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Regularity for solutions to the Navier-Stokes

equations with one velocity component regular ∗

Cheng He

Abstract

In this paper, we establish a regularity criterion for solutions to the
Navier-stokes equations, which is only related to one component of the
velocity field. Let (u, p) be a weak solution to the Navier-Stokes equations.
We show that if any one component of the velocity field u, for example
u3, satisfies either u3 ∈ L∞(R3 × (0, T )) or ∇u3 ∈ Lp(0, T ;Lq(R3)) with
1/p+ 3/2q = 1/2 and q ≥ 3 for some T > 0, then u is regular on [0, T ].

1 Introduction

We consider the initial-value problem of the Navier-Stokes equations in R3 as
follows:

∂u

∂t
− ν∆u+ (u · ∇)u = −∇p,

div u = 0, (x, t = 0) = a(x)
(1.1)

in which u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t) denote the
unknown velocity field and the scalar pressure function of the fluid at the point
(x, t) ∈ R3 × (0,+∞), while a is a given initial velocity field, and ν is the
viscosity coefficient of the fluid. We will assume that ν ≡ 1 for simplicity.

For any given a ∈ L2(R3) and div a = 0 in the sense of the distribution, a
global weak solution u ∈ L∞(0,∞;L2(R3)) to (1.1) with ∇u ∈ L2(R3 × (0,∞))
was constructed by Leary [6] for a long time ago. But the regularity and the
uniqueness of his weak solutions remain yet open, in the general case, till now, in
spite of the great efforts made. Moreover, the uniqueness of the weak solutions
follows if the regularity for weak solutions can be obtained. Cf. [10]. Therefore
many regularity criteria have been obtained for weak solutions. In a space-time
cylinder R3 × (0, T ), the regularity class was showed for weak solutions which
belong to the class Lp(0, T ;Lq(R3)) by Serrin [8] in the case of 1/p+ 3/2q < 1
and q > 3; by Fabes, Jones and Riviere [4], Sohr and von Wahl [11] in the case
of 1/p + 3/2q = 1 and q > 3. Also see Giga [5] and Takahashi [9]. For the
critical case as p =∞ and q = 3, W.von Wahl showed that C([0, T ];L3(R3)) is
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a regularity class for weak solutions. Also see [2]. Another kind of regularity
class was obtained by da Veiga [1], in which he showed that u is regular if
∇u ∈ Lα(0, T ;Lβ(R3)) with 1/α + 3/2β = 1/2 and 1 < α ≤ 2. It is obvious
that, for the assumptions of all regularity criteria, it need that every components
of the velocity field must satisfies the same assumptions, and it don’t make
any difference between the components of the velocity field. Thus, it don’t
exploit the relation between the regularity of velocity field and that of any one
component of the velocity field, which is hard to be used in some applications.
As pointed out by Neustupa and Penel [7], it is interesting to know how to effect
the regularity of the velocity field by the regularity of only one component of
the velocity field, when one try to construct an counter-example of solutions to
(1.1), which develops blowup at finite time, i.e., construct an irregular solution.
In this respect, the first result was obtained by Neustupa and Penel [7]. They
showed that, for the suitable weak solutions which essentially differ from the
usual weak solutions in that they should verify a generalized energy inequality,
if u3 is essentially bounded in one subdomain D, then u has no singular points
in D. Their arguments depend heavily on the partial regularity of the suitable
weak solutions developed by Caffarelli, Kohn and Nirenberg [3].

In this paper, we are also interested in establishing the regularity crite-
ria which is only related to one component of the velocity field, and which is
valid for any weak solutions satisfying the energy inequality. Actually, let u be
any weak solution to the Navier-Stokes equations (1.1) in L∞(0,∞;L2(R3)) ∩
L2
loc(0,∞;H1(R3)) which verifies the energy inequality, if any one component,

e.g., u3 of the velocity field u satisfying either u3 ∈ L∞(R3 × (0, T )) or ∇u3 ∈
Lp(0, T ;Lq(R3)) with 1/p + 3/2q = 1/2 and q ≥ 3, then u is regular. Our
analysis is motivated by the argument of Neustupa and Penel [7], and here we
improve their arguments.

