On periodic solutions of superquadratic Hamiltonian systems

Guihua Fei

Abstract

We study the existence of periodic solutions for some Hamiltonian systems \(\dot{z} = JH_z(t, z) \) under new superquadratic conditions which cover the case \(H(t, z) = |z|^2(\ln(1 + |z|^p))^{q/2} \) with \(p, q > 1 \). By using the linking theorem, we obtain some new results.

1 Introduction

We consider the superquadratic Hamiltonian system

\[
\dot{z} = JH_z(t, z)
\]

(1.1)

where \(H \in C^1([0, 1] \times \mathbb{R}^{2N}, \mathbb{R}) \) is a 1-periodic function in \(t \), \(J = \begin{pmatrix} 0 & -I_N \\ I_N & 0 \end{pmatrix} \) is the standard \(2N \times 2N \) symplectic matrix, and

\[
\frac{H(t, z)}{|z|^2} \to +\infty \text{ as } |z| \to +\infty \text{ uniformly in } t.
\]

(1.2)

We assume \(H \) satisfies the following conditions.

(H1) \(H(t, z) \geq 0 \), for all \((t, z) \in [0, 1] \times \mathbb{R}^{2N} \).

(H2) \(H(t, z) = o(|z|^2) \) as \(|z| \to 0 \) uniformly in \(t \).

In [12], Rabinowitz established the existence of periodic solutions for (1.1) under the following superquadratic condition: there exist \(\mu > 0 \) and \(r_1 > 0 \) such that for all \(|z| \geq r_1 \) and \(t \in [0, 1] \)

\[
0 < \mu H(t, z) \leq z \cdot H_z(t, z).
\]

(1.3)

Since then, the condition (1.3) has been used extensively in the literature; see [1-14] and the references therein.

Mathematics Subject Classifications: 58E05, 58F05, 34C25.

Key words: periodic solution, Hamiltonian system, linking theorem.

©2002 Southwest Texas State University.

It is easy to see that (1.3) does not include some superquadratic nonlinearity like
\[H(t, z) = |z|^2 \ln(1 + |z|^p), \quad p, q > 1. \] (1.4)

In this paper, we shall study the periodic solutions of (1.1) under some superquadratic conditions which cover the cases like (1.4). We assume \(H \) satisfies the following condition.

(H3) There exist constants \(\beta > 1, 1 < \lambda < 1 + \frac{\beta - 1}{\beta}, c_1, c_2 > 0 \) and \(L > 0 \) such that
\[
\begin{align*}
z \cdot H_z(t, z) - 2H(t, z) &\geq c_1 |z|^\beta, \quad \forall |z| \geq L, \forall t \in [0, 1]; \\
|H_z(t, z)| &\leq c_2 |z|^\lambda, \quad \forall |z| \geq L, \forall t \in [0, 1].
\end{align*}
\]

Theorem 1.1 Suppose \(H \in C^1([0, 1] \times \mathbb{R}^{2N}, \mathbb{R}) \) is 1-periodic in \(t \) and satisfies (1.2), (H1)–(H3). Then (1.1) possesses a nonconstant 1-periodic solution.

A straightforward computation shows that if \(H \) satisfies (1.4), for any \(T > 0 \), the system (1.1) has a nonconstant \(T \)-periodic solution with minimal period \(T \).

One can see Remark 2.2 and Corollary 2.3 for more examples.

For the second order Hamiltonian system
\[
\ddot{u}(t) + V'(t, u(t)) = 0, \\
\dot{u}(0) - u(1) = \ddot{u}(0) - \dot{u}(1) = 0
\] (1.5)
we have a similar result.

Theorem 1.2 Suppose \(V \in C^1([0, 1] \times \mathbb{R}^N, \mathbb{R}) \) is 1-periodic in \(t \) and satisfies

(V1) \(V(t, x) \geq 0, \) for all \((t, x) \in [0, 1] \times \mathbb{R}^N\)

(V2) \(V(t, x) = o(|x|^2) \) as \(|x| \to 0 \) uniformly in \(t \)

(V3) \(V(t, x)/|x|^2 \to +\infty \) as \(|x| \to +\infty \) uniformly in \(t \)

(V4) There exist constants \(1 < \lambda \leq \beta, d_1, d_2 > 0 \) and \(L > 0 \) such that
\[
\begin{align*}
x \cdot V'(t, x) - 2V(t, x) &\geq d_1 |x|^\beta, \quad \forall |x| \geq L, \forall t \in [0, 1]; \\
|V'(t, x)| &\leq d_2 |x|^\lambda, \quad \forall |x| \geq L, \forall t \in [0, 1].
\end{align*}
\] (1.6)

(or \(V(t, x) \leq d_2 |x|^\lambda + 1, \forall |x| \geq L, \forall t \in [0, 1] \)). (1.7)

Then (1.5) possesses a nonconstant 1-periodic solution.

