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Calculations of the hurricane eye motion based on

singularity propagation theory ∗

Vladimir Danilov, Georgii Omel’yanov, & Daniil Rozenknop

Abstract

We discuss the possibility of using calculating singularities to forecast
the dynamics of hurricanes. Our basic model is the shallow-water system.
By treating the hurricane eye as a vortex type singularity and truncating
the corresponding sequence of Hugoniot type conditions, we carry out
many numerical experiments. The comparison of our results with the
tracks of three actual hurricanes shows that our approach is rather fruitful.

1 Introduction

In this paper we discuss a possibility of using an approach related to calculating
singularities for numerical modeling the dynamics of hurricanes.

It is well known that for a detailed mathematical description of large-scale
and meso-scale processes in the atmosphere one needs to use very complicated
systems of nonlinear partial differential equations based on equations of three-
dimensional gas dynamics (e.g., see [1–5]). So far it is impossible to solve such
systems numerically in real time, therefore, one must use different simplifying
assumptions. The first simplification is to neglect viscosity and heat conduction
effects. As a result, the order of equations decreases and the problem of posing
boundary conditions disappears. Further possible simplifications (neglect of
vertical displacements, heat exchange effects, etc.) lead to comparatively simple
models, the simplest of which is the so-called shallow-water system

∂U

∂t
+ 〈U,∇〉U +∇z = fΠU, (1)

∂z

∂t
+ 〈∇, zU〉 = 0.

Here U = (u, v) is the vector of horizontal velocity, Π is the matrix of rotation
through π/2 (Π11 = Π22 = 0, Π12 = −Π21 = 1), f is the Coriolis parameter,
and z is the geopotential.
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2 Calculations of the hurricane eye motion EJDE–2002/??

At the same time, if we neglect dissipative effects, then the solution loses
its smoothness. The fact that the solution is singular, allows us to calculate its
dynamics by using rather powerful tools developed within the framework of the
theory of generalized functions. Roughly speaking, these tools allow us to avoid
finding the solution in the entire range of variables and thus only to determine
the dynamics of the singularity support. Besides of a natural simplification due
a decrease in the dimension of the problem, this approach allows us to avoid a
very difficult problem of choosing the initial data in the entire range of spatial
variables. Namely, existing monitoring facilities do not allow one to determine
the initial distributions of velocity, density, and temperature with sufficient
accuracy for large-scale formations. Simultaneously, the hurricane trajectory
(the singularity support) can be fixed well by satellite imaging.

V. P. Maslov [6] proposed the hypothesis that a solution with a weak singu-
larity whose singular support is of codimension 2 corresponds to the center of a
hurricane. Such solution admits the representation

U = U0(x, t) +
√
S(x, t)U1(x, t), z = z0(x, t) +

√
S(x, t)z1(x, t), (2)

where U i, zi and S are smooth functions and

S ≥ 0, ∇S
∣∣∣
S=0

= 0, HessS
∣∣∣
S=0

> 0. (3)

To find the trajectory Γ = {(x, t), S(x, t) = 0} of the singularity support, i.e., of
a moving point, we substitute a solution of the form (2) into the equation (e.g.,
into (1)), which leads to the relation

D0 + S−1/2D1 = 0, (4)

where Di are smooth functions. In turn, (4) implies the relations

∂|α|

∂xα
Di

∣∣∣∣
Γ

= 0, |α| = 0, 1, . . . , i = 0, 1, (5)

which lead to necessary conditions for the existence of a solution of the form (2).
Maslov called these conditions Hugoniot type conditions (by analogy with the
Hugoniot condition for shock waves). The above scheme was realized by Maslov
and Zhikharev [6, 7] for the shallow-water system without Coriolis effects and
by group of authors [8] for the system (1) with the Coriolis force. Hugoniot
type conditions form an infinite non-triangular system. The first 14 equations
of them have the form [8]

ż0
0 = −2qz0

0 ,

V̇1 = fV2 − z0
10,

V̇2 = −fV1 − z0
01,

ż0
10 = −3qz0

10 + pz0
01 − z0

0(v0
11 + 2u0

20),
ż0

01 = −3qz0
01 − pz0

10 − z0
0(u0

11 + 2v0
02),
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q̇ = −q2 + p2 − fp− 2r,
ṗ = −2pq + fq, (6)
ṙ = −4qr − z0

10(3u0
20 + v0

11)− z0
01v

0
20 − {z0

0(3u0
30 + v0

21)},
u̇0

20 = −3qu0
20 + p(u0

11 − v0
20) + fv0

20 − {3z0
30},

u̇0
11 = −3qu0

11 + p(2u0
02 − 2u0

20 − v0
11) + fv0

11 − {2z0
21},

u̇0
02 = −3qu0

02 − p(u0
11 + v0

02) + fv0
02 − {z0

12},
v̇0

20 = −3qv0
20 + p(v0

11 + u0
20)− fu0

20 − {z0
21},

v̇0
11 = −3qv0

11 + p(2v0
02 − 2v0

20 + u0
11)− fu0

11 − {2z0
12},

v̇0
02 = −3qv0

02 − p(v0
11 − u0

02)− fu0
02 − {3z0

03}.