This paper is organized as follows: in section 2, we state our main results
after introducing some notations, in section 3, we given the proof of the main
result.

2 Main Result

In this section, we first introduce some notations and the definition of weak
solutions, then state our main result.

Let Lp(R3), 1 ≤ p ≤ +∞, represent the usual Lesbegue space of scalar
functions as well as that of vector-valued functions with norm denoted by ‖ ·
‖p. Let C∞0,σ(R3) denote the set of all C∞ real vector-valued functions φ =
(φ1, φ2, φ3) with compact support in R3, such that div φ = 0. Lpσ(R3), 1 ≤ p <
∞, is the closure of C∞0,σ(R3) with respect to ‖ · ‖p. Hm(R3) denotes the usual
Sobolev Space. Finally, given a Banach space X with norm ‖ · ‖X , we denote by
Lp(0, T ;X), 1 ≤ p ≤ +∞, the set of function f(t) defined on (0, T ) with values
in X such that

∫ T
0
‖f(t)‖pXdt < +∞. Let QT = R

3 × (0, T ). At last, by symbol
C, we denote a generic constant whose value is unessential to our aims, and it
may change from line to line.
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Definition. A measurable vector u on QT is called a weak solution to the
Navier-Stokes equations (1.1), if

1. u ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;H1(R3));

2. u verifies the Navier-Stokes equations in the sense of the distribution, i.e.,∫ ∞
0

∫
R3

(
u(x, t) · ∂φ

∂t
−∇u(x, t) · ∇φ+ (u(x, t) · ∇)φ · u(x, t)

)
dxdt

+
∫
R3
a(x)φ(x, 0)dx = 0

for every φ ∈ C∞0 (R3 × R) with div φ = 0.

Our main result can be stated as follows.

Theorem 2.1 Let the initial velocity a ∈ L2
σ(R3) ∩H1(R3), and u is the weak

solution to (1.1) which satisfies the energy inequality. If any one component
of the velocity field u, e.g., u3 satisfies either u3 ∈ L∞(R3 × (0, T )) or ∇u3 ∈
Lp(0, T ;Lq(R3)) with 1/p + 3/2q = 1/2 for q ≥ 3, then u is regular on [0, T ],
and for t ∈ [0, T ] the following two estimates are satisfied.

‖u(t)‖22 + 2
∫ t

0

‖∇u(s)‖22ds ≤ ‖a‖22, (2.1)

‖∇u(t)‖22 +
∫ t

0

‖∆u(s)‖22ds ≤ A (2.2)

In the various cases, A depends on the initial data as follows:

A1 = ‖∇a‖22 + CM2
1 ‖a‖22

(
1 + ‖a‖42M2

1

)
+ C‖a‖22

(
‖a‖2M1 + ‖∇a‖2

)
×
[
‖∇a‖22 + ‖a‖22M2

1

(
1 + ‖a‖42M2

1

)]
eC‖a‖2

(
‖a‖2M1+‖∇a‖2

)
where M1 := ‖∇u3‖L∞(0,T ;L3(R3)) <∞,

A2 = ‖∇a‖22 + CA3

{
‖a‖

4q
q−3
2 M2 + ‖a‖2

(
‖a‖H1(R3)(1 +M

1/2
2 eCM2)

)
+M2

}
+C‖a‖22M

q−3
q

2 ,

where M2 :=
∫ T

0
‖∇u3‖pLp(0,T ;Lq(R3))ds <∞,

A3 =
{
‖∇a‖22 + C‖a‖22M

q−3
q

2

}
× exp

{
M2‖a‖

4q
q−3
2 + ‖a‖2‖a‖H1(R3)

(
1 +M1/2eCM2

)
+M2

}
,

A4 = ‖∇a‖22 + C
(
M2

0 +M
8/3
0 ‖a‖4/32

)
‖a‖22

+A5‖a‖2
(
‖∇a‖2 +M0‖a‖2 +M

4/3
0 ‖a‖5/32

)
,
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where M0 := ‖u3‖L∞(R3×(0,T )) <∞, and

A5 =
(
‖∇a‖22 + C(M2

0 + ‖a‖4/32 M
8/3
0 )‖a‖22

)
× exp

{
C‖a‖2

(
‖∇a‖2 +M0‖a‖2 +M

4/3
0 ‖a‖5/32

)}
.

