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High regularity of the solution of a nonlinear

parabolic boundary-value problem ∗

Luminiţa Barbu, Gheorghe Moroşanu, & Wolfgang L. Wendland

Abstract

The aim of this paper is to report some results concerning high regular-
ity of the solution of a nonlinear parabolic problem with a linear parabolic
differential equation in one spatial dimension and nonlinear boundary
conditions. We show that any regularity can be reached provided that
appropriate smoothness of the data and compatibility assumptions are
required.

1 Introduction

We consider the parabolic boundary value problem (BVP):

yt − yxx + gy = f(x, t), in DT , (1.1)

yx(0, t) ∈ β1(y(0, t)),
−yx(1, t) ∈ β2(y(1, t)), 0 < t < T,

(1.2)

y(x, 0) = y0(x), 0 < x < 1, (1.3)

where DT := {(x, t) ∈ R2; 0 < x < 1, 0 < t < T} for a fixed T ∈ (0,∞), where
g ≥ 0 is a given constant, f : DT → R and y0 : [0, 1] → R are given functions,
and βi : D(βi) ⊆ R → R, i = 1, 2, are nonlinear mappings that might possibly
be multivalued. So, this BVP is a nonlinear problem.

Notice that the BVP is a model for heat conduction and diffusion processes.
Also, it can be viewed as a reduced model for a singular perturbation problem
associated with an electrical circuit, in which the specific inductance is negligible
and is set equal to zero [2]. In [2] some nonhomogeneous boundary conditions
appear, but they can easily be homogenized by a simple change of the unknown
function:

ỹ(x, t) = y(x, t) + x(1− x)[a(t)x+ b(t)] . (1.4)
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In the case of integrated circuits with negligible specific inductances, we can
set them equal to zero and thus arrive at a similar BVP, but with n equations
instead of (1.1) [8, 11].

An existence theory for the BVP in the case in which β1, β2 are monotone
mappings can be found in [12, Chapter 3, §3], even in a more general frame-
work. In the present paper we are concerned with higher order regularity of
the solution. As we shall see, this requires higher regularity of f, β1, β2, y0

and higher order compatibility conditions. The main difficulty in this problem
is due to the nonlinearity of (1.2) whereas the linear case is well-known from
[9, Chapter VII, §10]. There the compatibility conditions, corresponding to our
particular BVP with linear conditions, consist in the fact that the time deriva-
tives (∂ky/∂tk)(x, 0) (k ≥ 0), which can be calculated from (1.1) and (1.3),
for x = 0 and x = 1 must satisfy the boundary conditions and the relations
obtained from their differentiation with respect to t. Of course, the case of the
nonlinear condition (1.2) is more delicate.

The regularity question for the BVP is also important as an intermediate
step in developing an asymptotic analysis of the telegraph system with small
specific inductance (see [2, 3, 4]).

2 Preliminaries

Let us first recall the following result (see [7, Appendix]), which will be used
later:

Theorem 2.1 Let X be a reflexive real Banach space and let u ∈ Lp(a, b; X)
with −∞ < a < b <∞ and 1 < p <∞. Then, the following two conditions are
equivalent:

(i) u ∈W 1,p(a, b; X);

(ii) There exists a constant C > 0 such that
∫ b−δ
a
‖u(t + δ) − u(t)‖pX ≤ Cδp

for every δ ∈ (0, b− a].

The implication (i)⇒ (ii) is still valid for p = 1. Moreover, (ii) holds if u is of
bounded variation on [a, b] and X is not necessarily reflexive.

Here and in what follows, Lp andW k,p denote the usual function and Sobolev
spaces, respectively. Now, in order to state the next result, let us consider two
real Hilbert spaces V and H, such that V is densely and continuously embedded
into H. If H is identified with its own dual, then we have V ⊂ H ⊂ V ′,
algebraically and topologically. We have denoted by V ′ the dual of V . Denote
also by 〈·, ·〉 the pairing between V and V ′, i.e., 〈v, v∗〉 := v∗(v), for v ∈
V, v∗ ∈ V ′. For v∗ ∈ H ′ ≡ H, 〈v, v∗〉 reduces to the scalar product in H of
v and v∗. Following [10, Chapter 1], for some −∞ < a < b <∞ we set

W (a, b) := {u ∈ L2(a, b;V ); u′ ∈ L2(a, b;V ′)} ,

where u′ is the distributional derivative of u, as a V -valued distribution.
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Theorem 2.2 Every u ∈ W (a, b) has a representative u1 ∈ C([a, b];H) and
so u can be identified with such a continuous function. Furthermore, if u, ũ ∈
W (a, b), then the function t 7→ 〈u(t), ũ(t)〉 is absolutely continuous on [a, b] and

d

dt
〈u(t), ũ(t)〉 = 〈u(t), ũ′(t)〉+ 〈ũ(t), u′(t)〉 for a.a. t ∈ (a, b),

and, hence, in particular,

d

dt
‖u(t)‖2H = 2〈u(t), u′(t)〉 for a.a. t ∈ (a, b) .