Here V = (V1, V2) is the velocity of the singularity support x = a(t), q = u0
10 =

v0
01, p = u0

01 = −v0
10, r = z0

20 = z0
02, and u0

α, v
0
α, z

0
α are coefficients of the

expansion of the solution (2) in a neighborhood of the singularity support, i.e.,
U i = (ui, vi), i = 0, 1,

ui =
∞∑
k=0

∑
|α|=k

uiα(t)
(
x− a(t)

)α
, vi =

∞∑
k=0

∑
|α|=k

viα(t)
(
x− a(t)

)α
,

zi =
∞∑
k=0

∑
|α|=k

ziα(t)
(
x− a(t)

)α
.

The truncation of the sequence at the 14th term means that we neglect the
terms in the braces in (6).

A comparison of numerical results with the actual track of the hurricane
FORREST (21/09–31/09/1983, the Pacific Ocean) shows that there is a quali-
tative coincidence between these trajectories [8]. It was also shown that, besides
(2), Eqs. (1) do not have any other singular solutions with pointwise support
of the singularity [9] and that the truncated system (6) can be reduced to the
Hill equation [10].

These results stimulated us to try to forecast the dynamics of hurricanes.
It should be noted that we consider not simply a nonsmooth solution from a
Banach space but a solution of some special structure and try to calculate the
trajectory of motion its singularity. It is impossible to “catch” this solution by
traditional methods for studying PDE. The authors developed a special method
for estimating the error of the asymptotic with respect to smoothness solution.
By using this method, the simplest version of the shallow water equations, i.e.,
the Hopf equation, has been studied [11]. Even in this special case, the estima-
tion of the remainder turned out to be a very nontrivial problem. For the shallow
water equations, this estimation must be more difficult. On the other hand, the
obtained asymptotic solution could be compared with the results of the direct
numerical computation for the shallow water equations. However, here we have
a very complicated problem of setting the boundary conditions corresponding to
the hurricane problem, which are necessary for numerical computations. There-
fore, we decided to omit all stages that are traditional in the mathematical
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study and to test the constructed asymptotic solution by using the forecasted
hurricane motion.

We present the results of numerical calculations for three actually existing
hurricanes (there we used the information about hurricane tracks delivered by
the National Hurricane Center, USA). All results obtained can be judged as
follows: the present approach is reasonable and competent and allows us to
obtain a sufficiently good short-term forecast (not less than 24 hours). However,
system (6) cannot be used for a long-term forecast. The results obtained allow us
to assume that, most likely, this fact is related to defects of model (1) used here.
Thus there is the problem of choosing an initial model that is more adequate
than model (1), for which we need to construct a sequence of Hugoniot type
equations and to carry out the corresponding numerical experiments.

This research was partially supported by the Russian Foundation for Basic
Research, grants No. 99-01-01074 and No. 01-01-06057.

2 Numerical calculations of Hugoniot type equa-
tions. Long-term forecast

By truncating the system (6), we reduce the problem of calculating the dynamics
of the hurricane center to the problem of solving a system consisting of 14
ordinary differential equations. There is the principal problem of choosing the
Cauchy data. Our main idea is to choose the Cauchy data so that the trajectory
calculated by the truncated system (6) be maximally close to a given track of an
actual hurricane during some time interval [0, tK+1]. Obviously, by studying the
corresponding solution of (6) for t > tK+1, we can forecast the further motion
of the hurricane center.

Let us describe the algorithm that realizes this idea. By ξ(t) = (λ(t), ϕ(t)),
t ∈ [0, tI ], we denote the trajectory of an actual hurricane. Let ξi = ξ(ti) be the
coordinates of the hurricane center at time ti = (i − 1)∆t, where i = 1, . . . , I
is the measurement number and ∆t is the time interval between successive
measurements (usually, ∆t = 6 hrs.). By µ0 = (z0

0

∣∣
t=0

, . . . , v0
02

∣∣
t=0

) we denote
the set of initial data for system (6) and by µ(ti, µ0) the solution of the Cauchy
problem for (6) with the initial data µ0 calculated at time ti. Here and in the
following, system (6) means that the system is truncated. We choose a number
K < I and carry out the following calculations.