We shall use the linking theorem [13, Theorem 5.29] to prove our results. The idea comes from [11, 12, 13]. Theorem 1.1 is proved in Section 2 while the proof of Theorem 1.2 is carried out in Section 3.
2 First order Hamiltonian system

Let $S^1 = \mathbb{R}/(2\pi \mathbb{Z})$ and $E = W^{1/2,2}(S^1, \mathbb{R}^N)$. Then E is a Hilbert space with norm $\| \cdot \|$ and inner product $\langle \cdot, \cdot \rangle$. We define

$$\langle Ax, y \rangle = \int_0^1 \langle -J \dot{x}, y \rangle dt, \quad \forall x, y \in E; \quad (2.1)$$

$$f(z) = \frac{1}{2} \langle Az, z \rangle - \int_0^1 H(t, z) dt, \quad \forall z \in E. \quad (2.2)$$

Then A is a bounded selfadjoint operator and $\ker A = \mathbb{R}^{2N}$. (H1)–(H3) imply that

$$|H(t, z)| \leq a_1 + a_2 |z|^{\lambda + 1}, \quad \forall z \in \mathbb{R}^{2N}.$$

This implies that $f \in C^1(E, \mathbb{R})$ and looking for the solutions of (1.1) is equivalent to looking for the critical points of f [12, 13]. Let $E^0 = \ker(A)$, $E^+ = $ positive definite subspace of A, and $E^- = $ negative definite subspace of A. Then $E = E^0 \oplus E^- \oplus E^+$.

Lemma 2.1 Under the conditions of Theorem 1.1, f satisfies the (PS) condition.

Proof. Let $\{ z_m \}$ be a (PS)-sequence, i.e.,

$$|f(z_m)| \leq M; \quad f'(z_m) \to 0 \quad \text{as } m \to \infty.$$

We want to show that $\{ z_m \}$ is bounded. Then by a standard argument, $\{ z_m \}$ has a convergent subsequence [13]. Suppose $\{ z_m \}$ is not bounded, then passing to a subsequence if necessary, $\| z_m \| \to +\infty$ as $m \to +\infty$. By (H3), there exists $C_3 > 0$ such that for all $z \in \mathbb{R}^{2N}$, $t \in [0, 1]$

$$z \cdot H_z(t, z) - 2H(t, z) \geq C_1 |z|^\beta - C_3.$$

Therefore, we have

$$2f(z_m) - \langle f'(z_m), z_m \rangle = \int_0^1 [z_m \cdot H_z(t, z_m) - 2H(t, z_m)]dt \geq \int_0^1 [C_1 |z_m|^\beta - C_3]dt = C_1 \int_0^1 |z_m|^\beta dt - C_3.$$

This implies

$$\int_0^1 |z_m|^\beta dt \to 0 \quad \text{as } m \to \infty. \quad (2.3)$$

Note that from (H3), $1 < \lambda < 1 + \frac{\beta - 1}{\beta}$. Let $\alpha = \frac{\beta - 1}{\beta(\lambda - 1)}$. Then

$$\alpha > 1, \quad \alpha \lambda - 1 = \alpha - \frac{1}{\beta}. \quad (2.4)$$
By (H3), there exists $C_4 > 0$ such that
\[|H_z(t, z)|^\alpha \leq C_4^\alpha |z|^\lambda + C_4, \quad \forall (t, z) \in [0, 1] \times \mathbb{R}^N. \]