The constant C, above, is independent of T . Thus T can approach +∞.

Remarks. 1. The weak solution u ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;H1(R3))

was constructed by Leray [6] as the initial velocity field a ∈ L2
σ(R3), such that

u satisfies the energy inequality.
2. Neustupa and Penel [7] showed that, for the suitable weak solution u, if u3 is
essentially bounded in a subdomain D of a time-space cylinder Ω× (0, T ), then
u has no singular points in D.
3. For solutions to the Navier-Stokes equations, either the class Lp(0, T ;Lq) for
1/p+ 3/2q ≤ 1/2 and q > 3, or C([0, T ];L3(Ω)) is a regularity class, Cf. [4], [5],
[8], [9],[10] and [2]. Further, if ∇u ∈ Lα(0, T ;Lβ(R3)) with 1/α+ 3/2β = 1 for
1 < α ≤ 2, then u also is regular, see [1].

3 Proof of the main theorem

In this section, we present the proof of Theorem 2.1, preceded by the following
Lemmas. The first lemma follows from direct calculations.

Lemma 3.1 Let a ∈ L2
σ(R3). Then for any t ≥ 0,

‖u(t)‖22 + 2
∫ t

0

‖∇u(s)‖22ds ≤ ‖a‖22. (3.1)

Let ω = curlu(x, t). Then ω satisfies weakly the equations

∂ω

∂t
−∆ω + (u · ∇)ω = (ω · ∇)u. (3.2)

For the third component ω3, of ω, one obtain the following estimate.

Lemma 3.2 Let a ∈ L2
σ(R3) ∩H1(R3). If u3 ∈ L∞(R3 × (0, T )), then

‖ω3(t)‖22 +
∫ t

0

‖∇ω3(s)‖22ds ≤ ‖ω3(0)‖22 +M2
0 ‖a‖22 (3.3)

for any 0 ≤ t ≤ T with M0 = ‖u3‖L∞(R3×(0,T )).

Proof. Multiplying both sides of the third equation of (3.2) by ω3 and inte-
grating for x ∈ R3, we obtain

1
2
d

dt
‖ω3‖22 + ‖∇ω3‖22 =

∫
R3

(ω · ∇)u3 · ω3dx. (3.4)
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Using integration by parts and the Cauchy inequality, the right term of (3.4)
can be estimated as∫

R3
(ω · ∇)u3 · ω3dx = −

∫
R3

(ω · ∇)ω3 · u3dx

≤ ‖∇ω3‖2‖u3‖∞‖ω‖2

≤ 1
2
‖∇ω3‖22 +

1
2
‖u3‖2∞‖∇u‖22,

where we used the fact that ‖ω‖2 ≤ ‖∇u‖2. Thus

d

dt
‖ω3‖22 + ‖∇ω3‖22 ≤M2

0 ‖∇u‖22. (3.5)

Integrating (3.5) over (0, t) gives (3.3). �

Lemma 3.3 Let a ∈ L2
σ(R3) ∩H1(R3). If ∇u3 ∈ Lp(0, T ;Lq(R3)) with 1/p +

3/2q = 1/2 for q ≥ 3, then

‖ω3(t)‖22 +
∫ t

0

‖∇ω3(s)‖22ds ≤

{
C
(
‖a‖2H1(R3) + ‖a‖22M2

1

)
for q = 3,

C‖a‖H1(R3)

(
1 +M2e

CM2
)

for q > 3
(3.6)

for 0 < t ≤ T . Here M1 := ‖∇u3‖L∞(0,T ;L3(R3)) and M2 :=
∫ T

0
‖∇u3(s)‖pqds for

q > 3.

Proof. If q = 3, by the Hölder inequality and the Sobolev inequality, the right
term of (3.4) can be estimated as

|
∫
R3

(ω · ∇)u3 · ω3dx| ≤ ‖ω‖2‖∇u3‖3‖ω3‖6

≤ C‖ω‖2‖∇u3‖3‖∇ω3‖2

≤ 1
2
‖∇ω3‖22 + C‖∇u3‖23‖∇u‖22.