1. Let us choose a point µ0 ∈ R14. We solve system (6) numerically us-
ing the Runge-Kutta method of order 4 and form the set {µ(ti, µ0) =
(z0
i (µ0), V1,i(µ0), V2,i(µ0), . . .)}, i = 1, . . . ,K + 1.

2. We calculate the artificial trajectory of the hurricane: {ζi(µ0) = (λi, ϕi)},
i = 1, . . . ,K + 1, solving numerically the equations

dλ

dt
= V1,

dϕ

dt
= V2, λ|t=0 = λ(0), ϕ|t=0 = ϕ(0). (7)
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Figure 1: ξ is the track of HORTENSE starting at 12:00 a.m. 3/11 1996, ζ is the
artificial trajectory. Initial data: 8.12 10−5, − 0.373, 3.46, 12.9, 20.3, 1, 1.15 10−3,
7.16 10−11, − 8.22 10−16, −10−16, −10−16, −10−16, −10−16, −10−16. Distances: 0,
0.99, 1.40, 1.61, 1.71, 2.04, 2.72, 3.11, 3.00, 3.07, 3.85, 5.03, 6.16, 7.53, 8.18, 8.98, 9.94,
11.4, 12.8, 14.6, 16.5, 18.5, 20.6, 22.7, 24.6, 26.3, 27.7, 28.7.

3. We calculate the error function

J(K,µ0) =
K+1∑
i=1

∣∣ξi − ζi(µ0)
∣∣2. (8)

4. We find the value µ0 = µ0
K at which J(K,µ0) attains its minimum.

In numerical experiments we, first of all, verify the following hypothesis: if we
increase the number K successively with the motion of the hurricane, then the
trajectories ζ(t, µ0

K) obtained become closer and closer to the actual trajec-
tory ξ(t). In other words, the more hurricane prehistory we take into account,
the better we forecast the motion of the hurricane. Obviously, this hypothesis
assumes that there exist an initial point µ0

I such that the trajectories ζ(t, µ0
I)

and ξ(t) are close to each other on the entire time interval [0, tI ].
For a test example, we considered the hurricane HORTENSE (03/09–16/09,

1996) and carried out numerous numerical experiments. The best result is
shown in Fig. 1. Here and in subsequent figures the initial data are listed
in the same order as the unknown functions in the left-hand side in (6), i.e.,
z0

0

∣∣
t=t1

= 8.12 · 10−5, V1

∣∣
t=t1

= −0.373, . . . , v0
02

∣∣
t=t1

= −1 · 10−16. The unit of
measurement of the distance on the spherical surface is 100 km.

One can readily see that, indeed, the artificial curve ζ is sufficiently close
(from a qualitative geometrical viewpoint) to the actual trajectory ξ of the
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Figure 2: Initial data: 8.12 10−5, − 5.14, 0.43, 6.43 10−3, 5.57, 0.26, 0.21, 4.46
10−10, −10−15, −10−15, −10−15, −10−15, −10−15, −10−15, K=3, M=1. Distances for
approximation: 0, 0.433, 0.505, 0.458. Distances for forecast: 0.408, 0.958, 1.77, 2.27,
2.28, 2.52, 3.40, 4.64, 5.82, 7.23.

hurricane. Nevertheless, from the forecast viewpoint, the obtained “optimal”
curve ζ is absolutely inconsistent, since, starting from the 14th node, the dis-
tances between ξ(tj) and ζ(tj , µ0

I), j ≥ 14, are greater than 750 km. This effect
is caused by the fact that the velocity of the artificial hurricane is greater than
the velocity of the actual hurricane HORTENSE. Due to this fact, the distance
|ξ(tj) − ζ(tj , µ0

I)| increases with j. The dynamics of an increase in the error
|ξ(tj) − ζ(tj , µ0

I)| for HORTENSE is shown in the comment to Fig. 1. Similar
calculations for the hurricane GEORGES shown in Fig. 8 lead to the same result.
Thus the above hypothesis is inconsistent and the probability of an appropriate
long-term forecast is very small.

3 Short-term forecast

There is good reason to hope that a short-term forecast will be successful,
since all calculations carried out according to the algorithm in Sec. 2 show
that if |ξ(tK+1)− ζ(tK+1, µ

0
K)| is small, then the distance between ξ(tK+i) and

ζ(tK+i, µ
0
K) for i = 4÷8 is comparable with the actual diameter of the hurricane

eye (i = 4÷ 8 means the forecast for 24÷ 48 hrs.).
To carry out a short-term dynamical forecast, we must slightly change the

algorithm in Sec. 2. Namely, we choose a time instant tM and write ξM =
(λ(tM ), ϕ(tM )) as the coordinates of the hurricane center for t = tM . We choose
the number K so that K+M ≤ I and perform the calculations similar to those
in Sec. 2 but starting from t = tM .

