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Convergence of a continuous BGK model for

initial boundary-value problems

for conservation laws ∗

Driss Seghir

Abstract

We consider a scalar conservation law in the quarter plane. This
equation is approximated in a continuous kinetic Bhatnagar-Gross-Krook
(BGK) model. The convergence of the model towards the unique entropy
solution is established in the space of functions of bounded variation, us-
ing kinetic entropy inequalities, without special restriction on the flux nor
on the equilibrium problem’s data. As an application, we establish the
hydrodynamic limit for a 2× 2 relaxation system with general data. Also
we construct a new family of convergent continuous BGK models with
simple maxwellians different from the χ models.

1 Introduction

We consider the initial boundary-value problem, for a one-dimensional scalar
conservation law,

∂tu+ ∂xF (u) = 0, (1.1)

for (x, t) ∈ R× (0, T ) and F a smooth flux function with the initial condition

u(x, 0) = u0(x), (1.2)

for x ∈ R+. The boundary condition

u(0, t) = ub(t) for t ≥ 0,

can not be assumed in the proper sense because this is not quite simply true.
Our boundary condition will be formulated as a compatibility [2]

sup{sgn(u(0, t)− ub(t))(F (u(0, t))− F (k))} = 0, (1.3)
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2 Convergence of a continuous BGK model EJDE–2001/72

for t ∈ [0, T ], where sgn(u) is the sign of u and where the sup is taken over k
lying between u(0, t) and ub(t). We recall that ub(t) is the prescribed bound-
ary condition and that (1.3) means that u(0, t) = ub(t) whenever the flow is
incoming, i.e. F ′(u(0, t)) > 0.

We will look at (1.1)-(1.3) as an equilibrium for the scalar Bhatnagar-Gross-
Krook (BGK) model with (eventually) infinite set of velocities,

∂tf + a(ξ)∂xf =
Mf − f

ε
, (1.4)

where (x, t) ∈ R × (0, T ), ξ is in a measure space Ξ with measure dξ, f(x, t, ξ)
is the unknown depending also on ε, a(ξ) is the velocity and where:

Mf (x, t, ξ) = M(uε(x, t), ξ), uε(x, t) =
∫
f(x, t, ξ) dξ,

are the maxwellian or equilibrium state, and the first momentum or density
respectively. In the next section, we will add some conditions on the maxwellian
M : R×Ξ→ R so that (a subsequence of) uε converges to u, the unique entropy
solution of (1.1)-(1.3), and f approaches from M(u, ξ) when ε goes to zero.

This model will be supplemented by the initial and boundary data

f(x, 0, ξ) = M(u0(x), ξ), (1.5)

for (x, ξ) ∈ R+ × Ξ and

f(0, t, ξ) = M(ub(t), ξ) if a(ξ) > 0, (1.6)

for t ∈ [0, T ]. When ε→ 0, f(x, t, ξ) is intended to be near M(u(x, t), ξ), so we
naturally assumed the initial-boundary data at equilibrium. Let us also recall
about the boundary condition that, when Ξ = {a1, . . . , aN} is finite, one must
add l linear boundary conditions of the form

E(f1(0, t), . . . , fN (0, t))t = G(t),

where E is a l × N matrix, G is a l-component given function and l is the
number of positive velocities ai [10]. (1.6) is a good way to express this fact
in our circumstances as well as it is nothing but (1.3) for the scalar transport
equation (1.4) for fixed ξ at the equilibrium Mf = f .

Our main task in this work is to show that the model (1.4)-(1.6) describes
the problem (1.1)-(1.3) when ε goes to zero. This will be made in a bounded
variation (BV) framework, for general flux F and general BV-initial-boundary
data u0 and ub while comparing with [25] and [30] respectively.

Our work appears in the more general setting of the relaxation which was
deeply studied last years in its theoretical and numerical aspects . We can cote
in the Cauchy problem case [1, 5, 6, 8, 12, 14, 17, 19, 27, 28, 29] and one can
see [20] and references therein for more information.

For relaxation with boundary condition, there is an important BV ∩ L∞
analysis in [30], especially when the initial boundary data are some small per-
turbations of a constant non-transonic state. This rather restrictive conditions
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will be removed in Example 7.1 where we show in fact that the 2× 2 system of
[30] describes the equilibrium law (1.1) for general BV data.

In studying boundary value problem, the early relaxation stability condi-
tions for Cauchy problems may fail to imply the existence of the hydrodynamic
limit, boundary layers can appear and there are cases where the equilibrium
system must be supplemented by proper boundary conditions to determine the
uniqueness in the limiting process. Such questions are treated in [16, 23, 24, 31].

