 0$ uniformly for all $(t, \lambda) \in [0, 1] \times J$. Note that $(BP_1)_p$ can be written in the equivalent form

$$v = \psi_p' (\Lambda \psi_p(Av) + Ag(t, \lambda, Av)). \quad (5.2)$$

Due to Lemma 2.1 (i), the right hand side of (5.2) defines an operator

$$R_{p, \lambda, g} : (p, \lambda, v) \mapsto \psi_p' (\Lambda \psi_p(Av) + Ag(t, \lambda, Av))$$

which is compact from $(1, \infty) \times \mathbb{R} \times X$ into X. If $I : X \to X$ denotes the identity mapping, the Leray-Schauder degree

$$\text{deg}[I - R_{p, \lambda, g}; D, 0]$$
Lemma 5.1 Let \(\lambda \neq \lambda_n \). Then there is \(r > 0 \) (sufficiently small) such that
\[
\deg[I - R_{p,\lambda,g}; B_r(0), 0] = \deg[I - R_{p,\lambda,0}; B_r(0), 0].
\] (5.3)

Proof. Standard argument based on (5.1) yields that the homotopy
\[
H(\tau, v) = v - \psi'_{\lambda}(\lambda \Lambda \psi_{\lambda}(\Lambda v) + \tau \Lambda g(t, \lambda, \Lambda v))
\]
satisfies \(H(\tau, v) \neq 0 \) for all \(\tau \in [0,1] \) and \(v \in \partial B_r(0) \) if \(r > 0 \) is small enough. So (5.3) follows from the homotopy invariance property of the Leray-Schauder degree. \(\square \)

Let \(\lambda \in (\lambda_n(p), \lambda_{n+1}(p)), n = 0, 1, 2, \ldots \), where we set \(\lambda_0(p) = -\infty \) and \(\lambda_1(p), \lambda_2(p), \ldots \) are as above, then we have.

Lemma 5.2 \(\deg[I - R_{p,\lambda,0}; B_r(0), 0] = (-1)^n. \)

Proof. We follow the idea in [2]. Note that it follows from Theorems 1.1, 1.3 that
\[
\lambda_n : p \mapsto \lambda_n(p), n = 1, 2, \ldots ,
\]
are continuous functions on \((1, \infty)\). Assume that \(p < 2 \). Define \(\lambda(q), q \in [p, 2], \)
by the following way
\[
\lambda(q) := \frac{\lambda - \lambda_n(p)}{\lambda_{n+1}(p) - \lambda_n(p)} \cdot (\lambda_{n+1}(q) - \lambda_n(q)) + \lambda_n(q), \quad n \geq 1,
\]
\[
\lambda(q) := \lambda_1(q) - (\lambda_1(p) - \lambda), n = 0.
\]
Then
\[
H(q, v) := v - R_{q,\lambda(q),0}(v) = v - \psi'_{\lambda}(\lambda(q) \Lambda \psi_{\lambda}(\Lambda v))
\]
satisfies \(H(q, v) \neq 0 \) for all \(q \in [p, 2] \) and \(v \in \partial B_r(0) \). It follows from the homotopy invariance property of the Leray-Schauder degree that
\[
\deg[I - R_{p,\lambda,0}; B_r(0), 0] = \deg[I - R_{2,\lambda(2),0}; B_r(0), 0].
\] (5.4)
The same approach but in the interval \([2, p]\) yields to the same conclusion also for \(p > 2 \). Since \(\lambda_n(2) < \lambda(2) < \lambda_{n+1}(2) \), the classical Leray-Schauder index formula implies that
\[
\deg[I - R_{2,\lambda(2),0}; B_r(0), 0] = (-1)^n.
\] (5.5)
The assertion of lemma follows now from (5.4) and (5.5). \(\square \)