In contrast to the algorithm in Sec. 2, the main advantage is that ζM = ξM
for all tM . This means that we do not extremely accumulate the error arising
in calculations of ζM+K . Moreover, we partly take into account the latitude
variation of the Coriolis parameter by setting f = 2 sinϕ(tM ) in our formulas.

Let us discuss the results of numerical experiments (Figs. 2–7) for the hurri-
cane HORTENSE. In order to study the results obtained, we briefly consider the
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Figure 3: Initial data: 8.12 10−5, −4.40, 0.673, 3.01 10−3, 4.77, 0.336, 8.22 10−2, 5.34
10−10, −10−15, −10−15, −10−15, −10−15, −10−15, −10−15, K=3, M=9. Distances for
approximation: 0, 0.49, 0.32, 0.28. Distances for forecast: 0.67, 1.32, 1.41, 1.43, 1.40,
1.67, 1.99, 2.19, 2.50, 2.92, 3.74, 4.70, 5.47, 6.09, 6.65, 6.64, 7.05.

actual track. We conditionally divide the trajectory of the actual hurricane into
three regions. In the first part that lasts from t1 = 0 to ≈ t18 = 4.25 ∼ 102 hrs.,
the hurricane moves practically to the West over the ocean. In the second re-
gion (from ≈ t18 to ≈ t37 = 9 ∼ 216 hrs.), the hurricane changes the direction of
motion from the West to the North–Northwest. In the vicinity of the 37th node,
the hurricane makes a sharp turn to the Northeast. From the geographic view-
point, for t ≈ t18, the hurricane comes to the Lesser Antilles Isles, moves over
the Caribbean Sea towards the Haiti Isle, and then to the Bahamas. Another
sharp turn is made approximately on the boundary between the Bahamas and
the Atlantic Ocean. The third region of the hurricane trajectory (from ≈ t37 to
t52 = 13 ∼ 306 hrs.) is over the Atlantic Ocean. During approximately two days
(from ≈ t37 to ≈ t47), the hurricane moves to the Northwest. Then it smoothly
turns to the East. Of course, the boundaries of the regions are rather rough.

To the first region, there correspond results shown in Figs. 2, 3. We see that
the artificial trajectory coincides well with the actual trajectory. Moreover,
except for the velocity, the trajectories are astonishingly close to each other
up to the turning point ξ37. However the artificial and actual velocities are
different, and thus only a short-term forecast can be reliable. So, for tM = 0
(see Fig. 2), which corresponds to the forecast starting from t4 ∼ 18 hrs., the
initial error is |∆4| ≈ 46 km (here and in the following, ∆i = |ξi − ζi| is the
distance between ξi and ζi). The error increases to ∆8 ≈ 227 km during the first
24 hrs. and to ∆12 ≈ 464 km during the next 24 hrs. For M = 9, t9 ∼ 48 hrs.
(see Fig. 3), which corresponds to the forecast starting from t12 ∼ 66 hrs., the
initial error is ∆12 ≈ 28 km. The error increases to ∆16 ≈ 140 km during the
first 24 hrs., to ∆20 ≈ 220 km during the next 24 hrs., and to ∆24 ≈ 470 km
during the next 24 hrs.. If we take into account the fact that the maximum
distance between the trajectories does not exceed 120 km till the node ξ37, then
the forecast is apparently successful.

Numerical results shown in Figs. 4, 5 correspond to the second part of the
hurricane trajectory. We see that the approximating properties of the artificial
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Figure 4: Initial data: 8.12 10−5, − 3.19, 0.891, 3.99 10−3, 3.46, 0.446, 0.133, 5.00
10−10, −10−15, −10−15, −10−15, −10−15, −10−15, −10−15, K=3, M=18. Distances
for approximation: 0, 0.19, 0.09, 0.12. Distances for forecast: 0.27, 0.45, 0.84, 1.06,
1.16, 1.21, 0.81, 0.63, 0.53, 0.51, 0.47, 0.41, 0.59, 0.89, 1.08, 1.40, 1.42, 1.37, 1.87, 2.90,
4.40, 6.36, 8.77.

Figure 5: Initial data: 8.12 10−5, −0.489, 4.54, 9.26, 7.98, 1.09, 2.75 10−3, 5.98 10−11,
− 8.2210−16, −10−16, −10−16, −10−16, −10−16, −10−16, K=3, M=33. Distances for
approximation: 0, 0.14, 0.19, 0.14. Distances for forecast: 0.04, 0.29, 0.95, 1.44, 2.58,
3.94, 5.68, 7.85, 10.1.

trajectory become worse as the hurricane approaches the turning point ξ37. So,
the artificial trajectory in Fig. 4 practically coincides with the actual trajectory
until the latitude 20◦ (while the longitude varies from −60◦ to −70◦) and then
sufficiently well approximates the actual trajectory until the latitude 30◦.