Relaxation schemes for conservation laws in the quarter plan can be found
in [3, 7].

Concerning kinetic BGK models with continuous cite of velocities with the
maxwellian χ, the Cauchy problem is studied in [26], see also [4] and reference
therein.

A weak entropy study of the initial boundary problem can be found in [25]
where the authors established the hydrodynamic limit in several space dimen-
sions but with a restriction on the flux which must be convex, concave, non-
increasing or non-decreasing. Our technique in recovering boundary entropy
condition allows us to remove this restriction.

Other works deal with BGK model in the quarter plan with finite cite of
velocities. In [22], the authors treat BGK model with two velocities . An exten-
sion of their techniques to more than two velocities is in [18]. But the extension
of this techniques to continuous BGK model case seems difficult, especially in
bounding the variation in space variable x. We overcome this difficulty by using
both [25] and [22] ideas.

Let us recall that boundary conditions carry on supplementary complications
in such approximation problems. We must not only impose correct conditions for
the well-posedness of the conservation law (1.1) and the model (1.4), but we must
also try to avoid the apparition of boundary layers. We chose the condition (1.3)
emanating from parabolic viscosity approach of the approximated conservation
law (1.3). There is another approach to exhibit correct boundary conditions
by solving Riemann problems. These two formulations are equivalent for linear
systems and scalar conservation laws [9, 13]. Concerning the BGK model, we
chose the simplest way to write boundary conditions by respecting the ideas
giving well-posedness of linear systems with finite cite of velocities as in [10, 15],
on the one hand and by foreseeing the equilibrium phenomenon on the boundary
on the other hand.

We will see throughout this paper that the monotony and the momentum
equations of the maxwellian M still give the BV compactness and the stability
respectively, exactly as in the Cauchy problem case. We also imitate the Cauchy
situation in using an infinite set of kinetic entropy inequalities [4, 21, 26].

The paper is organized as follows. In the next section we specify some general
and basic facts about equilibrium law, maxwellian and kinetic entropies. We
study the well-posedness of the BGK model in section 3. Sections 4 and 5
are devoted respectively to L∞ and BV stability estimates. In section 6 we
prove that our kinetic BGK model describes the initial conservation law (1.1)
by L1 compactness in BV and using kinetic entropy H-functions with careful
treatment of the calculus near the boundary. The last section contains two
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examples, namely the convergence of the relaxation 2 × 2 system of [30] with
general initial-boundary data and a continuous BGK model with maxwellian
distinct from the χ one.

2 General setting

Let us specify the meaning of (weak entropy) solutions of (1.1)-(1.3) and some
needful technical assumptions.

Definition 2.1 Let u0 ∈ L1(R+) and ub ∈ L1(0, T ). We say that a function u ∈
BV (R+ × (0, T )) is a solution of (1.1)-(1.3) if for all k ∈ R and all nonnegative
test function φ ∈ C1

c (R+ × [0, T )) we have∫
|u− k|∂tφ+ sgn(u− k)(F (u)− F (k))∂xφdx dt

+
∫
|u0(x)− k|φ(x, 0) dx+

∫
sgn(ub(t)− k)(F (u(0, t)− F (k)).φ(0, t) dt

≥ 0.

Here, and throughout this paper, BV stands for the space of the functions of
bounded variation, u(0, t) for the trace of the function u on the boundary x = 0
and u(x, 0) for the trace of u on t = 0. Such traces are well defined whenever u
is of bounded variation (see [2]). Moreover, until opposite indication, we write∫

q dm1 . . . dmn

instead of∫
Ω

q(x1, . . . , xn) dm1 . . . dmn =
∫
ω1

...

∫
ωn

q(x1, . . . , xn)dm1(x1) . . . dmn(xn),

where the measure dmi is defined on the space ωi, Ω = ω1 × . . . × ωn and
q ∈ L1(Ω). In the same way, an integration on a subspace ω of Ω will be written
as ∫

ω

q dm1 . . . dmn.

It is well known that the initial boundary value problem (1.1)-(1.3) admits
a unique solution described in definition 2.1, see [2, 3].

Concerning the BGK model, we used [4] to construct ours. We will not go
back on Bouchut’s technical details, but we just recall axioms for the equilibrium
state M : R× Ξ→ R and for kinetic entropies.