Finally, we recall the following theorem due to H. Attouch and A. Damlamian
[1] which will be needed for the derivation of higher regularity of the solution of
the BVP:

Theorem 2.3 Let A(t) = ∂φ(t, ·) for 0, where φ(t, ·) : H → (−∞,+∞] are
proper, convex, and lower semi-continuous functions, with a domain of defini-
tion D(φ(t, ·)) = D which is independent of t. Here H is a real Hilbert space.
Assume further that there exists a nondecreasing function γ:[0, T ]→R and some
real constants C1, C2 such that

φ(t, v) ≤ φ(s, v) + [γ(t)− γ(s)] · [φ(s, v) + C1‖v‖2H + C2] (2.1)

for all v ∈ D and 0 ≤ s ≤ t ≤ T . Then, for every u0 ∈ D and f ∈
L2(0, T ;H), there exists a unique solution u ∈ W 1,2(0, T ;H) of the equation
u′(t) + A(t)u(t) = f(t) for a.a. t ∈ (0, T ) with the initial condition u(0) = u0.
Moreover, there exists a function h ∈ L1(0, T ) such that

φ(t, u(t)) ≤ φ(s, u(s)) +
∫ t

s

h(r)dr for all 0 ≤ s ≤ t ≤ T . (2.2)

Here, we denote by ∂φ(t, ·) the subdifferential of the function φ(t, ·). In what
follows, we shall use the theory of evolution equations associated with monotone
operators in Hilbert spaces. For details we refer to [5, 7, 12].

3 High Regularity of Solutions

If β1, β2 are maximal monotone mappings, then existence and uniqueness of
the solution to the BVP is well known. The most important results, even
for n dimensions, were established by H. Brezis [6, 7]. Our problem can be
expressed as a Cauchy problem in L2(0, 1), associated with a subdifferential
and, hence, existence is available (see, e.g., Brezis’s theorem in [12, p. 56],
where the regularizing effect of the subdifferential on the initial data is pointed
out). For a more general problem than ours see [12, Chapter 3, §3], where the
existence to a higher order, one-dimensional, parabolic equation is discussed.
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Theorem 3.1 Assume that

f ∈W 1,1(0, T ;L2(0, 1)) ; (3.1)
β1, β2 are both maximal monotone ; (3.2)

y0 ∈ H2(0, 1) ; (3.3)

and that the following first-order compatibility conditions are fulfilled:

y′0(0) ∈ β1(y0(0)), −y′0(1) ∈ β2(y0(1)) . (3.4)

Then the BVP (1.1), (1.2), (1.3) has a unique strong solution

y ∈W 1,∞(0, T ;L2(0, 1)) ∩ L∞(0, T ;H2(0, 1)) ∩W 1,2(0, T ;H1(0, 1)) . (3.5)

Proof: Let H = L2(0, 1) with

〈p, q〉 =
∫ 1

0

p(x)q(x) dx, ‖p‖2H =
∫ 1

0

p(x)2dx .

We define the operator A : D(A) ⊆ H → H as

Ap = −p′′ + gp

on the domain of definition

D(A) =
{
p ∈ H2(0, 1); p(0) ∈ D(β1),

p(1) ∈ D(β2), p′(0) ∈ β1(p(0)),−p′(1) ∈ β2(p(1))
}
.

Then the BVP may be written as the Cauchy problem in H,

y′(t) +Ay(t) = f(t), 0 < t < T,

y(0) = y0,
(3.6)

where y(t) := y(·, t) and f(t) := f(·, t). The operator A is maximal monotone.
Moreover, A is the subdifferential of an appropriate proper, convex, lower semi-
continuous function (see [12, Chapter 3, §3]). By the existence and uniqueness
result [see, e.g., [12, Theorem 2.1, p. 48]), it follows that there exists a unique
strong solution of problem (3.6), y ∈W 1,∞(0, T ;H) ∩ L∞(0, T ;H2(0, 1)) .