Denote $z_m = z_m^+ + z_m^- + z_m^0 \in E^+ \oplus E^- \oplus E^0$. We have
\[
\langle f'(z_m), z_m^+ \rangle = \langle Az_m^+, z_m^+ \rangle - \int_0^1 [H_z(t, z_m) \cdot z_m^+] dt \\
\geq \langle Az_m^+, z_m^+ \rangle - \int_0^1 |H_z(t, z_m)|z_m^+| dt \\
\geq \langle Az_m^+, z_m^+ \rangle - \int_0^1 |H_z(t, z_m)|^\alpha \frac{1}{\alpha} \cdot C_\alpha \|z_m^+\|,
\]
where $C_\alpha > 0$ is a constant independent of m. By (2.5),
\[
\int_0^1 |H_z(t, z_m)|^\alpha dt \leq \int_0^1 (C_2^\alpha |z_m|^\lambda + C_4) dt \\
\leq C_5 \int_0^1 |z_m|^\beta dt^{1/\beta} \left(\int_0^1 |z_m|^{(\lambda-1)} \frac{\alpha}{\lambda} dt \right)^{1-\frac{1}{\beta}} + C_4 \\
\leq C_6 \left(\int_0^1 |z_m|^\beta \right)^{1/\beta} \|z_m\|^{(\lambda-1)} + C_4.
\]
Combining this inequality with (2.3) and (2.4) yields that
\[
\frac{\alpha}{\lambda} \left(\frac{\int_0^1 |H_z(t, z_m)|^\alpha dt}{\|z_m\|} \right)^{\frac{1}{\alpha}} \leq \frac{C_6 \left(\int_0^1 |z_m|^\beta dt \right)^{1/\beta}}{\|z_m\|^{\frac{(\lambda-1)}{\lambda}}} \cdot \frac{\|z_m\|^{(\lambda-1)}}{\|z_m\|^{\frac{(\lambda-1)}{\lambda}}} + \frac{C_4 \|z_m^+\|^{\frac{1}{\alpha}}}{\|z_m^+\|^{\frac{1}{\alpha}}} \to 0
\]
as $m \to \infty$. By (2.6) we have
\[
\frac{\langle f'(z_m), z_m^+ \rangle}{\|z_m\| \|z_m^+\|} \leq \frac{\|f'(z_m)\|}{\|z_m\| \|z_m^+\|} + \left(\frac{\int_0^1 |H_z(t, z_m)|^\alpha dt}{\|z_m\|} \right)^{\frac{1}{\alpha}} \cdot \frac{C_\alpha \|z_m^+\|}{\|z_m^+\|} \to 0
\]
as $m \to \infty$. This implies
\[
\frac{\|z_m^+\|}{\|z_m\|} \to 0 \quad \text{as } m \to \infty. \quad (2.7)
\]
Similary, we have
\[
\frac{\|z_m^-\|}{\|z_m\|} \to 0 \quad \text{as } m \to \infty. \quad (2.8)
\]
By (H3) there exist $C_7, C_8 > 0$ such that
\[z \cdot H_z(t, z_m) - 2H(t, z) \geq C_7 |z| - C_8, \quad \forall (t, z) \in [0, 1] \times \mathbb{R}^N. \]
This implies
\[
2f(z_m) - \langle f'(z_m), z_m \rangle = \int_0^1 [z_m \cdot H_z(t, z_m) - 2H(t, z_m)]dt \geq \int_0^1 |C_\gamma|z_m| - C_0|dt
\]
\[
\geq \int_0^1 |C_\gamma|z_m^0| - C_\gamma|z_m^+| - C_\gamma|z_m^-| - C_0|dt
\]
\[
\geq C_0\|z_m^0\| - C_10(\|z_m^+\| + \|z_m^-\| + 1).
\]
Therefore, by (2.7) and (2.8)
\[
\frac{\|z_m^0\|}{\|z_m\|} \to 0 \quad \text{as } m \to \infty.
\]
Combine this with (2.7) and (2.8), we get
\[
\frac{\|z_m^0\|}{\|z_m\|} \to 0 \quad \text{as } m \to \infty,
\]
a contradiction. Therefore, \{z_m\} must be bounded. □

Proof of Theorem 1.1 We prove that \(f \) satisfies the conditions of Theorem 5.29 in [13].