In Fig. 5 the artificial and actual trajectories agree less closely (from λ ≈
−70◦, ϕ ≈ 20◦ to λ ≈ −71.8◦, ϕ ≈ 24.7◦) and then they diverge. Nevertheless,
all artificial trajectories show that the hurricane tends to change the direction
of its motion from the North–West to the North–East.

Numerical results shown in Figs. 6, 7 correspond to the third part of the
actual trajectory. We see that the trajectories coincide qualitatively well, and
this coincidence becomes more close with increasing M . Nevertheless, the ar-
tificial trajectory forecasts a more smooth turn to the East than that made by
the actual hurricane (at a latitude of ≈ 46◦).

Let us sum up our numerical experiments. The first part of the trajectory,
where the hurricane moves over the Atlantic Ocean, agrees very well with the
assumptions under which Eqs. (1) were derived: the trajectory lies in the low
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Figure 6: Initial data: 8.12 10−5, 0.449, 1.09, 8.51, 40.3, 1.21, 5.63 10−3, 6.64 10−11,
− 8.2210−16, −10−16, −10−16, −10−16, −10−16, −10−16, K=3, M=42. Distances for
approximation: 0, 0.44, 0.69, 0.84. Distances for forecast: 0.26, 1.22, 2.65, 3.84, 3.88,
6.37.

Figure 7: Initial data: 8.12 10−5, 1.38, 3.36, 1.29, 30.4, 0.913, 1.16 10−2, 7.95 10−11,
− 8.2210−16, −10−16, −10−16, −10−16, −10−16, −10−16, K=3, M=45. Distances for
approximation: 0, 1.46, 1.22, 0.23. Distances for forecast: 1.40, 2.28, 3.71, 3.60.

latitudes (≈ 15◦) almost parallel to the equator, and the external factors seem
to be constant. In numerical calculations according to the truncated sequence
of Hugoniot type conditions (6), the artificial and actual trajectory practically
coincide (see Figs. 1–3) and the velocity is sufficiently close to the actual velocity
of the hurricane. These results prove that the representation of the solution in
the form of the expansion with respect to smoothness (2) possesses good approx-
imating properties and it is possible to use the truncated Hugoniot sequence (6)
for calculating actual hurricane tracks.

The second part of the hurricane trajectory goes over the Caribbean Sea.
There is an increasing deviation to the North in the actual trajectory, and the
hurricane velocity decreases. Apparently, this is due to a change in the water
temperature. The trajectory of the artificial hurricane calculated according to
the initial data corresponding to the first region (Figs. 2 and 3) is close to
the actual trajectory. However, the velocity of the artificial hurricane does not
decrease. If the initial data are chosen according to the measurements in the
second region (Fig. 4), then the velocity of the artificial hurricane turns out to
be close to the velocity of the actual hurricane (in the second region). However,
the approximating properties of the numerical trajectory become worse as the
hurricane moves to the North. Apparently, this is due to the fact that model (1)
becomes less adequate. It was assumed that ϕ is “constant” and small, while
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Figure 8: ξ is the track of GEORGES starting at 03:00 a.m. 16/09 1998, ζ is the
artificial trajectory. Initial data: 8.12 10−5, − 5.99, 4.06 10−2, 1.33 10−8, 1.32, 5.04
10−2, 7.52 10−2, 6.98 10−12, − 2.0810−14, − 1.8910−14, − 1.7210−14, − 1.9110−14,
− 1.7410−14, − 1.7410−14. Distances: 0, 0.45, 1.13, 1.26, 1.64, 1.93, 2.34, 2.82, 3.42,
4.22, 4.33, 4.99, 5.31, 5.46, 5.83, 6.33, 6.84, 7.27, 7.90, 8.60, 9.32, 10.2, 10.7.

the coordinates of the actual hurricane vary by ≈ 10◦ in the latitude.
Over the boundary between the Bahamas and the Atlantic Ocean, the actual

hurricane passes from the second part of the trajectory to the third part. This
passages is accompanied by a sharp change in the direction of motion and an
increase in the velocity. Apparently, the difference between the water tempera-
ture in the Bahamas region and in the Atlantic Ocean (at latitudes higher than
≈ 25◦) is a decisive factor here. The artificial hurricane calculated according
to the initial data measured in the second region (Fig. 5) moves significantly
lower than the actual hurricane (as if the hurricane still remained in the second
region), and its trajectory is qualitatively close to the actual trajectory only on
a comparatively small region. By choosing the initial data so that they cor-
respond to the conditions in the third region (Figs. 6, 7), we obtain a closer
correspondence between the velocities of the actual and artificial hurricanes. In
this case we have a qualitative coincidence between the trajectories on a larger
region.