We postulate that M = M(u, ξ) is smooth and monotone in u ∈ R for all
ξ ∈ Ξ and satisfies habitual moment equations, that is:

M(., ξ) is nondecreasing for all ξ, (2.1)∫
M(u, ξ) dξ = u for all u ∈ R, (2.2)∫

a(ξ)M(u, ξ) dξ = F (u) for all u ∈ R . (2.3)
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For technical reasons, we impose a ∈ L1(Ξ) and we prevent t = 0 and x = 0
to be characteristics in (1.4). This can be written as:

a(ξ) ∈ [−a∞, 0[∪]0, a∞], for all ξ ∈ Ξ,

whit a positive real a∞.
Our infinite set of convex entropies will be the Kruzkov’s one. Such an

entropy is written:
ηk(u) = |u− k|,

and its associated flux is:

Gk(u) = sgn(u− k)(F (u)− F (k)).

Consider now, for any k ∈ R, the kinetic entropy given by:

Hk(f, ξ) = |f −M(k, ξ)|,

for f ∈ R and ξ ∈ Ξ. This kinetic entropy is of course convex in f and one can
easily check, using (2.1)-(2.3), that:∫

Hk(M(u, ξ), ξ) dξ = ηk(u), (2.4)∫
a(ξ)Hk(M(u, ξ), ξ) dξ = Gk(u), (2.5)∫
Hk(M(uf , ξ), ξ) dξ ≤

∫
Hk(f(ξ), ξ) dξ, (2.6)

for all u ∈ R, for f : Ξ→ R and for

uf =
∫
f(ξ) dξ.

These properties will allow us to obtain the Lax entropy inequalities in the
hydrodynamic limit. Indeed, multiplying (1.4) by sgn(f(x, t, ξ)−M(k, ξ)) and
using the convexity of Hk(., ξ), yields:

∂tHk(f, ξ) + a(ξ)∂xHk(f, ξ) ≤ Hk(Mf , ξ)−Hk(f, ξ)
ε

.

Then integrating with respect to ξ and using (2.6), we obtain

∂t

∫
Hk(f(x, t, ξ), ξ) dξ + ∂x

∫
a(ξ)Hk(f(x, t, ξ), ξ) dξ ≤ 0. (2.7)

Suppose that uε converges to u ∈ BV , and remember that f = f ε is devoted to
be close to M(u, ξ) at equilibrium. So, let ε→ 0 in (2.7) and use (2.4)-(2.5) to
end up with

∂tηk(u) + ∂xG(u) ≤ 0.

That is u is a Lax-entropy solution of (1.1) disregarding the boundary condition.
But this is not sufficient to give uniqueness in our framework. Later, we will
deeply develop (2.7) to reach the boundary entropy inequality (1.3).
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3 The BGK model

Let us show first that the kinetic problem defined by (1.4)-(1.6) is well-posed in
L∞((0, T );L1(R+ × Ξ)). To do this, we rewrite (1.1) in an equivalent integral
form by using Duhamel’s principle; and use a Banach fixed point argument.
Because of the boundary data, the quarter plan is divided into two zones for
positive a(ξ). We are brought to consider the sets:

Q− = {(x, t, ξ) ∈ R+ × (0, T )× Ξ; x < a(ξ)t},
Q+ = {(x, t, ξ) ∈ R+ × (0, T )× Ξ; x ≥ a(ξ)t}.

The integral form of the model is

f(x, t, ξ) = f(x− a(ξ)t, 0, ξ)e−t/ε (3.1)

+1/ε
∫ t

0

M(uε(x+ (s− t)a(ξ), s), ξ)e(s−t)/ε ds in Q+

f(x, t, ξ) = f(0, t− x

a(ξ)
, ξ)e−

x
εa(ξ) (3.2)

+1/ε
∫ t

t− x
a(ξ)

M(uε(x+ (s− t)a(ξ), s), ξ)e(s−t)/ε ds in Q−.

Theorem 3.1 If M satisfies (2.1)-(2.2), u0 ∈ L1(R+) and ub ∈ L1(0, T ) then
the BGK model (1.4)-(1.6) has a unique solution f(x, t, ξ) ∈ L∞((0, T );L1(R+×
Ξ)) given by (3.1)-(3.2). This solution depends continuously on u0 and ub.