Step 1: By (H1)–(H3), we have
\[
H(t, z) \leq a_1 + a_2|z|^\lambda + 1, \quad \forall (t, z) \in [0, 1] \times \mathbb{R}^{2N}.
\]
By (H2), for any \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that
\[
H(t, z) \leq \varepsilon|z|^2, \quad \forall t \in [0, 1], \ |z| \leq \delta.
\]
Therefore, there exists \(M = M(\varepsilon) > 0 \) such that
\[
H(t, z) \leq \varepsilon|z|^2 + M|z|^\lambda + 1, \quad \forall (t, z) \in [0, 1] \times \mathbb{R}^{2N}.
\]
Note that \(\lambda + 1 > 2 \). By the same arguments as in [13, Lemma 6.16], there exist \(\rho > 0 \) and \(\tilde{a} > 0 \), such that for \(z \in E_1 = E^+ \)
\[
f(z) \geq \tilde{a} \quad \text{if } \|z\| = \rho,
\]
i.e., \(f \) satisfies \((I_7)(i)\) in [13, Theorem 5.29] with \(S = \partial B_\rho \cap E_1 \).

Step 2: Let \(e \in E^+ \) with \(\|e\| = 1 \) and \(\tilde{E} = E^- \oplus E^0 \oplus \text{span}\{e\} \). We denote
\[
K = \{z \in \tilde{E} : \|z\| = 1\}, \quad \lambda^- = \inf_{z \in E^- : \|z\| = 1} |\langle Az^-, z^- \rangle|, \quad \gamma = (\frac{\|A\|}{\lambda^-})^{1/2}.
\]
For \(z \in K \), we write \(z = z^- + z^0 + z^+ \in \tilde{E} \).

i) If \(\|z^-\| > \gamma\|z^+ + z^0\| \), by (H1) we have, for any \(r > 0 \),
\[
f(rz) = \frac{1}{2} \langle Arz^-, rz^- \rangle + \frac{1}{2} \langle Arz^+, rz^+ \rangle - \int_0^1 H(t, z)dt
\]
\[
\leq -\frac{1}{2} \lambda^- r^2\|z^-\|^2 + \frac{1}{2} \|A\|r^2\|z^+\|^2 \leq 0.
\]
ii) If \(\|z^-\| \leq \gamma \|z^+ + z^0\| \), we have
\[
1 = \|z\|^2 = \|z^-\|^2 + \|z^+ + z^0\|^2 \leq (1 + \gamma^2) \|z^+ + z^0\|^2,
\]
i.e.,
\[
\|z^+ + z^0\|^2 \geq \frac{1}{1 + \gamma^2} > 0.
\] (2.9)

Denote \(\tilde{K} = \{ z \in K : \|z^-\| \leq \gamma \|z^+ + z^0\| \} \).

Claim: There exists \(\varepsilon_1 > 0 \) such that, \(\forall u \in \tilde{K} \),
\[
\text{meas}\{ t \in [0, 1] : |u(t)| \geq \varepsilon_1 \} \geq \varepsilon_1.
\] (2.10)

For otherwise, \(\forall k > 0 \), \(\exists u_k \in \tilde{K} \) such that
\[
\text{meas}\{ t \in [0, 1] : |u_k(t)| \geq \frac{1}{k} \} < \frac{1}{k}.
\] (2.11)

Write \(u_k = u_k^- + u_k^0 + u_k^+ \in \tilde{E} \). Notice that \(\dim(E^0 \oplus \text{span}\{e\}) < +\infty \) and \(\|u_k^0 + u_k^+\| \leq 1 \). In the sense of subsequence, we have
\[
u_k^0 + u_k^+ \rightarrow u_0^0 + u_0^+ \in E^0 \oplus \text{span}\{e\} \quad \text{as} \quad k \rightarrow +\infty.
\]

Then (2.9) implies that
\[
\|u_0^0 + u_0^+\|^2 \geq \frac{1}{\gamma^2 + 1} > 0.
\] (2.12)

Note that \(\|u_k^-\| \leq 1 \), in the sense of subsequence \(u_k^- \rightarrow u_0^- \in E^- \) as \(k \rightarrow +\infty \). Thus in the sense of subsequences,
\[
u_k \rightarrow u_0 = u_0^- + u_0^0 + u_0^+ \quad \text{as} \quad k \rightarrow +\infty.
\]

This means that \(u_k \rightarrow u_0 \) in \(L^2 \), i.e.,
\[
\int_0^1 |u_k - u_0|^2 dt \rightarrow 0 \quad \text{as} \quad k \rightarrow +\infty.
\] (2.13)