Then
d

dt
‖ω3‖22 + ‖∇ω3‖22 ≤ C‖∇u3‖22‖∇u‖22

which implies (3.6) as q = 3.
If q > 3, by the Hölder inequality and the Gagliardo-Nirenberg inequality,

we estimate the right term of (3.4) as

|
∫
R3

(ω · ∇)u3 · ω3dx| ≤ ‖ω‖2‖∇u3‖q‖ω3‖2q/(q−2)

≤ C‖ω‖2‖∇u3‖q‖ω3‖1−3/q
2 ‖∇ω3‖3/q2

≤ 1
2
‖∇ω3‖22 + C‖∇u3‖pq‖ω3‖22 + C‖∇u‖22.



6 Regularity for solutions to the Navier-Stokes equations EJDE–2002/29

Then
d

dt
‖ω3‖22 + ‖∇ω3‖22 ≤ C‖∇u3‖pq‖ω3‖22 + C‖∇u‖22 (3.7)

which implies that

d

dt

(
e−C

∫ t
0 ‖∇u3‖pqds‖ω3‖22

)
≤ Ce−C

∫ t
0 ‖∇u3‖pqds‖∇u‖22.

Thus using Lemma 3.1,

‖ω3‖22 ≤ CeCM2
(
‖ω3(0)‖22 + ‖a‖22

)
. (3.8)

Substituting (3.8) into (3.7), (3.6) follows for q > 3. �

Lemma 3.4 Let a ∈ L2
σ(R3) ∩H1(R3). If ∇u3 ∈ Lp(0, T ;Lq(R3)) with 1/p +

3/2q = 1/2 for q ≥ 3, then for any t ≥ 0,

‖∇u(t)‖22 +
∫ t

0

‖∆u(s)‖22ds ≤ A1 , (3.9)

where, for q = 3,

A1 = ‖∇a‖22 + CM2
1 ‖a‖22

(
1 + ‖a‖42M2

1

)
+ C‖a‖22

(
‖a‖2M1 + ‖∇a‖2

)
×
[
‖∇a‖22 + ‖a‖22M2

1

(
1 + ‖a‖42M2

1

)]
eC‖a‖2

(
‖a‖2M1+‖∇a‖2

)
.

When q > 3, then for any t ≥ 0,

‖∇u(t)‖22 +
∫ t

0

‖∆u(s)‖22ds ≤ A2 (3.10)

with

A2 = ‖∇a‖22 + CA3

{
‖a‖

4q
q−3
2 M2 + ‖a‖2

(
‖a‖H1(R3)(1 +M

1/2
2 eCM2)

)
+M2

}
+ C‖a‖22M

q−3
q

2

A3 =
{
‖∇a‖22 + C‖a‖22M

q−3
q

2

}
exp

{
M2‖a‖

4q
q−3
2

+‖a‖2‖a‖H1(R3)

(
1 +M1/2eCM2

)
+M2

}
.

The constant C, above, is independent of T . Thus T can approach +∞.

Proof. The Navier-Stokes equations (1.1) can be rewritten as

∂u

∂t
−∆u+ ω × u = −∇(p+

1
2
|u|2). (3.11)

Multiplying both sides of (3.11) by ∆u, it follows that

1
2
d

dt
‖∇u‖22 + ‖∆u‖22 =

∫
R3
ω × u ·∆udx

=
∫
R3

(ω2u3 − ω3u2)∆u1dx+
∫
R3

(ω3u1 − ω1u3)∆u2dx

+
∫
R3

(ω1u2 − ω2u1)∆u3dx. (3.12)
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In the following, we estimate the each terms at the right hand side of (3.12)
by the Hölder inequality, Young inequality and Gagliardo- Nirenberg inequality.
Let δ be one small parameter determined later. One has that