4 Other examples

The test example of the hurricane HORTENSE is a typical example. Namely,
most of the hurricanes actually existing in the Atlantic Ocean have similar
trajectories. Now we consider two hurricanes, which are exceptional in some
sense.

The trajectory of the hurricane GEORGES (15/09–28/09/1998) almost com-
pletely lies in the tropical belt and is practically in a straight line to the West–
Northwest. We a priori believe that the forecast of its dynamics will be suc-
cessful.

The trajectory of the hurricane NICOLE (24/11–01/12/1998) lies further
north in the Atlantic Ocean, makes a sufficiently sharp turn (through ≈ 130◦),
and has a bend towards the West. We a priori expect that the quality of the
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Figure 9: Initial data: 8.12 10−5, − 6.86, 0.155, 2.04 10−9, 1.84, 2.58 10−2, 8.62
10−2, 1.46 10−11, − 1.2910−14, − 1.2910−14, − 1.2910−14, − 1.4310−14, − 1.3010−14,
−1.3010−14, K=15, M=4. Distances for approximation: 0, 0.24, 0.50, 1.16, 1.26, 1.53,
1.21, 1.57, 1.38, 1.08, 1.10, 1.27, 0.81, 0.44, 0.26. Distances for forecast: 0.54, 0.67,
0.73, 0.92, 1.18, 1.64, 2.31, 2.86, 3.24, 3.50, 4.09, 5.48, 7.11, 9.43, 11.7, 14.5.

Figure 10: Initial data: 8.12 10−5, − 6.12, 0.113, 1.82 10−9, 2.45, 2.30 10−2, 9.38
10−2, 1.59 10−11, − 1.2910−14, − 1.2910−14, − 1.2910−14, − 1.4310−14, − 1.3010−14,
−1.3010−14, K=9, M=16. Distances for approximation: 0, 0.13, 0.38, 0.46, 0.53, 0.50,
0.38, 0.48, 0.53, 0.62. Distances for forecast: 1.07, 1.41, 1.46, 1.26, 1.17, 1.70, 2.31,
3.33, 4.22, 5.50, 6.42, 8.93.

forecast of its dynamics will be bad.
1. The hurricane GEORGES was first observed on 15/09/1998 in the far

eastern Atlantic. Moving practically in a straight line on a general West–
Northwest course, the hurricane entered the Lesser Antilles Isles in 5 days and
passed over practically all the Greater Antilles Isles. Then, still moving prac-
tically in a straight line, the hurricane crossed the Gulf of Mexico and decayed
to the North of New Orleans. The fact that the hurricane did not make sharp
turns can be treated as “stability” of external factors.

The plot in Fig. 8 shows the results (similar to those in Fig. 1) obtained in
calculating the artificial trajectory that is maximally close to the entire actual
trajectory of the hurricane. We see that the difference between the trajectories
exceeds 850 km on the middle part and, on the final stage, the artificial hurricane
moves to the South–West, whereas the actual hurricane moves to the North–
West and the difference between the trajectories exceeds 1000 km. If we take
into account the velocity of the hurricane, then the difference between the actual
and artificial hurricanes is more significant for large t. This result confirms the
conclusion drawn in Sec. 2 that system (6) does not work well for long-term
forecasts.

Let us discuss the results of the short-term forecast. Approximately at t32

GEORGES made landfall in the Cuba isles. Undoubtedly, this was the reason for
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Figure 11: Initial data: 8.12 10−5, − 6.18, 0.171, 1.84 10−9, 2.03, 2.33 10−2, 7.75
10−2, 1.60 10−11, − 1.2910−14, − 1.2910−14, − 1.2910−14, − 1.4310−14, − 1.3010−14,
−1.3010−14, K=6, M=28. Distances for approximation: 0, 0.12, 0.15, 0.54, 1.17, 1.73,
1.95. Distances for forecast: 2.35, 2.26, 2.02, 1.80, 1.68, 1.34, 1.85, 1.53, 1.23, 0.87,
0.54, 1.45, 2.08, 3.34, 4.74, 6.60, 8.26, 10.1.