Proof. We look for such a solution in L∞((0, T );L1(R+ × Ξ)) for fixed and
arbitrary positive time T . Let f and g be given by (3.1)-(3.2) and emanating
from the initial-boundary data (u0, ub) and (v0, vb) respectively. We have:∫
|f − g|(x, t, ξ) dx dξ ≤ e−t/ε

∫
x≥at

|f(x− at, 0, ξ)− g(x− at, 0, ξ)| dx dξ

+
∫
x<at

|f(0, t− x

a
, ξ)− g(0, t− x

a
, ξ)|e− x

εa dx dξ

+1/ε
∫

0<s<t

|M(uε, ξ)−M(vε, ξ)|e(s−t)/ε dx dξ ds,

where

a = a(ξ), uε = uε(x+ (s− t)a(ξ), s), vε = vε(x+ (s− t)a(ξ), s).

Let us use simple changes of variables, (2.1) and (2.2) to get:∫
|f − g|(x, t, ξ) dx dξ ≤ e−t/ε|f0 − g0|L1(R+×Ξ) + a∞|fb − gb|L1((0,T )×Ξ)

+1/ε
∫

0<s<t

|uε(x, s)− vε(x, s)|e(s−t)/ε dx ds,
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where

f0(x, ξ) = f(x, 0, ξ), g0(x, t) = g(x, 0, ξ),
fb(t, ξ) = f(0, t, ξ), gb(t, ξ) = g(0, t, ξ).

Now, replace uε and vε by their integral form to have:∫
|f − g|(x, t, ξ) dx dξ ≤ e−t/ε|f0 − g0|L1(R+×Ξ) + a∞|fb − gb|L1((0,T )×Ξ)

+(1− e−t/ε) sup
0≤s≤t

|f(x, s, ξ)− g(x, s, ξ)|L1(R+×Ξ).

This inequality allows us to construct, via (3.1)-(3.2), a sequence (fm) converg-
ing to the required solution by fixed point techniques. It shows in addition
that:

sup
0≤t≤T

|f − g|L1(R+×Ξ) ≤ |u0 − v0|L1(R+) + ea∞|ub − vb|L1(0,T ),

that is the solution depends continuously on the initial-boundary data. This
last inequality will be revisited in a different way by permuting f and g in
proposition 4.3 below.

4 L∞ estimates

In this section we shall present some a priori estimates yielding a maximum
principle for the BGK model. Let us begin by recalling a useful lemma:

Lemma 4.1 Let f and g be two weak solutions to the following liner equations

∂tf + a∂xf = m(x, t),
∂tf + a∂xf = n(x, t),

for (x, t) ∈ R× (0, T ). Then we have:

∂t[f − g]+ + a∂x[f − g]+ ≤ H(f − g)(m(x, t)− n(x, t)),

where H is the usual Heaviside function.

Proof. Use Kruzkov’s techniques.
Our main tool in this section will be the following lemma.

Lemma 4.2 Under assumptions (2.1)-(2.2), if f and g are two solutions of the
model (1.4), emanating from two initial-boundary data, then

∂t

∫
[f − g]+ dξ + ∂x

∫
a(ξ)[f − g]+ dξ ≤ 0.
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Proof. Write (1.4) respectively for f and g then apply lemma 4.1 to get:

∂t[f − g]+ + a(ξ)∂x[f − g]+ ≤ 1/εH(f − g)(Mf −Mg − f + g).

After integration on ξ, we find

∂t

∫
[f − g]+ dξ + ∂x

∫
a(ξ)[f − g]+ dξ ≤ 1/εI,

with
I =

∫
H(f − g)(M(uε, ξ)−M(vε, ξ)− f + g) dξ,

where uε is the first momentum of f and so is vε for g. Notice that if uε ≤ vε,
then I will be trivially non-positive. If uε ≥ vε then

I ≤
∫
M(uε, ξ)−M(vε, ξ) dξ −

∫
f − g dξ +

∫
f≤g

f − g dξ

=
∫
f≤g

f − g dξ ≤ 0.

Now, we establish a comparison result:

Proposition 4.3 Suppose we have (2.1)-(2.2). Let f and g be two solutions of
the model (1.4), emanating respectively from (u0, ub) and (v0, vb) as L1-initial-
boundary data. Fix L ≥ 0 and T ≥ 0. We have:∫ L

0

∫
[f(x, T, ξ)−g(x, T, ξ)]+ dξ dx ≤

∫ L+a∞T

0

[u0−v0]+ dx+a∞
∫ T

0

[ub−vb]+ dt.