I1 =
∣∣ ∫
R3
ω2u3∆u1dx

∣∣ ≤ ‖∆u1‖2‖ω2‖4‖u3‖4

≤ C‖∆u‖2‖u3‖1/22 ‖∇u3‖1/23 ‖ω2‖1/42 ‖∇ω2‖3/42

≤ C‖∆u‖
7
4
2 ‖u‖

1/2
2 ‖∇u3‖1/23 ‖∇u‖

1/4
2

≤ δ‖∆u‖22 + C(δ)‖a‖42‖∇u3‖43‖∇u‖22,

for q = 3, and

I1 = |
∫
R3
ω2u3∆u1dx| ≤ ‖∆u1‖2‖ω2‖2r/(r−2)‖u3‖r

≤ C‖∆u‖2‖u3‖
2rq+6q−6r
r(5q−6)

2 ‖∇u3‖
3q(r−2)
r(5q−6)
q ‖ω2‖

r−3
r

2 ‖∇ω2‖
3
r
2

≤ C‖∆u‖
r+3
r

2 ‖u‖
2rq+6q−6r
r(5q−6)

2 ‖∇u3‖
3q(r−2)
r(5q−6)
q ‖∇u‖

r−3
r

2

≤ δ‖∆u‖22 + C(δ)‖a‖
4q
q−3
2 ‖∇u3‖pq‖∇u‖22,

for q > 3 with r = 9q/(2q + 3) > 3.

I2 = |
∫
R3
ω3u2∆u1dx| ≤ ‖∆u1‖2‖ω3‖3‖u2‖6

≤ δ‖∆u‖22 + C(δ)‖∇u2‖22‖ω3‖2‖∇ω3‖2
≤ δ‖∆u‖22 + C(δ)‖∇ω3‖2‖∇u‖32.

Similar to the estimates as I2,

I3 = |
∫
R3
ω3u1∆u2dx| ≤ δ‖∆u‖22 + C(δ)‖∇ω3‖2‖∇u‖32.

Similar to the estimates as I1, one can obtain that

I4 =
∣∣ ∫
R3
ω1u3∆u2dx

∣∣
≤

{
δ‖∆u‖22 + C(δ)‖a‖42‖∇u3‖43‖∇u‖22, if q = 3,

δ‖∆u‖22 + C(δ)‖a‖
4q
q−3
2 ‖∇u3‖pq‖∇u‖22, if q > 3.

Let

I5 = |
∫
R3
ω1u2∆u3dx| ≤ |

∫
R3
∂2u3 · u2 ·∆u3dx|+ |

∫
R3
∂3u2 · u2 ·∆u3dx|.

Then

I51 = |
∫
R3
∂2u3 · u2 ·∆u3dx| ≤ ‖∆u3‖2‖∇u3‖q‖u2‖2q/(q−2)

≤ C‖∆u‖2‖∇u3‖q‖u‖
q−3
q

2 ‖∇u‖
3
q

2

≤ δ‖∆u‖22 + C(δ)‖a‖
2(q−3)
q

2 ‖∇u3‖2q‖∇u‖
6
q
q
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and

I52 = |
∫
R3
∂2u2 · u2 ·∆u3dx| = |

1
2

∫
R3
|u2|2∆∂u3dx|

≤ |
∫
R3
u2∆u2 · ∂u3dx|+ |

∫
R3
|∇u2|2∂3u3dx|

≤ δ

2
‖∆u2‖22 + C(δ)‖∇u3‖2q‖u2‖22q/(q−2) + ‖∇u3‖q‖∇u2‖22q/(q−2)

≤ δ

2
‖∆u‖22 + C(δ)‖∇u3‖2q‖u‖

2(q−3)
q

2 ‖∇u‖
6
q

2 + C‖∇u3‖q‖∇u‖
2q−3
q

2 ‖∆u‖
3
q

2

≤ δ‖∆u‖22 + C(δ)‖∇u3‖2q‖a‖
2(q−3)
q

2 ‖∇u‖
6
q

2 + C(δ)‖∇u3‖pq‖∇u‖22.

Similarly,

I6 = |
∫
R3
ω2u1∆u3dx| ≤ |

∫
R3
∂3u1 · u1 ·∆u3dx|+ |

∫
R3
∂1u3 · u1 ·∆u3dx|

I61 = |
∫
R3
∂3u1 · u1 ·∆u3dx|

≤ δ‖∆u‖22 + C(δ)‖∇u3‖2q‖a‖
2(q−3)
q

2 ‖∇u‖
6
q

2 + C(δ)‖∇u3‖pq‖∇u‖22

I62 = |
∫
R3
∂1u3 · u1 ·∆u3dx|

≤ δ‖∆u‖22 + C(δ)‖a‖
2(q−3)
q

2 ‖∇u3‖2q‖∇u‖
6
q
q .