Figure 12: Initial data: 8.12 10−5, −4.50, 0.227, 1.34 10−9, 1.48, 2.07 10−2, 5.65 10−2,
−1.2910−14, −1.2910−14, −1.2910−14, −1.4310−14, −1.3010−14, −1.3010−14, K=6,
M=40. Distances for approximation: 0, 0.56, 0.48, 0.29, 0.50, 0.57, 0.33. Distances
for forecast: 0.45, 0.39, 0.50, 0.24, 0.33, 0.72, 0.49, 0.66.

a slight change in his trajectory. The artificial hurricane based on the hurricane
prehistory cannot predict this turning point. Moreover, it predicts a smooth
turn to the South. Correspondingly, we can see in Figs. 9, 10 that the long-
term forecasts are qualitatively wrong. However, all these forecasts are good for
≈ 60 hrs.

The last group of plots (see Figs. 11, 12) corresponds to the forecast for
t ≥ t34. This means that by choosing µ0

K,M we take into account the turns
made by GEORGES at t = t32 and t = t33. We see that the forecast quality
sharply increases in contrast to Figs. 9, 10. Moreover, we see that the forecast
quality increases with tK+M and is practically ideal for t > t46 (see Fig. 12).
Curiously enough, all these forecasts show that the hurricane makes a turn
at a longitude of 27◦–33◦, although the beach was not taken into account in
model (1).

So, we see that our a priori assumption that model (1) and system (6) are
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Figure 13: ξ is the track of NICOLE starting at 09:00 a.m. 25/11 1998, ζ is the
artificial trajectory. Initial data: 8.12 10−5, − 2.64, 1.33 10−2, 0.10, 4.75, 2.22 10−2,
0.165, 4.22 10−9, − 9.810−16, − 9.810−16, − 9.810−16, − 9.810−16, − 9.810−16,
− 9.810−16, K=3, M=1. Distances for approximation: 0, 0.35, 0.31, 0.28. Distances
for forecast: 0.32, 1.08, 1.82, 2.77, 4.26, 6.02, 8.19, 10.8, 13.9.

Figure 14: Initial data: 8.12 10−5, − 4.21, 9.50 10−3, 0.195, 2.77, 3.54 10−2, 0.321,
4.22 10−9, − 9.810−16, − 9.810−16, − 9.810−16, − 9.810−16, − 9.810−16, − 9.810−16,
K=3, M=9. Distances for approximation: 0, 0.03, 0.09, 0.22. Distances for forecast:
0.41, 0.45, 0.75, 0.23, 1.44, 3.26, 5.86, 10.0, 16.3.

sufficiently adequate for forecasting the hurricane GEORGES is true.
2. The behavior of the hurricane NICOLE was affected by powerful external

factors. This hurricane, first observed on 24/11/1998 about 700 miles to the
West of the Canary Isles, initially moved to the South–West and then turned
to the West. About 96 hrs. later, the hurricane sharply changed the direction
of its motion and moved to the Northeast. Next, about 30 hrs. after the turn,
the trajectory of the hurricane started to bend in the direction opposite to the
action of the Coriolis force.

Because of such behavior of NICOLE, one can hardly expect that model (1)
can describe the actual trajectory. Nevertheless, the numerical experiments
performed show that our algorithms provide a sufficiently good forecast for
24 hrs.

Figure 13 shows the artificial trajectory calculated for K = 3 and M = 1,
which corresponds to the forecast for t > t4 = 18 hrs. We see that the artificial
and actual trajectories agree sufficiently well until the turning point of the actual
hurricane.

The calculations of the next sloping part of the trajectory (K = 3, M =
9, see Fig. 14) yield extremely good qualitative forecast for 24 hrs. (∆16 ≈
23 km). Nevertheless, the artificial hurricane still does not forecast the turn
of the trajectory, and therefore, the error of the forecast for the second 24 hrs.
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Figure 15: Initial data: 8.12 10−5, − 2.15, − 1.56, 4.47, − 8.10, 0.233, 0.299, 4.84
10−11, − 8.2210−16, − 10−16, − 10−16, − 10−16, − 10−16, − 10−16, K=3, M=15.
Distances for approximation: 0, 0.56, 0.79, 0.84. Distances for forecast: 2.37, 3.91,
6.30, 7.84, 10.9, 13.7.

Figure 16: Initial data: 8.12 10−5, − 6.6310−3, − 0.891, 0.126, − 12.6, 0.363, 0.255,
4.84 10−11, −8.2210−16, −10−16, −10−16, −10−16, −10−16, −10−16, K=3, M=18.
Distances for approximation: 0, 0.09, 0.13, 0.83. Distances for forecast: 1.24, 2.19,
3.43, 4.57, 6.32, 7.28.

increases to ∆19 ≈ 590 km, while ∆20 ≈ 1000 km.
One can hardly say that the forecast is successful in the region containing

the turning point of NICOLE (see Fig. 15). The initial error is ∆18 ≈ 84 km for
t18, then it increases approximately by 200 km every 6 hrs., so that we obtain
∆22 ≈ 780 km after 24 hrs. This failure can easily be explained, since the forecast
shown in Fig. 15 is based on the hurricane trajectory till the turn at t17.