By (2.12) we know that \(\|u_0\| > 0 \). Therefore, \(\int_0^1 |u_0|^2 dt > 0 \). Then there exist \(\delta_1 > 0 \), \(\delta_2 > 0 \) such that
\[
\text{meas}\{ t \in [0, 1] : |u_0(t)| \geq \delta_1 \} \geq \delta_2.
\] (2.14)

Otherwise, for all \(n > 0 \), we must have
\[
\text{meas}\{ t \in [0, 1] : |u_0(t)| \geq \frac{1}{n} \} = 0, \quad \text{i.e.,} \quad \text{meas}\{ t \in [0, 1] : |u_0(t)| < \frac{1}{n} \} = 1;
\]
\[
0 < \int_0^1 |u_0|^2 dt < \frac{1}{n^2} \cdot 1 \rightarrow 0 \quad \text{as} \quad n \rightarrow +\infty.
\]
We get a contradiction. Thus (2.14) holds. Let \(\Omega_0 = \{ t \in [0, 1] : |u_0(t)| \geq \delta_1 \} \),
\(\Omega_k = \{ t \in [0, 1] : |u_k(t)| < 1/k \} \), and \(\Omega_k^+ = [0, 1] \setminus \Omega_k \). By (2.11), we have

\[
\text{meas}(\Omega_k \cap \Omega_0) = \text{meas}(\Omega_0 - \Omega_0 \cap \Omega_k^+) \geq \text{meas}(\Omega_0) - \text{meas}(\Omega_0 \cap \Omega_k^+) \geq \delta_2 - \frac{1}{k}.
\]

Let \(k \) be large enough such that \(\delta_2 = \frac{1}{k} \geq \frac{1}{2} \delta_2 \) and \(\delta_1 = \frac{1}{k} \geq \frac{1}{2} \delta_1 \). Then we have

\[
|u_k(t) - u_0(t)|^2 \geq (\delta_1 - \frac{1}{k})^2 \geq (\frac{1}{2} \delta_1)^2, \quad \forall t \in \Omega_k \cap \Omega_0.
\]

This implies that

\[
\int_0^1 |u_k(t) - u_0(t)|^2 dt \geq \int_{\Omega_k \cap \Omega_0} |u_k - u_0|^2 dt \geq (\frac{1}{2} \delta_1)^2 \cdot \text{meas}(\Omega_k \cap \Omega_0)
\]
\[
\geq (\frac{1}{2} \delta_1)^2 \cdot (\delta_2 - \frac{1}{k}) \geq (\frac{1}{2} \delta_1)^2 \cdot (\frac{1}{2} \delta_2) > 0.
\]

This is a contradiction to (2.13). Therefore the claim is true and (2.10) holds.

For \(z = z^- + z^0 + z^+ \in \tilde{K} \), let \(\Omega_2 = \{ t \in [0, 1] : |z(t)| \geq \varepsilon_1 \} \). By (1.2), for
\(M = \frac{\|A\|}{\varepsilon_1} > 0 \), there exists \(L_1 > 0 \) such that

\[
H(t, x) \geq M|x|^2, \quad \forall |x| \geq L_1, \text{ uniformly in } t.
\]

Choose \(r_1 \geq L_1/\varepsilon_1 \). For \(r \geq r_1 \),

\[
H(t, rz(t)) \geq M|rz(t)|^2 \geq Mr^2\varepsilon_1^2, \quad \forall t \in \Omega_2.
\]

By (H1), for \(r \geq r_1 \)

\[
f(rz) = \frac{1}{2} r^2 \langle Az^+ + z^+ \rangle + \frac{1}{2} r^2 \langle Az^- + z^- \rangle - \int_0^1 H(t, rz) dt
\]
\[
\leq \frac{1}{2} \|A\|^2 r^2 - \int_{\Omega_2} H(t, rz) dt \leq \frac{1}{2} \|A\|^2 r^2 - M r^2 \varepsilon_1^2 \cdot \text{meas}(\Omega_2)
\]
\[
\leq \frac{1}{2} \|A\|^2 r^2 - M \varepsilon_1^2 r^2 = -\frac{1}{2} \|A\|^2 r^2 < 0.
\]

Therefore, we have proved that

\[
f(rz) \leq 0, \quad \text{for any } z \in K \text{ and } r \geq r_1.
\]

Let \(E_2 = E^- \oplus E^0 \), \(Q = \{ re : 0 \leq r \leq 2r_1 \} \oplus \{ z \in E_2 : \|z\| \leq 2r_1 \} \). By (H1) and (2.16) we have \(f|_{\partial Q} \leq 0 \), i.e., \(f \) satisfies (I7)(ii) in [13, Theorem 5.29].