Let δ = 1/16. Substituting above estimates into (3.12), it follows that

d

dt
‖∇u‖22 + ‖∆u‖22 ≤ CM2

1

(
1 + ‖a‖42M2

1

)
‖∇u‖22 + C‖∇ω3‖2‖∇u‖32 (3.13)

for q = 3, and

d

dt
‖∇u‖22 + ‖∆u‖22 ≤ C

(
‖a‖

4q
q−3
2 ‖∇u3‖pq + ‖∇ω3‖2‖∇u‖2 + ‖∇u3‖pq

)
‖∇u‖22

+C‖a‖
2(q−3)
q

2 ‖∇u3‖2q‖∇u‖
6/q
2 (3.14)

for q > 3. (3.13) implies that

d

dt

(
exp

{
− C

∫ t

0

‖∇ω3‖2‖∇u‖2ds
}
‖∇u‖22

)
≤ CM2

1

(
1 + ‖a‖42M2

1

)
exp

{
− C

∫ t

0

‖∇ω3‖2‖∇u‖2ds
}
‖∇u‖22,

which implies

‖∇u(t)‖22

≤
[
‖∇a‖22 + CM2

1 ‖a‖22
(
1 + ‖a‖42M2

1

)]
exp

{
C

∫ t

0

‖∇ω3‖2‖∇u‖2ds
}

≤
[
‖∇a‖22 + CM2

1 ‖a‖22
(
1 + ‖a‖42M2

1

)]
exp

{
C‖a‖2

(
‖a‖2M1 + ‖∇u‖2

)}
,
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This inequality and (3.13) imply (3.9). From (3.14), it follows that

d

dt

(
exp

{
C

∫ t

0

[
‖a‖

4q
q−3
2 ‖∇u3‖pq + ‖∇ω3‖2‖∇u‖2 + ‖∇u3‖pq

]
ds
}
‖∇u‖22

)
≤ C‖a‖

2(q−3)
q

2 ‖∇u3‖2q‖∇u‖
6
q

2

× exp
{
C

∫ t

0

[
‖a‖

4q
q−3
2 ‖∇u3‖pq + ‖∇ω3‖2‖∇u‖2 + ‖∇u3‖pq

]
ds
}
,

which implies

‖∇u(t)‖22 ≤
(

exp
{
C

∫ t

0

[
‖a‖

4q
q−3
2 ‖∇u3‖pq + ‖∇ω3‖2‖∇u‖2 + ‖∇u3‖pq

]
ds
})

×
{
‖∇a‖22 + C‖a‖

2(q−3)
q

2

( ∫ T

0

‖∇u3‖pqdt
) q−3

q
( ∫ T

0

‖∇u‖2dt
) 3
q
}

≤
{
‖∇a‖22 + C‖a‖22M

q−3
q

2

}
exp

{
M2‖a‖

4q
q−3
2

+‖a‖2‖a‖H1(R3)

(
1 +M

1/2
2 eCM2

)} ∆= A3,

This inequality and (3.14) imply (3.10). �

Lemma 3.5 Let a ∈ L2
σ(R3) ∩H1(R3). If u3 ∈ L∞(R3 × (0, T )), then for any

t ≥ 0,

‖∇u(t)‖22 +
∫ t

0

‖∆u(s)‖22ds ≤ A4 (3.15)

with

A4 = ‖∇a‖22 + C(M2
0 +M

8/3
0 ‖a‖

4
3
2

)
‖a‖22

+A5‖a‖2
(
‖∇a‖2 +M0‖a‖2 +M

4/3
0 ‖a‖5/32

)
,

A5 =
(
‖∇a‖22 + C(M2

0 + ‖a‖4/32 M
8/3
0 )‖a‖22

)
× exp

{
C‖a‖2

(
‖∇a‖2 +M0‖a‖2 +M

4/3
0 ‖a‖5/32

)}
.