After the hurricane changes the direction of its motion, the forecast quality
improves to some extent. Here a decisive factor is the fact that we forecast the
motion of NICOLE on the basis of its trajectory after the turning point. The
plot in Fig. 16 (K = 3, M = 18) shows that the trajectories are qualitatively
close to one another until the latitude ≈ 37◦ is achieved. Next, under the action
of the Coriolis force, the artificial hurricane continues to move to the East,
while the actual hurricane moves to the Northeast. An attempt to improve the
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Figure 17: Probability that center of NICOLE will pass within 75 miles during the
72 hours starting at 10:00 a.m. 30/11 1998 (the National Hurricane Center, USA)
Contour levels shown are 10%, 20% 50%, and 100%. ξ is the track of NICOLE, curve
1 is the solution of (6) for K=3 and M=18, curve 2 is the solution of (6) for K=3 and
M=25.

situation by using a longer prehistory made the forecast quality even worse.
Similar pictures are observed for the forecasts starting from t24 and from t28:
the actual and artificial hurricanes still behave in qualitatively different ways.

5 Conclusions

The analysis of numerical results shows that, on all parts of the hurricane track
corresponding to more or less stable external factors, the artificial trajectories
calculated by the truncated system (6) (with the initial data corresponding to
this particular part) qualitatively and quantitatively coincide to a satisfactory
extent with the actual trajectories. This coincidence is rather close in the low
latitudes and becomes worse as the hurricane moves to the North. Both facts
correspond to an a priori analysis of whether model (1) is adequate.

Therefore, we can draw the conclusion that the truncated system (6) pos-
sesses sufficiently good approximating properties. This conclusion holds for a
time interval of several days. However, to use the truncated system (6) on larger
time intervals is rather problematic. The plots in Figs. 4, 5 clearly demonstrate
that there are restrictions on the long term applicability of this system. The
trajectory “breakdown” (after the calculation time ≈ 150 hrs.) is closely related
to an increase in the error arising due to the truncation of the infinite system
of equations. Similar “breakdowns” can be seen in other figures, however, they
occur at a considerable distance from the trajectory of the actual hurricane.
Thus the error due to the truncation manifests itself after sufficiently large time
and is unessential for short-term and medium-term forecast. Next, numerical
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results obtained do not allows us to hope that a good forecast can be obtained
by using (6) in the case of a sharp change in the trajectory. The hurricane
NICOLE gives the most illustrative example of this fact. There is no doubt
that this fact is closely related to the defects of the initial model (1).

In order to estimate the results of numerical experiments, let us compare
the artificial trajectory of NICOLE with the probability forecast made by the
National Hurricane Center at 10:00 a.m. 30/11/1998. This forecast was made
almost at the same time as our forecast shown in Fig. 16, since the choice
K = 3, M = 18 implies the absolute time t21 = 09:00 a.m. 30/11/1998. The
comparison of the probability forecast with the actual NICOLE trajectory for
t > t21 (see Fig. 17) shows that during 36 hrs. the actual hurricane approaches
the 20% region and then, after 3 days, enters the 10% region. This means
that the predicted probability p = 0.8 (that the eye of NICOLE stays in the
20% region during 72 hrs.) is too excessive. Only the probability p = 0.9
(that NICOLE stays in a considerably larger 10% region) is adequate. The
forecast obtained by using system (6) (for K = 3, M = 18, curve 1 in Fig. 17)
predicts that the trajectory leaves the 20% region during 36 hrs. In this sense our
forecast is even better than the professional forecast. However, as shown above,
the artificial trajectory qualitatively differs from the actual trajectory. We can
partially improve this forecast by using the dynamical correction (curve 2 in
Fig. 17). Thus, although the basic model (1) is rough, the quality of our forecast
is comparable (even if somewhat worse) with the quality of the professional
forecast.

All numerical experiments resulted in a sufficiently good forecast for 24–
48 hrs. Apparently, the forecast of extremely high quality in Fig. 4 (more than
for 5 days) is accidental. Nevertheless, several successful medium-term forecasts,
including the 3-day forecasts (Figs. 3, 11) make us optimistic.

Finally, the results obtained show that the following fundamental hypotheses
hold:

• Methods of the theory of generalized functions can be used for calculating
the dynamics of a hurricane;

• A hurricane can be treated as a weak pointwise singularity;

• The singularity dynamics can be calculated by using a truncated sequence
of Hugoniot type conditions.

It is highly probable that we can improve the quality of short-term and medium-
term forecasts by choosing a basic model that is more adequate than model (1).
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