Proof. To be clear, we give a formal proof which is valid for smooth solutions.
We integrate the inequality in lemma 4.2 in the domain D = {(x, t) ∈ R+ ×
(0, T ) : 0 < x < a∞(T − t) + L} and use (1.5)-(1.6) to have:∫ L

0

∫
[f(x, T, ξ)− g(x, T, ξ)]+ dξ dx ≤ I (4.1)

with

I =
∫ L+a∞T

0

∫
[M(u0, ξ)−M(v0, ξ)]+ dξ dx

+
∫ T

0

∫
a∞[M(ub, ξ)−M(vb, ξ)]+ dξ dt.

Using successively (2.1) and (2.2) yields

I =
∫

[0,L+a∞T ]∩{u0≥v0}

∫
M(u0, ξ)−M(v0, ξ) dξ dx

+
∫

(0,T )∩{ub≥vb}

∫
a∞M(ub, ξ)−M(vb, ξ) dξ dt

=
∫ L+a∞T

0

[u0 − v0]+ dx+ a∞

∫ T

0

[ub − vb]+ dt.
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In order to be rigorous, when the solutions are not smooth and when all the
inequalities in the above lemmas are in the distributional sense, we must use
a sequence of test functions to approximate the characteristic function of the
domain D to get (4.1).

The main consequence of proposition 4.3 is the maximum principle which
we express, under notations and assumptions of this proposition:

Corollary 4.4 If u0 ≤ v0 and ub ≤ vb then f ≤ g. Especially, if u0 and ub are
bounded, then

M(min{inf u0, inf ub}, ξ) ≤ f ≤M(max{supu0, supub}, ξ)

which is integrated on ξ as

min{inf u0, inf ub} ≤ uε ≤ max{supu0, supub},

for the density uε.

Proof. The first part is obvious and leads to the second one by using the
particular constant solutions:

f = M(min{inf u0, inf ub}, ξ) and f = M(max{supu0, supub}, ξ).

Let us close this section with the following statement.

Theorem 4.5 If M satisfies (2.1)-(2.2), u0 ∈ L1 ∩ L∞ and ub ∈ L∞(0, T ),
then the model (1.4)-(1.6) admits a unique solution f in L∞((0, T );L1(R+ ×
Ξ)) for each T and ε. For fixed T , these solutions and their associated first
momentums uε are bounded, independently of ε, in L∞(R+ × (0, T ) × Ξ) and
in L∞(R+ × (0, T )) respectively. Moreover, when u0 and ub are smooth with
u0(0) = ub(0), then f(., ., ξ) is smooth outside of the characteristic {x = a(ξ)t}.

The proof of this theorem follows from theorem 3.1, corollary 4.4 and stan-
dard regularity arguments.

Remark 4.1 Our next task is to establish some BV estimates. We shall
deal only with the case of smooth data, since the proposition 4.3 yields a L1

contraction result permitting to approach BV solutions by smooth ones and to
extend these estimates to the BV case. Equally, if we don’t specify anything,
all the subsequent proofs are written for smooth case, letting to the reader the
care to recover the general results by using the L1 contraction.

5 BV estimates

Following proposition 4.3 and remark 4.1, we suppose throughout this section,
except in theorem 5.3, that u0 and ub are smooth. The solutions of the BGK
model and their associated densities will be smooth to.
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Lemma 5.1 If M satisfies (2.1)-(2.2) and if u0 and ub are of bounded varia-
tion, then the solution f of the model satisfies, for every t∫

|∂tf(x, t, ξ)| dξ dx ≤ a∞(TV (u0) + TV (ub)),

that is to say that its density satisfies∫
|∂tuε(x, t)| dx ≤ a∞(TV (u0) + TV (ub)).

Proof. Derive (1.4) with respect to t, multiply it by sg(∂tf) and integrate in
ξ to have:

∂t

∫
|∂tf | dξ+∂x

∫
a(ξ)|∂tf | dξ =

∫
sg(∂tf)Mu(uε, ξ) dξ

∫
∂tf dξ−

∫
|∂tf | dξ.

However, the hypothesis on M gives

|
∫
sg(∂tf)Mu(uε, ξ) dξ| ≤

∫
Mu(uε, ξ) dξ = 1,

from where
∂t

∫
|∂tf | dξ + ∂x

∫
a(ξ)|∂tf | dξ ≤ 0.

Integrating in the domain D = {(x, s) ∈ R+ × (0, t) : 0 < x < a∞(t − s) + L},
we obtain,∫ L

0

∫
|∂tf | dξ(x, t) dx

≤
∫ L+a∞t

0

∫
|∂tf | dξ(x, 0)dx+

∫ t

0

∫
a(ξ)>0

a(ξ)|∂tf | dξ(0, s)ds.