In above, constant C is a absolute constant and independent of T . Thus T can
be taken as +∞.

Proof. We need to re-estimate the terms at the right hand side of (3.12)
by the assumption that u3 ∈ L∞(QT ) to replace the assumption that ∇u3 ∈
Lp(0, T ;Lq(R3)). In view of the above procedure, we don’t use the assumption
as estimating the I2 and I3, except the estimates about ‖∇ω3‖2 obtained in
Lemmas 3.2 and 3.3. So there are same as u3 ∈ L∞(QT ), i.e.,

I2 = |
∫
R3
ω3u2∆u1dx| ≤ δ‖∆u‖22 + C(δ)‖∇ω3‖2‖∇u‖32

I3 = |
∫
R3
ω3u1∆u2dx| ≤ δ‖∆u‖22 + C(δ)‖∇ω3‖2‖∇u‖32.
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Now we estimate other terms. By Hölder inequality, the estimate of I1 is easy.
In fact,

I1 = |
∫
R3
ω2u3∆u1dx| ≤ ‖∆u‖2‖u3‖∞‖ω2‖2

≤ δ‖∆u‖22 + C(δ)‖u3‖2∞‖∇u‖22.

Similarly,

I4 = |
∫
R3
ω1u3∆u2dx| ≤ δ‖∆u‖22 + C(δ)‖u3‖2∞‖∇u‖22.

By Hölder inequality again, one has

I51 = |
∫
R3
∂2u3u2∆u3dx| ≤ δ‖∆u‖22 + C0

∫
R3
|u2|2|∂2u3|2dx.

Integrating by parts, we have∫
R3
|u2|2|∂2u3|2dx

≤ |2
∫
R3
u2∂2u2∂2u3u3dx|+ |

∫
R3
|u2|2|∂2

22u3u3dx|

≤ |
∫
R3
|∂2u2|2|u3|2dx|+ |

∫
R3
u2∂

2
22u2|u3|2dx|

+‖∆u3‖2‖u2‖26‖u3‖1/32 ‖u3‖2/3∞
≤ ‖u3‖2∞‖∇u2‖22 + ‖∆u2‖‖u2‖6‖u3‖2/32 ‖u3‖4/3∞

+‖∆u3‖2‖u2‖26‖u3‖1/32 ‖u3‖2/3∞

≤ δ

C0
‖∆u‖22 + C(δ)‖a‖2/32 ‖u3‖4/3∞ ‖∇u‖42

+C
(
‖u3‖2∞ + ‖a‖4/32 ‖u3‖8/3∞

)
‖∇u‖22.

For I52, by integration by part, we can treat as

I52 = |
∫
R3
∂3u2u2∆u3dx| =

1
2
|
∫
R3
|u2|2∆∂3u3dx|

≤ |
∫
R3

(u2∆u2)∂3u3dx|+ |
∫
R3
|∇u2|2∂3u3dx|

≤ |
∫
R3

(u2∆u2)∂3u3dx|+ |2
∫
R3

(∇u2 · ∇∂3u2)u3dx|

≤ δ‖∆u‖22 + C1(δ)
∫
R3
|u2|2|∂3u3|2dx+ C(δ)‖u3‖2∞‖∇u2‖22.
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Integrating by parts again,

|
∫
R3
|u2|2|∂3u3|2dx|

≤ 2|
∫
R3
u2 · ∂3u2 · ∂3u3 · u3dx|+ |

∫
R3
|u2|2∂2

33u3 · u3dx|

≤ |
∫
R3
|∂3u2|2|u3|2dx|+ |

∫
R3
u2∂

2
33u2 · |u3|2dx|

+‖∆u3‖2‖u2‖26‖u3‖1/32 ‖u3‖2/3∞
≤ ‖u3‖2∞‖∇u‖22 + ‖∆u2‖2‖u2‖6‖u3‖

2
3
2 ‖u3‖4/3∞

+‖∆u3‖2‖u2‖26‖u3‖1/32 ‖u3‖2/3∞

≤ δ

C1
‖∆u‖22 + C‖a‖2/32 ‖u3‖4/3∞ ‖∇u‖42

+C
(
‖u3‖2∞ + ‖a‖4/32 ‖u3‖8/3∞

)
‖∇u‖22.