Now, using (3.6)1, i.e. Eq. (1.1), we deduce that

yt(x, t+ δ)− yt(x, t)− [yxx(x, t+ δ)− yxx(x, t)]
+g[y(x, t+ δ)− y(x, t)] = f(x, t+ δ)− f(x, t),

where δ ∈ (0, T ). If we multiply the last equality by y(·, t+ δ)− y(·, t) scalarly
and then integrate on [0, T − δ], we arrive at the inequality∫ T−δ

0

‖yx(·, t+ δ)− yx(·, t)‖2Hdt

≤1
2
‖y(·, δ)− y0‖2H +

∫ T−δ

0

‖f(·, t+ δ)− f(·, t)‖H‖y(·, t+ δ)− y(·, t)‖Hdt .
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Since y ∈ W 1,∞(0, T ; H), there exists a positive constant C1 such that for all
t ∈ [0, T − δ]:

‖y(·, t+ δ)− y(·, t)‖H ≤ C1δ . (3.8)

Now, combining (3.7), (3.8), (3.1), and Theorem 2.1 for p = 1, we can easily see
that ∫ T−δ

0

‖yx(·, t+ δ)− yx(·, t)‖2Hdt ≤ C2δ
2 , (3.9)

with some positive constant C2. Taking again into account Theorem 2.1, it
follows by (3.9) that yx ∈ W 1,2(0, T ;H), which concludes the proof of the
theorem.

Remark 3.1 In fact, the results similar to those above are known [6]. However,
it seems that, for multivalued β1 and β2, no improvement of the above regularity
is possible, although we could not find an appropriate counter-example yet. But
an improvement of regularity is possible for single-valued and smooth β1 and
β2.

Theorem 3.2 Assume that

f ∈W 2,1(0, T ;L2(0, 1)), f(·, 0) ∈ H2(0, 1) ; (3.10)

β1, β2 are both defined on R, single-valued, and satisfy

β1, β2 ∈W 2,∞
loc R , β′1 ≥ 0, β′2 ≥ 0 . (3.11)

Moreover,
y0 ∈ H4(0, 1) . (3.12)

In addition, we require (3.4) (where the inclusions must be replaced by equalities)
as well as the following second order compatibility conditions:

z′0(0) = β′1(y0(0))z0(0), −z′0(1) = β′2(y0(1))z0(1) , (3.13)

where z0 is defined as

z0(x) = f(x, 0) + y′′0 (x)− gy0(x), 0 ≤ x ≤ 1 . (3.14)

Then the solution y of the BVP belongs to

W 2,2(0, T ;H1(0, 1)) ∩W 2,∞(0, T ;L2(0, 1))

Proof: Obviously, all the conditions of Theorem 3.1 are fulfilled and so the
BVP has a unique solution y satisfying (3.5). Let us denote V = H1(0, 1) and
V ′ = (H1(0, 1))′ (the dual space). We will first show that yt ∈ W 1,2(0, T ;V ′).
To this end, it suffices to prove (cf. Theorem 2.1) that there exists a positive
constant C such that for every δ ∈ (0, T ]:∫ T−δ

0

∥∥yt(·, t+ δ)− yt(·, t)
∥∥2

V ′
dt ≤ Cδ2 . (3.15)
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Indeed, we have for a.a. t ∈ (0, T − δ) and all φ ∈ V the equation〈
yt(·, t+ δ)− yt(·, t), φ

〉
=

〈
yxx(·, t+ δ)− yxx(·, t), φ

〉
− g〈y(·, t+ δ)− y(·, t), φ〉+ 〈f(·, t+ δ)− f(·, t), φ〉

= −
〈
yx(·, t+ δ)− yx(·, t), φ′

〉
− [β2(y(1, t+ δ))− β2(y(1, t))]φ(1)

− [β1(y(0, t+ δ))− β1(y(0, t))]φ(0)
− g〈y(·, t+ δ)− y(·, t), φ〉+ 〈f(·, t+ δ)− f(·, t), φ〉 , (3.16)

where 〈·, ·〉 denotes the L2-duality pairing between V and V ′. Taking into
account (3.5) and (3.11), which in particular implies that β1, β2 are Lipschitzian
on bounded sets, one obtains from (3.16) the estimate