With Lemmas 5.1 and 5.2 in hand we can follow the proof of [R, Theorem 1.3] to prove that continua of nontrivial solutions \((\lambda, v) \in \mathbb{R} \times X\) of (5.2) bifurcate from \((\lambda_n(p), 0), n = 1, 2, \ldots \), and they are either unbounded in \(\mathbb{R} \times X \) or meet the point \((\lambda_m(p), 0)\) with \(m \neq n \). The assertion of Theorem 1.4 follows from the fact that \((\lambda, u)\) solves (1.4) if and only if \((\lambda, -\Delta u)\) solves (5.2).
6 Appendix

To justify some statements in Section 5 we present here a brief study of the initial value problem associated with the equation in $(E_1)_p$ with $\lambda > 0$:

$$u'' = \psi_p(w), \quad u(t_0) = \alpha, \quad u'(t_0) = \beta,$$

$$w'' = \lambda \psi_p(u), \quad w(t_0) = \gamma, \quad w'(t_0) = \delta. \quad (6.1)$$

By a solution of (6.1) we understand a couple of functions (u, w) which are of class C^2 and fulfil the equations and initial conditions in (6.1).

Lemma 6.1 The solution to (6.1) is locally unique.

Proof. Without loss of generality we can restrict ourselves to $t_0 = 0$ and $p \in (1, 2)$ (the case $p > 2$ is treated similarly). Local existence is a consequence of the Schauder fixed point theorem. For its uniqueness we have to distinguish among several cases:

(I) $\alpha \neq 0$ implies that both functions $\psi_p(u(t))$ and $\psi_p(w(t))$ are of class C^1 in the neighbourhood of $t = 0$ and so the assertion follows from the classical theory.

(II) $\alpha = 0$, in this case $\psi_p(u(t))$ is not C^1 in $t = 0$.

(II)(i) $\alpha = 0, \beta \neq 0$. Let $(u, w_1), (v, w_2)$ be two solutions of (6.1) in $(0, \varepsilon)$ with some $\varepsilon > 0$. Then

$$\psi_p(u''(t)) - \psi_p(v''(t)) = \lambda \int_0^t (t - \tau) (\psi_p(u(\tau)) - \psi_p(v(\tau))) d\tau. \quad (6.2)$$

By the assumption, $u(\tau), v(\tau)$ lie in the neighbourhood of $\beta \neq 0$ for $\tau \in (0, \varepsilon)$ with ε small enough. We thus have $K_1 > 0$ such that

$$\left| \psi_p\left(\frac{u(\tau)}{\tau}\right) - \psi_p\left(\frac{v(\tau)}{\tau}\right) \right| \leq K_1 \left| \frac{u(\tau)}{\tau} - \frac{v(\tau)}{\tau} \right|, \quad (6.3)$$

$\tau \in (0, \varepsilon), K_1$ independent of $\varepsilon << 1$. On the other hand there is $K_2 > 0$ such that

$$|\psi_p(u''(t)) - \psi_p(v''(t))| \geq K_2 |u''(t) - v''(t)|, \quad (6.4)$$

t $\in (0, \varepsilon)$. Now, it follows from (6.2)–(6.4)

$$K_2 |u''(t) - v''(t)| \leq \lambda \int_0^t (t - \tau) \tau^{p-1} K_1 \left| \frac{u(\tau)}{\tau} - \frac{v(\tau)}{\tau} \right| d\tau.$$

Taking into account

$$u(\tau) - v(\tau) = \int_0^\tau (\tau - \sigma) (u''(\sigma) - v''(\sigma)) d\sigma,$$
we arrive at
\[\|u'' - v''\|_\varepsilon \leq \lambda \frac{K_1}{K_2} \varepsilon^{p+2}\|u'' - v''\|_\varepsilon, \]
(6.5)
where \(\| \cdot \|_\varepsilon \) is the sup norm on \([0, \varepsilon]\). This implies \(u = v \) (and thus \(w_1 = w_2 \)) for \(\varepsilon \) small enough.