But we can easily see that

∂tf(x, 0, ξ) = −a(ξ)∂xM(u0(x), ξ)

and ∂tf(0, t, ξ) = ∂tM(ub(t), ξ) when a(ξ) > 0. We conclude by using (2.1)-
(2.2).

Lemma 5.2 If M satisfies (2.1)-(2.2) and if u0 and ub are of bounded varia-
tion, then the solution f of the model satisfies, for every t∫

|∂xf(x, t, ξ)| dξ dx ≤ K,

where K is a constant independent of ε. That is to say that its density satisfies∫
|∂xuε(x, t)| dx ≤ K,

for every t.
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Proof. Let us reconsider (3.1)-(3.2) to write∫
|∂xf(x, t, ξ)| dξ dx = I + J

with

I =
∫
x<at

|∂xf | dx dξ ≤ I1 + I2 + I3 + I4

J =
∫
x>at

|∂xf | dx dξ ≤ J1 + J2

where a = a(ξ) and

I1 =
∫
x<at

|M(ub(t−
x

a
), ξ)| 1

εa
e−

x
εa dx dξ,

I2 =
∫
x<at

1
a
|ub′(t−

x

a
)|Mu(ub(t−

x

a
), ξ) dx dξ,

I3 =
∫
x<at

∫
t− xa<s<t

|∂xM(uε(x+ a(s− t), s), ξ)|1/εe
s−t
ε ds dx dξ,

I4 =
∫
x<at

|M(uε(0, t− x

a
), ξ)| 1

εa
e−

x
εa dx dξ,

J1 =
∫
at<x

|u0′(x− at)|Mu(u0(x− at), ξ) dx dξ,

J2 =
∫
at<x

∫
0<s<t

|∂xM(uε(x+ a(s− t), s), ξ)|1/εe
s−t
ε ds dx dξ.

Use simple change of variables and (2.1)-(2.2) to get successively:

I1 ≤
∫

0<x<t

(|M(ub(t− x), ξ)−M(0, ξ)|+ |M(0, ξ)|)1/εe− xε dξ dx

≤ |ub|∞ +
∫
|M(0, ξ)| dξ

I2 ≤
∫

0<x<t

|ub′(t− x)|Mu(ub((t− x), ξ) dξ dx

≤ TV (ub)

I4 ≤
∫

0<x<t

(|M(uε(0, t− x), ξ)−M(0, ξ)|+ |M(0, ξ)|)1
ε
e−

x
ε dξ dx

≤ |uε|∞ +
∫
|M(0, ξ)| dξ

J1 ≤
∫

0<x

|u0′(x)|Mu(u0(x), ξ) dξ dx

≤ TV (u0)

I3 + J2 ≤
∫

0<s<t

∫
|∂xuε(x, s)|Mu(uε(x, s), ξ)1/εe

s−t
ε dξ dx ds
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≤
∫

0<s<t

∫
|∂xf(x, s, ξ)|1/εe

s−t
ε dξ dx ds

Let us summarize these inequalities in the following one∫
|∂xf(x, t, ξ)| dξ dx ≤ K +

∫
0<s<t

∫
|∂xf(x, s, ξ)|1/εe

s−t
ε dξ dx ds,

for a generic constant K independent of ε. Use now Granwall’s lemma to end
this proof.

We can sum up our main BV estimates, in the general BV-data case, as
follows:

Theorem 5.3 If M satisfies (2.1)-(2.2), and if u0 and ub are of bounded vari-
ation, then there exits K independent of ε, such that

|uε|BV (R+×(0,T )) ≤ K.

Proof. This result is straightforward according to lemmas 5.1 and 5.2 in the
case of smooth data. Nevertheless, by virtue of the L1 contraction result essen-
tially expressed in proposition 4.3, weak solutions with any BV initial boundary
data, may be readily be constructed as L1 limits of classical solutions. This
completes the proof.

6 Convergence result

In this section, we prove that the sequence of the densities uε converges, as
ε → 0, to the unique entropy solution of the initial-boundary value problem
(1.1)-(1.3) specified in definition 2.1. Beside the stability results of the two
previous sections, we have to show that the solutions of the BGK model satisfy
kinetic entropy inequalities. But, when we will want to pass to the limit on ε,
we will have need of

Lemma 6.1 Under the assumptions of theorem 5.3, the distance to the equilib-
rium is controlled by ∫

|Mf − f | dξ dx dt ≤ Kε,

with K independent of ε.