Therefore,

I5 = |
∫
R3
ω1u2∆u3dx|

≤ 4δ‖∆u‖22 + C‖a‖2/32 ‖u3‖4/3∞ ‖∇u‖42 + C
(
‖u3‖2∞ + ‖a‖4/32 ‖u3‖8/3∞

)
‖∇u‖22.

Similarly,

I6 = |
∫
R3
ω2u1∆u3dx|

≤ 4δ‖∆u‖22 + C‖a‖2/32 ‖u3‖4/3∞ ‖∇u‖42 + C
(
‖u3‖2∞ + ‖a‖4/32 ‖u3‖8/3∞

)
‖∇u‖22.

Substituting above estimates into (3.12) and taking δ = 1/16, one obtain that

d

dt
‖∇u‖22 + ‖∆u‖22 ≤ C

(
‖∇ω3‖2‖∇u‖2 + ‖a‖2/32 ‖u3‖4/3∞ ‖∇u‖22

)
‖∇u‖22

+C
(
‖u3‖2∞ + ‖a‖4/32 ‖u3‖8/3∞

)
‖∇u‖22, (3.16)

which implies

‖∇u(t)‖22 ≤
{
‖∇a‖22 + C

(
M2

0 + ‖a‖4/32 M
8/3
0

)
‖a‖22

}
× exp

{
C‖a‖2

(
‖∇a‖2 +M0‖a‖2 + ‖a‖5/32 M

4/3
0

)}
,

here we used Lemmas 3.1 and 3.2. The above inequality and (3.16) implies
(3.15). �

Proof of Theorem 2.1 Since the initial velocity field a is in L2
σ(R3)∩H1(R3),

it is well-known that there is a T0 > 0, such that there is a unique strong solution
u ∈ L∞(0, T0;H1(R3))∩L2(0, T0;H2(R3)) to the Navier-Stokes equations (1.1).
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See [11]. According the result about uniqueness [11], our weak solution identity
with the strong solution in (0, T0). If u3 ∈ L∞(R3 × (0, T ))(t0 < T ≤ +∞) or
∇u3 ∈ Ls(0, T ;Lq(R3)) for 1/s + 3/2q = 1/2 with q ≥ 3, then Lemmas 3.1-3.5
imply

sup
0≤t≤T

‖u(t)‖H1(R3) +
∫ T

0

(
‖∇u(s)‖22 + ‖∆u(s)‖22

)
ds ≤ C(‖a‖H1(R3)).

Thus the local strong solution u can be extended to time T , and also identity
with the weak solution. Moreover the classical regular criteria [11] implies that
u is a regular solution on [0, T ]. �

Remark. The referee has kindly pointed out the recent works [12] -[14]. In
[12], the authors consider the interior regularity of the suitable weak solutions
under the assumption that one component of the velocity is assumed to belong to
the anisotropic Lebesgue space Lp,q (p in time and q in space) with 2/p+3/q ≤
1/2 for p ≥ 4 and q > 6; In [13], the authors obtained the regular criteria
under the different assumptions on three components of velocity; While in [14],
the authors defined many regularity classes by means of derivatives of some
components of velocity. For example, they obtained the regularity of the weak
solutions which satisfy the energy inequality and ∂3u belong to Lp(0, T ;Lq(R3))
with 1/p + 3/2q ≤ 3/4 for q ≥ 2, or ∂3u3 ∈ L∞(0, T ;L∞(R)), etc. But our
assumptions are different from theirs. Through our arguments also based on
some estimates of vorticity as do in [12]-[14], the particular technique is different.

Acknowledgement. The author would like to express his sincere gratitude
to researchers: Professor Tetsuro Miyakawa for his heuristic discussion about
this problem, the anonymous referee for his helpful comments and for pointing
out the existence of related works [12]-[14], Professor M. Pokorny for sending me
his preprint [14], and for pointing out that the weak solution here should satisfy
the energy inequality. The present work was completed while the author was
visiting the Department of Mathematics at Kobe University as a reseach fellow
of the Japan Society for the Promotion of Sciences (JSPS). The financial support
and the warm hospitality at these institutions are gratefully acknowledged here.
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