Step 3: By Lemma 2.1, \(f \) satisfies the (PS) condition. Similar to the proof of [13, Theorem 6.10], by the linking theorem [13, Theorem 5.29], there exists a critical point \(z^* \in E \) of \(f \) such that \(f(z^*) \geq \bar{a} > 0 \). Moreover, \(z^* \) is a classical solution of (1.1) and \(z^* \) is nonconstant by (H1). \(\square \)
Remark 2.2 i) Suppose \(H(t, z) = \frac{1}{2}(B(t)z, z) + \tilde{H}(t, z) \) with \(B(t) \) being a \(2N \times 2N \) matrix, continuous and 1-periodic in \(t \) and \(\tilde{H}(t, z) \) satisfies (1.2) and (H1)-(H3). We have the same conclusion as Theorem 1.1. The proof is similar and we omit it.

ii) Suppose \(H(t, z) = H(z) \) is independent on \(t \), i.e., (1.1) is an autonomous Hamiltonian system. Then under similar conditions as (1.2) and (H1)-(H3), for any \(T > 0 \), the system (1.1) has a nonconstant \(T \)-periodic solution. Moreover, if \(H(z) \in C^2(\mathbb{R}^{2N}, \mathbb{R}) \) and satisfies some strictly convex conditions such as \(H''(x) \) is positive definite for \(x \neq 0 \), then for any \(T > 0 \), (1.1) has a nonconstant \(T \)-periodic solution with minimal period \(T \). We omit the proof which is similar to the one in [4, 5].

iii) Suppose (1.4) holds, i.e.,

\[
H(t, z) = H(z) = |z|^2(\ln(1 + |z|^p))^{q-1}, \quad \forall (t, z) \in [0, 1] \times \mathbb{R}^{2N},
\]

where \(p > 1 \) and \(q > 1 \). Obviously, (1.2), (H1) and (H2) hold. Note that

\[
z \cdot H_z(z) - 2H(z) = |z|^2q(\ln(1 + |z|^p))^{q-1} \frac{p|z|^p}{1 + |z|^p} \geq |z|^2q(\ln 2)^{q-1}, \quad \forall |z| \geq 1.
\]

\[
|H_z(z)| \leq 2(\ln(1 + |z|^p))|z| + \frac{p|z|^p}{1 + |z|^p}q(\ln(1 + |z|^p))^{q-1}|z| \leq 2|z|^\frac{q}{2}, \quad \forall |z| \geq L,
\]

for \(L \) being large enough. This implies (H3). By directly computation, \(H''(z) \) is positive definite for \(z \neq 0 \). Therefore, for any \(T > 0 \), (1.1) possesses a \(T \)-periodic solution with minimal period \(T \).

iv) There are many examples which satisfy (H1)-(H3) and (1.2) but do not satisfy (1.3). For example

\[
H(t, z) = |z|^2 \ln(1 + |z|^2) \ln(1 + 2|z|^3).
\]

Corollary 2.3 Suppose \(H(t, z) = |z|^2h(t, z) \) with \(h \in C^1([0, 1] \times \mathbb{R}^{2N}, \mathbb{R}) \) being 1-periodic in \(t \) and satisfies

\((H'_1)\) \(h(t, z) \geq 0 \), for all \((t, z) \in [0, 1] \times \mathbb{R}^{2N}\).

\((H'_2)\) \(h(t, z) \to 0 \) as \(|z| \to 0\); \(h(t, z) \to +\infty \) as \(|z| \to +\infty\).