Proof. Derive (1.4) with respect to t, use Duhamel’s principle for Mf −f and
(2.1)-(2.2) to obtain∫

|Mf − f | dξ ≤ 2a∞
∫

0<s<t

|∂xf(x, s, ξ)|e(s−t)/ε dξ ds,

which achieves this proof with lemma 5.2.
Now, let us revisit the kinetic entropy framework of section 2. Under the

same notations used over their, we have:
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Lemma 6.2 Let (2.1)-(2.2) be satisfied, let u0 and ub be of bounded variation
and let f be the solution of the BGK model. Then for every φ ∈ C1

c (R+× [0, T [),
with φ ≥ 0, and for every k ∈ R, there holds∫

Hk(f(x, t, ξ), ξ)(∂tφ(x, t) + a(ξ)∂xφ(x, t)) dξ dx dt

+
∫
Hk(M(u0(x), ξ), ξ)φ(x, 0) dξ dx+

∫
a(ξ)Hk(M(ub(t), ξ), ξ)φ(0, t) dξ dt

+
∫
a(ξ)<0

a(ξ)∂fHk(M(ub(t), ξ), ξ)(f(0, t, ξ)−M(ub(t), ξ))φ(0, t) dξ dt

≥ 0

where ∂fHk(f, ξ) is a subdifferential of the convex function Hk(., ξ).

Proof. Let us multiply (1.4) by sgn(f −M(k, ξ))φ(x, t), use the convexity of
Hk, and integrate over ξ, using (2.6) as in section 2, to recapitulate (2.7) in the
distributional sense. Then integrate in the domain R+ × (0, T ) to get:∫

Hk(f(x, t, ξ), ξ)(∂tφ(x, t) + a(ξ)∂xφ(x, t)) dξ dx dt

+
∫
Hk(M(u0(x), ξ), ξ)φ(x, 0) dξ dx

+
∫
a(ξ)>0

a(ξ)Hk(M(ub(t), ξ), ξ)φ(0, t) dξ dt

+
∫
a(ξ)<0

a(ξ)Hk(f(0, t, ξ), ξ)φ(0, t) dξ dt ≥ 0.

Make so that the integral on Ξ appears in the third line and use the definition
of the subdifferential of a convex function to conclude.

These calculations are valid for general convex entropiesH, in our Kruskove’s
entropies Hk case, we have:

Corollary 6.3 Under the assumptions of lemma 6.2 and (2.3), we have:∫
Hk(f, ξ)(∂tφ+ a∂xφ) dξ dx dt+

∫
Hk(M0, ξ)φ(x, 0) dξ dx

≥
∫

sgn(ub − k)[F (k)−
∫
a>0

aMb dξ −
∫
a<0

af(0, t, ξ) dξ]φ(0, t) dt.

with a = a(ξ), M0 = M(u0(x), ξ) and Mb = M(ub(t), ξ).

Proof. Use sgn(f −M(k, ξ)) ∈ ∂Hk(f, ξ) and (2.3).
We are now able to demonstrate our main theorem

Theorem 6.4 Let the maxwellian M satisfies (2.1)-(2.3). If u0 and ub are of
bounded variation, then the sequence of first momentums uε arising from the
solutions f of the BGK model (1.4)-(1.6) converges to the unique entropy solu-
tion u of the initial-boundary value problem (1.1)-(1.3) described in definition
2.1.
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Proof. The momentums uε are uniformly bounded in L∞(R+ × (0, T )) by
theorem 4.5 as they are uniformly bounded in BV (R+× (0, T )) by theorem 5.3.
We can then extract a subsequence, which we denote also by uε, converging in
L1 and almost every where to u ∈ L∞ ∩BV (R+ × (0, T )). In addition,

|
∫
a(ξ)<0

a(ξ)f(0, t, ξ) dξ| ≤ K
∫
|a(ξ)| dξ,

that is we can extract from

vε =
∫
a>0

aMb dξ +
∫
a<0

af(0, t, ξ) dξ

a subsequence, indexed also by ε, converging in the weak* L∞-topology toward
h ∈ L∞(0, T ). Therefore, we pass to the limit on ε in corollary 6.3, up to a
subsequence, using lemma 6.1 and (2.4)-(2.5) to obtain∫

|u− k|∂tφ+ sgn(u− k)(F (u)− F (k))∂xφdx dt

+
∫
|u0 − k|φ(x, 0) dx ≥

∫
sgn(ub − k)(F (k)− h(t))φ(0, t) dt. (6.1)

Choosing φ = ρδ(x)ψ(t) with ψ ∈ Cc(]0, T [) and

ρδ(0) = 1, ρδ(x) = 0 if x ≥ δ, 0 ≤ ρδ ≤ 1,

and tending δ toward zero in (6.1) yields

sg(u(0, t)− k)(F (k)− F (u(0, t)) ≥ sgn(ub(t)− k)(F (k)− h(t)),

for all k ∈ R. Choose now

k < min{inf(u0), inf(ub)} and k > max{sup(u0), sup(ub)}

to get h(t) = F (u(0, t)) , which ends this proof.