‖yt(·, t+ δ)− yt(·, t)‖2V ′ ≤ C3{‖y(·, t+ δ)− y(·, t)‖2V + ‖f(·, t+ δ)− f(·, t)‖2H} ,
(3.17)

where C3 is some positive constant. Now, (3.5), (3.10), (3.17) and Theorem 2.1
lead us to the desired estimate (3.15). Therefore z := yt ∈ W 1,2(0, T ;V ′) and,
thus, we can differentiate with respect to t the equation

〈yt(·, t), φ〉+ 〈yx(·, t), φ′〉+ β1(y(0, t))φ(0) + β2(y(1, t))φ(1) + g〈y(·, t), φ〉
= 〈f(·, t), φ〉

to obtain

〈zt(·, t), φ〉+ 〈zx(·, t), φ′〉+ g1(t)z(0, t)φ(0) + g2(t)z(1, t)φ(1) + g〈z(·, t), φ〉
= 〈ft(·, t), φ)for all φ ∈ V, and a.a. t ∈ (0, T ) , (3.18)

where
g1(t) := β′1(y(0, t)), g2(t) := β′2(y(1, t)).

In addition,
z(·, 0) = z0 , (3.19)

with z0 defined by (3.14). Consequently, z is the unique solution of the problem
(3.18), (3.19) in the class of yt. Indeed, if we take in (3.18), (3.19) ft ≡ 0,
z0 ≡ 0, and φ := z(·, t), then, according to Theorem 2.2, we have

d

dt
‖z(·, t)‖2H ≤ 0 for a.a. t ∈ (0, T ),

which clearly implies that z ≡ 0. Note that z = yt satisfies the linear problem

zt − zxx + gz = ft, in DT ,

z(x, 0) = z0(x), 0 < x < 1,
zx(0, t) = g1(t)z(0, t), −zx(1, t) = g2(t)z(1, t), 0 < t < T

(3.20)

formally. By Theorem 3.1 and the assumption (3.11) it follows that g1, g2 ∈
H1(0, T ), and that g1 ≥ 0, g2 ≥ 0 in [0, 1]. Actually, problem (3.20) has a
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unique strong solution. To show this, let us use the fact that this problem can
be expressed as the following time-dependent Cauchy problem in H = L2(0, 1):

z′(t) +B(t)z(t) = ft(·, t) for 0 < t < T,

z(0) = z0,
(3.21)

where z(t) := z(·, t) and B(t) : D(B(t)) ⊂ H → H is defined by

B(t)p = −p′′ + gp

on the domain of definition

D(B(t)) =
{
p ∈ H2(0, 1); p′(0) = g1(t)p(0), − p′(1) = g2(t)p(1)

}
.

B(t) is maximal monotone for every t∈[0, T ] and, even more, B(t) is the sub-
differential of the function ϕ(t, ·) : H → (−∞,+∞], given by

ϕ(t, p) =


(1/2)

{ ∫ 1

0
p′(x)2

dx+ g
∫ 1

0
p(x)2dx

+g1(t)p(0)2 + g2(t)p(1)2
}

for p ∈ H1(0, 1) ,

+∞ for p ∈ H\H1(0, 1)

(see, e. g., [12, Chapter 3, §3]). For every t ∈ [0, T ], the effective domain is
D(ϕ(t, ·))=H1(0, 1), i.e. it is independent on t. Now, we are going to show that
the condition (2.1) of Theorem 2.3 is satisfied. To this end, let p∈H1(0, 1) and
0≤s≤t≤T. We have

ϕ(t, p)− ϕ(s, p) =
g1(t)− g1(s)

2
p(0)2 +

g2(t)− g2(s)
2

p(1)2

= 1
2p(0)2

∫ t

s

g′1(τ)dτ + 1
2p(1)2

∫ t

s

g′2(τ)dτ

≤ K
2 (‖p‖2H + ‖p′‖2H)

∫ t

s

(
| g′1(τ) | + | g′2(τ) |

)
dτ ,

where K is a positive constant due to the continuous embedding of H1(0, 1)
into C[0, 1]. Therefore,

ϕ(t, p) ≤ ϕ(s, p) + [γ(t)− γ(s)] · [ϕ(s, p) +
1
2
‖p‖2H ],

where

γ(t) = K

∫ t

0

(
| g′1(τ) | + | g′2(τ) |

)
dτ.