\((H'_3)\) There exist \(0 \leq \delta < 1 \), \(L > 0 \), \(\varepsilon_0 > 0 \) and \(M > 0 \) such that

\[
|z|^{\delta}h_z(t, z) \cdot z \geq \varepsilon_0, \quad |z|h_z(t, z) \leq Mh, \quad \forall |z| \geq L;
\]

\[
\frac{h(t, z)}{|z|^\gamma} \to 0 \quad \text{as} \quad |z| \to \infty \quad \text{for any} \quad \gamma > 0.
\]

Then system (1.1) possesses a nonconstant 1-periodic solution.

Proof Obviously, \((H'_1) - (H'_3)\) imply (1.2), (H1) and (H2).

\[
z \cdot H_z(t, z) - 2H(t, z) = |z|^2|h_z(t, z) \cdot z | \geq \varepsilon_0|z|^{2-\delta}, \quad \forall |z| \geq L;
\]

\[
|H_z(t, z)| \leq |2h(t, z)||z| + |z|^{\delta}|h_z(t, z)|
\]

\[
\leq (2 + M)|z|h(t, z) \leq (2 + M)|z|^{1+\gamma}, \quad \forall |z| \geq L'.
\]
Let $\beta = 2 - \delta$ and $\lambda = 1 + \gamma$ with $0 < \gamma < (1 - \delta)/(2 - \delta)$. Then (H3) holds. By Theorem 1.1 we get the conclusion. □

3 Second order Hamiltonian System

Let $E = W^{1,2}(S^1, \mathbb{R}^N)$ with the norm $\| \cdot \|$ and inner product (\cdot, \cdot). Then $E \subset C(S^1, \mathbb{R}^N)$ and $\|u\|^2 = \int_0^1 (|\dot{u}|^2 + |u|^2)dt$. Define

$$(Kx, y) = \int_0^1 x \cdot ydt, \quad \forall x, y \in E;$$

$$f(z) = \frac{1}{2}((id - K)z, z) - \int_0^1 V(t, z)dt, \quad \forall z \in E.$$

Then K is compact, $\ker(id - K) = \mathbb{R}^N$, and the negative definite subspace of $id - K$, $M^-(id - K) = \{0\}$, i.e., $E = E^0 \oplus E^+$ where $E^0 = \ker(id - K)$ and E^+ is the positive definite subspace of $id - K$. Note that (V1)–(V4) imply

$$V(t, x) \leq d_2 |x|^\lambda + d_3. \quad (3.1)$$

This implies that $f \in C^1(E, \mathbb{R})$ and critical points of f are 1-periodic solutions of (1.5) [11].

Lemma 3.1 Suppose (V1)–(V4) hold. Then f satisfies the (PS) condition.

Proof Let $\{z_m\}$ be a (PS) sequence. Suppose $\{z_m\}$ is not bounded. Passing to a subsequence if necessary, $\|z_m\| \to +\infty$ as $m \to \infty$. Then by (V4)

$$2f(z_m) - \langle f'(z_m), z_m \rangle = \int_0^1 [z_m \cdot V'(t, z_m) - 2V(t, z_m)]dt \geq d_1 \int_0^1 |z_m|^{\beta}dt - d_4.$$

This implies

$$\frac{\int_0^1 |z_m|^\beta dt}{\|z_m\|} \to 0 \quad \text{as } m \to +\infty.$$

If (1.6) holds, we have

$$\langle f'(z_m), z_m^+ \rangle = \langle (id - K)z_m^+, z_m^+ \rangle - \int_0^1 V'(t, z_m) \cdot z_m^+ dt \geq \langle (id - K)z_m^+, z_m^+ \rangle - \|z_m\| \int_0^1 |V'(t, z_m)|dt \geq \langle (id - K)z_m^+, z_m^+ \rangle - d_5 \|z_m\| (\int_0^1 |z_m|^\lambda dt + d_6).$$

Since $\lambda \leq \beta$, we have

$$\frac{\|z_m^+\|}{\|z_m\|} \to 0 \quad \text{as } m \to +\infty. \quad (3.2)$$
If (1.7) holds, we have

\[
f(z_m) = \frac{1}{2} \langle (id-K)z_m^+, z_m^- \rangle - \int_0^1 V(t, z_m)dt \\
\geq \frac{1}{2} \langle (id-K)z_m^+, z_m^- \rangle - d_5 \int_0^1 |z_m|^{1+\lambda} dt - d_7 \\
\geq \langle (id-K)z_m^+, z_m^- \rangle - d_8 \|z_m\| \int_0^1 |z_m|^{1+\lambda} dt - d_7.
\]