(II) (ii) \(\alpha = \beta = 0, \gamma \neq 0 \) and (iii) \(\alpha = \beta = \gamma = 0, \delta \neq 0 \). Instead of (6.2) we use the following fact

\[\psi_{p'}(w_1''(t)) - \psi_{p'}(w_2''(t)) = \psi_{p'}(\lambda) \int_0^t (t - \tau)(\psi_{p'}(w_1(\tau)) - \psi_{p'}(w_2(\tau)))d\tau. \]

(6.6)
Since \(p' > 2 \), we have

\[|\psi_{p'}(w_1(\tau)) - \psi_{p'}(w_2(\tau))| \leq K_1|w_1(\tau) - w_2(\tau)|, \]

\(\tau \in (0, \varepsilon) \). Hence

\[\left| \int_0^t (t - \tau)(\psi_{p'}(w_1(\tau)) - \psi_{p'}(w_2(\tau)))d\tau \right| \leq K_1 \varepsilon^2\|w_1 - w_2\|_\varepsilon. \]
(6.7)
It follows from the initial conditions that \(\frac{w_i''(t)}{t^{2(p-1)}} = \lambda \varepsilon \lambda, i = 1, 2, \) lie near \(\lambda \gamma \psi_p(\frac{1}{t^2}), i = 1, 2, \) lie near \(\lambda \delta \psi_p \left(\frac{1}{(p' + 1)} \right) \neq 0 \) in the case (iii). Hence there exists \(K_2 > 0 \) such that

\[\left| \psi_{p'} \left(\frac{w_1''(t)}{t^{2(p-1)}} \right) - \psi_{p'} \left(\frac{w_2''(t)}{t^{2(p-1)}} \right) \right| \geq K_2 \left| \frac{w_1''(t)}{t^{2(p-1)}} - \frac{w_2''(t)}{t^{2(p-1)}} \right| \]
(6.8)
in the case (ii) and

\[\left| \psi_{p'} \left(\frac{w_1''(t)}{t^{2(p-1)}} \right) - \psi_{p'} \left(\frac{w_2''(t)}{t^{2(p-1)}} \right) \right| \geq K_2 \left| \frac{w_1''(t)}{t^{2(p-1)}} - \frac{w_2''(t)}{t^{2(p-1)}} \right| \]
(6.9)
in the case (iii). Taking into account

\[w_1(t) - w_2(t) = \int_0^t (t - \tau)(w_1''(\tau) - w_2''(\tau))d\tau \]
we derive from (6.6), (6.7), (6.8) and (6.9) that

\[\|w_1 - w_2\|_\varepsilon \leq \frac{K_1}{K_2} \psi_{p'}(\lambda) \varepsilon^{2p+2}\|w_1 - w_2\|_\varepsilon \]
in the case (ii) and

\[\|w_1 - w_2\|_\varepsilon \leq \frac{K_1}{K_2} \psi_{p'}(\lambda) \varepsilon^{2p+3}\|w_1 - w_2\|_\varepsilon \]
in the case (iii).
(II)(iv) \(\alpha = \beta = \gamma = \delta = 0 \). In this case (6.1) has always the trivial solution \(u_0 = w_0 = 0 \). Let \((u, w)\) be a nontrivial solution. Then

\[
|\psi_p(u''(t))| \leq \lambda \int_0^t (t - \tau)\psi_p(|u(\tau)|)d\tau \leq \lambda \varepsilon^2 ||u||_{L^p}^{p-1}, \quad t \in (0, \varepsilon),
\]

which yields

\[
||u''||_{L^p}^{p-1} \leq \lambda \varepsilon^2 ||u''||_{L^p}^{p-1},
\]

i.e. \(u = w = 0 \). This completes the proof. \(\Box \)

Lemma 6.2 Let \((u, w)\) and \((\tilde{u}, \tilde{w})\) be solutions of (6.1) defined on \([0, 1]\), respectively, \(u(0) = w(0) = \tilde{u}(0) = \tilde{w}(0) = 0 \), \(u'(0) = \tilde{u}'(0) > 0 \), \(w'(0) < \tilde{w}'(0) \). Then \(u(t) < \tilde{u}(t) \) and \(w(t) < \tilde{w}(t) \) for any \(t \in (0, 1) \).