By Theorem 2.3 one obtains that problem (3.21) has a unique solution

z ∈W 1,2(0, T ;H) ∩ L∞(0, T ;H1(0, 1)).
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This solution z satisfies problem (3.18), (3.19) and, hence, it coincides with yt.
So, we have already proved that

y ∈W 2,2(0, T ;H) ∩W 1,∞(0, T ;H1(0, 1)).

We are now going to show that

zt = ytt ∈ L∞(0, T ;H) ∩ L2(0, T ;H1(0, 1)).

To this end, we proceed in a standard manner by starting from the estimates

1
2
d

dt
‖z(·, t+ h)− z(·, t)‖2H + ‖zx(·, t+ h)− zx(·, t)‖2H

+[g1(t+ h)z(0, t+ h)− g1(t)z(0, t)] · [z(0, t+ h)− z(0, t)]
+[g2(t+ h)z(1, t+ h)− g2(t)z(1, t)] · [z(1, t+ h)− z(1, t)]
≤ ‖ft(·, t+ h)− ft(·, t)‖H · ‖z(·, t+ h)− z(·, t)‖H

for a.a. 0 ≤ t < t+ h ≤ T , and

1
2
d

dh
‖z(·, h)− z0‖2H + ‖zx(·, h)− z′0‖2H + [g1(h)z(0, h)

−g1(0)z0(0)] · [z(0, h)− z0(0)] + [g2(h)z(1, h− g2(0)z0(1)] · [z(1, h)− z0(1)]
≤ ‖fh(·, h)−B(0)z0‖H · ‖z(·, h)− z0‖H for a.a. h ∈ (0, T ) .

Since y ∈ W 1,∞(0, T ;H1(0, 1)) and β1, β2 ∈ W 2,∞
loc (R), both the functions

g1, g2 are Lipschitz continuous. So, taking also into account that g1 ≥ 0 and
g2 ≥ 0 in [0, 1], we get from the above inequalities

1
2
d

dt
‖z(·, t+ h)− z(·, t)‖2H + ‖zx(·, t+ h)− zx(·, t)‖2H
≤ ‖ft(·, t+ h)− ft(·, t)‖H · ‖z(·, t+ h)− z(·, t)‖H (3.22)

+L1h|z(0, t+ h)− z(0, t)|+ L2h|z(1, t+ h)− z(1, t)| ,

and

1
2
d

dh
‖z(·, h)− z0‖2H + ‖zx(·, h)− z′0‖2H

≤ ‖fh(·, h)−B(0)z0‖H · ‖z(·, h)− z0‖H (3.23)
+L1h|z(0, h)− z0(0)|+ L2h|z(1, h)− z0(1)| .

Now, taking into account the continuous embedding of H1(0, 1) into C[0, 1] and
the inequality ab ≤ εa2 + b2/(4ε) for all a, b ≥ 0, ε > 0, we obtain from (3.22)
and (3.23) the two estimates

1
2
d

dt
‖z(·, t+ h)− z(·, t)‖2H + ‖zx(·, t+ h)− zx(·, t)‖2H
≤ ‖ft(·, t+ h)− ft(·, t)‖H · ‖z(·, t+ h)− z(·, t)‖H (3.24)

+
1
2

(‖zx(·, t+ h)− zx(·, t)‖2H + ‖z(·, t+ h)− z(·, t)‖2H) +
1
2
C4h

2 ,
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and

1
2
d

dh
‖z(·, h)− z0‖2H + ‖zx(·, h)− z′0‖2H

≤ ‖fh(·, h)−B(0)z0‖H · ‖z(·, h)− z0‖H (3.25)

+
1
2

(‖zx(·, h)− z′0‖2H + ‖z(·, h)− z0‖2H) + 1
2C5h

2 ,

where C4 and C5 are some positive constants. Therefore,

d
dt (e

−t‖z(·, t+ h)− z(·, t)‖2H) + e−t‖zx(·, t+ h)− zx(·, t)‖2H
≤ 2e−t‖ft(·, t+ h)− ft(·, t)‖H · ‖z(·, t+ h)− z(·, t)‖H + C4h

2 , (3.26)

and

d
dh (e−h‖z(·, h)− z0‖2H) ≤ C5h

2 + 2e−h‖fh(·, h)−B(0)z0‖H · ‖z(·, h)− z0‖H .
(3.27)

If we drop the second term in the left–hand side of (3.26) and integrate the
resulting inequality over [0, t], then, by using a Gronwall type lemma (see, e.g.,
[12, p. 47]) we arrive at the estimate

‖z(·, t+ h)− z(·, t)‖H ≤ C6{‖z(·, h)− z0‖H + h

+
∫ t

0

‖fs(·, s+ h)− fs(·, s)‖Hds} . (3.28)

Now, from (3.25) we obtain in a similar way

‖z(·, h)− z0‖H ≤ C7(h3/2 +
∫ h

0

‖fs(·, s)−B(0)z0‖Hds) . (3.29)

Finally, (3.28) and (3.29) imply that zt ∈ L∞(0, T ;H). Using this conclusion
together with (3.24), we get, by using of Theorem 2.1, that zx ∈W 1,2(0, T ;H).
This concludes the proof.