Since \(\lambda \leq \beta\), we obtain (3.2). On the other hand, (V1)–(V4) imply

\[
x \cdot V'(t, x) - 2V(t, x) \geq d_9 |x| - d_{10}, \quad \forall t \in S^1 \times \mathbb{R}^N.
\]

Choose \(e \in E^+\) with \(\|e\| = 1\). Let \(\tilde{E} = \text{span}\{e\} \oplus E^0\) and \(K = \{u \in \tilde{E} : \|u\| = 1\}\). Note that \(\dim \tilde{E} < +\infty\). By using similar arguments as in the proof of (2.10), there exists \(\varepsilon_1 > 0\) such that

\[
\text{meas}\{t \in [0, 1] : |u(t)| \geq \varepsilon_1\} \geq \varepsilon_1, \quad \forall u \in K.
\]

By (3.2) and (3.3), we get a contradiction. Therefore \(\{z_m\}\) is bounded. By a standard argument, \(\{z_m\}\) has a convergent subsequence [11].

Proof of Theorem 1.2 As in Step 1 of the proof of Theorem 1.1, by (V2) and (3.1), there exist \(\tilde{a} > 0, \rho > 0\) such that

\[
f(z) \geq \tilde{a}, \quad \forall z \in E^+ \quad \text{with } \|z\| = \rho.
\]

Choose \(e \in E^+\) with \(\|e\| = 1\). Let \(\tilde{E} = \text{span}\{e\} \oplus E^0\) and \(K = \{u \in \tilde{E} : \|u\| = 1\}\). Note that \(\dim \tilde{E} < +\infty\). By using similar arguments as in the proof of (2.10), there exists \(\varepsilon_1 > 0\) such that

\[
\text{meas}\{t \in [0, 1] : |u(t)| \geq \varepsilon_1\} \geq \varepsilon_1, \quad \forall u \in K.
\]

By (V1), (V3) and similar arguments as in the proof of Theorem 1.1, there exists \(r_1 > 0\) such that

\[
f|_{\partial Q} \leq 0, \quad \text{where } \ Q = \{re : 0 \leq r \leq 2r_1\} \oplus \{z \in E^0 : \|z\| \leq 2r_1\}.
\]

Now by Lemma 3.1, [13, Theorem 5.29], and (V1), \(f\) has a nonconstant critical point \(z^*\) such that \(f(z^*) \geq \tilde{a} > 0\). \(z^*\) is 1-periodic solution of (1.5).
Remark 3.2 (i) Suppose $V(t,x) = V(x)$ is independent on t and $V(x)$ satisfies (V1)–(V4). Then for any $T > 0$, (1.5) possesses a nonconstant T-periodic solution.

(ii) There are many examples which satisfy (V1)–(V4) but do not satisfy a condition similar to (1.3). For example,

\[V(t,x) = [1 + (\sin 2\pi t)^2] \cdot |x|^2 \ln(1 + 2|x|^2); \quad \text{or} \]
\[V(t,x) = |x|^2 \ln(1 + |x|^2) \ln(1 + 2|x|^4). \]

By using similar arguments as in the proof of Theorem 1.2, we can prove the following corollary. Details are ommited.

Corollary 3.3 Suppose $V(t,x) = |x|^2 h(t,x)$ with $h \in C^1(S^1 \times \mathbb{R}^N, \mathbb{R})$ satisfies (V1'), $h(t,x) \geq 0, \ \forall (t,x) \in S^1 \times \mathbb{R}^N$.

(V2') $h(t,x) \to 0$ as $|x| \to 0$; \quad $h(t,x) \to +\infty$ as $|x| \to +\infty$.

(V3') There exist $L > 0, \lambda > 0, C_1, C_2 > 0$ such that for $t \in S^1$

\[C_1|x|(h'(t,x) \cdot x) \geq h(t,x), \quad h(t,x) \leq C_2|x|^\lambda, \quad \forall |x| \geq L. \]

Then (1.5) possesses a nonconstant 1-periodic solution.

References

Guihua Fei
Department of Mathematics and statistics
University of Minnesota
Duluth, MN 55812, USA
e-mail : gfei@d.umn.edu