Proof. Assume that the assertion is not true. Then it follows from Lemma A.1 that there is \(t_1 > 0 \) such that \(u(t_1) = \tilde{u}(t_1) \) and \(u(t) < \tilde{u}(t), t \in (0, t_1) \). Simultaneously, the fact that both \(u \) and \(\tilde{u} \) solve (E1) imply that

\[
\int_0^{t_1} (t_1 - \tau)\psi_p' \left(\lambda \int_0^\tau (\tau - \sigma)\psi_p(u(\sigma))d\sigma + w'(0)\tau \right)d\tau
= \int_0^{t_1} (t_1 - \tau)\psi_p' \left(\lambda \int_0^\tau (\tau - \sigma)\psi_p(\tilde{u}(\sigma))d\sigma + \tilde{w}'(0)\tau \right)d\tau
\]

which contradicts the monotone character of the functions \(\psi_p \) and \(\psi_p' \). The same argument applies for \(w \) and \(\tilde{w} \). \(\Box \)

Lemma 6.3 Let \((u, w)\) be a nonzero solution of (6.1) defined on \([0, 1]\) and satisfying \(u(0) = w(0) = u(1) = w(1) = 0 \). Then \(u'(0)w'(0) < 0 \).

Proof. Multiply the first (second) equation in (6.1) by \(w'(x) \) and add to get

\[
u'(x)w'(x) = \frac{|w(x)|^{p'}}{p'} + \lambda \frac{|u(x)|^p}{p} - C \text{ for all } x \in [0, 1]. \tag{6.10}
\]

Let \(x_0 \in (0, 1) \) be the point satisfying

\[
|u(x_0)| = \max_{x \in [0, 1]} |u(x)| > 0.
\]

Then (6.10) implies

\[
0 = \frac{|w(x_0)|^{p'}}{p'} + \lambda \frac{|u(x_0)|^p}{p} - C,
\]

i.e. \(C > 0 \). Hence \(u'(0)w'(0) < 0 \) by (6.10). \(\Box \)

Lemma 6.4 Let us assume the same as in the previous lemma. Then \(u \) (and also \(w \)) changes sign in \((0, 1)\) at most finitely many times.
Proof. Let u have an infinite number of bumps in $(0, 1)$. Then there exist sequences x_n, y_n such that $u(x_n) = u'(y_n) = 0, x_n \to x_0, y_n \to x_0, x_n, y_n, x_0 \in [0, 1]$. Then $u(x_0) = u'(x_0) = 0$, hence (6.10) gives

$$0 = \frac{|w(x_0)|^p}{p'} - C.$$

Since $C > 0$, we have

$$w(x_0) > 0 \; \text{or} \; w(x_0) < 0.$$

Due to

$$u'(x) = \int_{x_0}^{x} \psi_p(w(y))dy + \psi_p(w(x_0)),$$

the function $u'(x)$ should be of definite sign in a neighbourhood of $x = x_0$, which contradicts the observation that $u'(y_n) = 0, y_n \to x_0$. □

Acknowledgements The first author is partially supported by grant number 201/00/0376 from the Grant Agency of the Czech Republic. The second author is supported by grant number 09440070 from the Grant-in-Aid for Scientific Research, Ministry of Education, Science, Sports and Culture, Japan and by Waseda University Grant number 99B-013 for Special Research Projects.

References

[2] M. delPino, M. Elgueta, R. Manásevich: A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')' + f(t, u) = 0, u(0) = u(T) = 0, p > 1$, J. Differential Equations 80 (1989), 1–13.

Pavel Drábek
Centre of Applied Mathematics
University of West Bohemia
Univerzitní 22, 306 14 Plzeň
Czech Republic
e-mail: pdrabek@kma.zcu.cz

Mitsuharu Ôtani
Department of Applied Physics
School of Science and Engineering
Waseda University
3-4-1, Okubo Tokyo, Japan, 169-8555
e-mail: otani@mn.waseda.ac.jp