Remark 3.2 If f in Theorem 3.2 is assumed to be more regular with respect
to x, then y is also more regular with respect to x, because

ytt = yxxt − gyt + ft = yxxxx − gyxx + fxx − gyt + ft.

On the other hand, by reasoning similarly as in the proof of Theorem 3.2, one
can show that y ∈ W 3,2(0, T ;H1(0, 1)) ∩W 3,∞(0, T ;L2(0, 1)) under appropri-
ate assumptions on the smoothness of β1, β2, y0, f and compatibility. The
proof needs a slight modification since the boundary conditions corresponding
to (3.20) are now inhomogeneous. Fortunately, the inhomogeneous terms there
are H1-functions and so Theorem 2.3 is again applicable, with a slight change
of φ. The corresponding t-dependent operator is nonlinear because its domain
is an affine subset of L2(0, 1). Here we will not further present these details. Of
course, higher regularity with respect to x can also be obtained at the expense
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of additional regularity and compatibility assumptions. Actually, our procedure
can be repeated as many times as we want to and so any regularity of the solu-
tion with respect to t and x can be reached under sufficient smoothness of the
data and compatibility conditions. More precisely, the Hk(DT )-regularity can
be shown for every k and, thus, the Ck(DT )-regularity can be obtained as well
for every k, due to Sobolev’s embedding theorem.

Remark 3.3 Theorem 3.2 is formulated in such a way that the next level of
regularity can be obtained. Note, however, that this is a parabolic problem so
that, in order to get, for instance,

y ∈W 2,2(0, T ;L2(0, 1)) ∩W 1,∞(0, T ;H1(0, 1)),

we can relax our assumptions. More precisely, it suffices to assume that

f ∈W 1,2(0, T ;L2(0, 1)), f(·, 0) ∈ H1(0, 1);

β1 and β2 satisfy (3.11); y0 ∈ H3(0, 1), and y0 satisfies (3.4) with equalities
instead of inclusions.

Remark 3.4 Here, we do not discuss nonlinear cases of the equation (1.1),
since this would require a special treatment. However, let us point out some
immediate extensions of the above results.

Assume that the linear term gy of Equation (1.1) is replaced by a nonlinear one,
say g(y), where g : R −→ R is a single-valued, continuous and nondecreasing
function. Then Theorem 3.1 is still valid. If, in addition, g is a W 2,∞

loc (R)-
function, then Theorem 3.2 is also valid for this nonlinear case with

z0(x) = f(x, 0) + y′′0 (x)− g(y0(x)).

Indeed, (3.17) remains true, because g is Lipschitzian on bounded sets and y
takes values in a bounded set. So, again, z = yt ∈W 1,2(0, T ;V ′). The remainder
of the proof of Theorem 3.2 continues with slight modifications. In particular,
in Eq. (3.20)1 the term gz must be replaced by g′(y)z and B(t) becomes

B(t)p = −p′′ + g′(y(·, t))p,

with the same domain of definition as before. This means that in the definition
of the energy function φ(t, p), the term (1/2)g

∫ 1

0
p(x)2dx should be replaced by

(1/2)
∫ 1

0
g′(y(x, t))p(x)2dx. Finally, here γ can be chosen in the specific form

γ(t) = K

∫ t

0

(|g′1(τ)|+ |g′2(τ)|+ ‖g′′(y(·, τ))yτ (·, τ)‖L∞(0,1))dτ.

Then all the conclusions can be derived by similar arguments as above.
On the other hand, if the (1.2) are inhomogeneous and (1.1) is nonlinear,

then a transformation like (1.4) would lead us to an evolution equation where
the spatial operator becomes time-dependent. Instead, we still can keep the in-
homogeneous form of (1.2) and associate with our problem an energy functional
φ(t, ·) which also includes the inhomogeneous terms.
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