7 Examples

Example 7.1: Relaxation. Let us consider the so called relaxation system
introduced by Jin and Xin [12] to approximate the conservation law (1.1):

∂tu
ε + ∂xv

ε = 0 0 < x, 0 < t < T, (7.1)
∂tv

ε + a2∂xu
ε = 1/ε(F (uε)− vε) 0 < x, 0 < t < T, (7.2)

uε(x, 0) = u0(x), vε(x, 0) = F (u0(x)) 0 ≤ x, (7.3)
uε(0, t) = ub(t) 0 ≤ t. (7.4)

This system is studied in [30] where it is shown, under restrictive assumption
on the initial-boundary data, namely for small perturbation of a non transonic
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constant state, that (uε, vε) converges to (u, F (u)), where u is the unique entropy
solution of (1.1)-(1.3). Let us slightly change the boundary condition (7.4) as
follows:

auε(0, t) + vε(0, t) = aub(t) + F (ub(t)) 0 ≤ t, (7.5)

and let
f1 = au+ v and f2 = au− v

be the Riemann invariants corresponding respectively to the characteristics ±a.
Then we get the equivalent formulation

∂tf1 + a∂xf1 = 1/ε(M1(uε)− f1) 0 < x, 0 < t < T, (7.6)
∂tf2 − a∂xf2 = 1/ε(M2(uε)− f2) 0 < x, 0 < t < T, (7.7)

f1(x, 0) = au0(x) + F (u0(x)) 0 ≤ x, (7.8)
f2(x, 0) = au0(x)− F (u0(x)) 0 ≤ x, (7.9)
f1(0, t) = aub(t) + F (ub(t)) 0 ≤ t, (7.10)

where

uε = f1+f2
2a , (7.11)

M1(u) = au+ F (u) for all u ∈ R, (7.12)
M2(u) = au− F (u) for all u ∈ R. (7.13)

We can easily show that M1 and M2 satisfy (2.2)-(2.3) with

Ξ = {1, 2}, dξ{1} = dξ{2} =
1
2a
, a1 = a, a2 = −a.

These maxwellians are monotone under the so called subcharacteristic condition:

−a ≤ F ′(u) ≤ a. (7.14)

We can set in the light of preceding sections:

Theorem 7.1 Let u0 and ub be of bounded variation. If F satisfies (7.14),
then the relaxed problem (7.1,7.2,7.3,7.5) admits a unique BV-solution (uε, vε).
These solutions converges to (u, F (u)) where u is the unique entropy solution of
(1.1)-(1.3).

Proof. The subcharacteristic condition (7.14) with (7.12)-(7.13) imply (2.1)-
(2.3), thus the densities given by (7.11) of the BGK model (7.6)-(7.10) converge
towards the entropy solution u of (1.1)-(1.3). So, the solutions of (7.1)-(7.3) and
(7.5) go to (u, F (u)) when ε→ 0.

Let us remark that, if we choose

f1 =
auε + vε

2a
and f2 =

auε − vε

2a
,

then we recover the BGK model treated in [22] which is also equivalent to the
relaxation system and yields, in a similar way, the convergence of (7.1,7.2,7.3,7.5)
towards (1.1)-(1.3).
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Example 7.2: Discrete and continuous BGK model. Let (Ξ, dξ) be a
probability space and let a(ξ) ∈ L2(Ξ) with a(ξ) 6= 0 for all ξ ∈ Ξ such that∫
a dξ = 0. Then the maxwellian defined by

M(u, ξ) = u+
a(ξ)
|a|2L2

F (u),

satisfies (2.2)-(2.3) and is non-decreasing in u under the following subcharacter-
istic condition:

−|a|2L2 ≤ a(ξ)F ′(u),

for all (ξ, u) ∈ Ξ× R.
We can construct in this way a class of continuous BGK model with a

maxwellian M different from the χ one usually appearing in the literature.
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