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ON THE GOURSAT PROBLEM FOR A SECOND ORDER
EQUATION

SHIGEO TARAMA

Abstract. We consider the Goursat problem for second order operators and

show existence and uniqueness of smooth solutions. We prove one of the results
of Hasegawa (J. Math. Soc. Japan 50 (1998), no. 3, 639–662) by the energy

method. The same method is applied when one of the surfaces where the
Goursat data are given is a non-characteristic.

1. Introduction

Hasegawa [1] studied the C∞ wellposedness of the Goursat problem

∂x∂tu+A(t, x, y)∂2
yu = f(t, x, y) (t, x, y) ∈ R3

u(0, x, y) = g1(x, y) (x, y) ∈ R2

u(t, 0, y) = g2(t, y) (t, y) ∈ R2

(1.1)

and obtained very interesting results: when A(t, x, y) = Atkxl with A a non-zero
real constant and k, l non-negative integers, the Goursat problem (1.1) is C∞ well-
posed if and only if

k and l are odd and A < 0. (1.2)

This condition is equivalent to the following condition on the signature of the coef-
ficient A(t, x, y) = Atkxl on each quadrant

Πp,q =
{

(t, x, y) ∈ R3 | (−1)pt < 0 and (−1)qx < 0
}

with p, q = 1, 2:
(−1)p+qA(t, x, y) < 0 on Πp,q.

In other words, the polynomial of (τ, ξ, η), τξ + A(t, x, y)η2 is hyperbolic in the
direction (1, δ, 0) with some constant δ satisfying (−1)p+qδ > 0 on each quadrant
Πp,q.

Nishitani [4] gave necessary and sufficient conditions for the Goursat problem to
be C∞-wellposed in higher order differential operators with constant coefficients.
According to his result, when A(t, x, y) is constant, (1.1) is C∞-wellposed if and
only if there exists δ0 > 0 such that for 0 < |δ| < δ0, the polynomial τξ + Aη2
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is hyperbolic in the direction (1, δ, 0). We note that τξ + Aη2 is hyperbolic in the
direction (1, δ, 0) with δ > 0 [respectively with δ < 0], if and only if

A ≤ 0 [respectively A ≥ 0].

Therefore, one may say that under condition (1.2), the polynomial τξ+A(t, x, y)η2

satisfies Nishitani’s condition only in the “out-going” direction on each quadrant
Πp,q. From this point of view, in this paper, we draw the result of Hasegawa [1],
that is to say, that the conditions (1.2) implies the C∞-wellposedness of (1.1), by
using the energy method, while Hasegawa used the fundamental solution.

Now consider the Goursat problem

∂x∂tu− t2k+1x2l+1A2(t, x, y)∂2
yu

+tkxlA1(t, x, y)∂yu+ a0(t, x, y)u = f(t, x, y) (t, x, y) ∈ R3

u(0, x, y) = g1(x, y) (x, y) ∈ R2

u(t, 0, y) = g2(t, y) (t, y) ∈ R2

(1.3)

where k and l are non-negative integers.
We assume that for j = 1, 2, Aj(t, x, y) and a0(t, x, y) are C∞-functions on R3

and bounded on R3 with derivatives of any order; that is to say, Aj(t, x, y), a0(t, x, y)
are in B∞(R3). Also we assume that for some positive constant δ0 > 0,

A2(t, x, y) ≥ δ0 on R3 . (1.4)

Then we have the following statement.

Theorem 1.1. For any f(t, x, y) ∈ C∞(R3) and g1(x, y), g2(t, y) ∈ C∞(R2) sat-
isfying the compatibility condition

g1(0, y) = g2(0, y),

the Goursat problem (1.3) has one and only one solution u(t, x, y) ∈ C∞(R3).

The plan of the proof is the following. First we reduce to the case where
g1(x, y) = g2(t, y) = 0 and f(t, x, y) is flat on both planes {(0, x, y) | (x, y) ∈ R2}
and {(t, 0, y) | (t, y) ∈ R2}. Then we consider (1.3) on each quadrant Π(p,q) (p, q =
1, 2). For example, when we are on the first quadrant Π(1,1), we extend f(t, x, y) as
C∞-function out of Π(1,1) by putting f(t, x, y) = 0 for (t, x, y) 6∈ Π(1,1). After ap-
proximating the operator L1 = ∂x∂t − t2k+1x2l+1A2(t, x, y)∂2

y + tkxlA0(t, x, y)∂y +
a0(t, x, y) by the strictly hyperbolic operator L1,ε, we solve the Cauchy problem
L1,εuε = f(t, x, y) with zero data on the plane given by t+x = 0. We see that this
solution uε supported on the closure of Π(1,1). Hence by taking the limit, we obtain
the desired solution on Π(1,1). The uniqueness follows from the duality argument.
The detail is given in the next section.

By using the similar argument we can consider the case that the plane x = 0 is
not characteristic, that is to say

∂x∂tu−B(t, x, y)∂2
xu− t2k+1x2l+1A2(t, x, y)∂2

yu

+tkxl+1A1∂yu+ a0(t, x, y)u = f(t, x, y) (t, x, y) ∈ R3

u(0, x, y) = g1(x, y) (x, y) ∈ R2

u(t, 0, y) = g2(t, y) (t, y) ∈ R2

(1.6)
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where k and l are non-negative integers. We assume that Aj(t, x, y) (j = 1, 2),
a0(t, x, y), B(t, x, y) ∈ B∞(R3), (1.4) and that B(t, x, y) is real-valued and satisfies

|B(t, x, y)| ≥ σ0 on R3

with some positive constant σ0. Then we have the following statement.

Theorem 1.2. For any f(t, x, y) ∈ C∞(R3) and g1(x, y), g2(t, y) ∈ C∞(R2) sat-
isfying the compatibility condition

g1(0, y) = g2(0, y),

the Goursat problem (1.6) has one and only one solution u(t, x, y) ∈ C∞(R3).

In this case we reduce the problem to that with g1(x, y) = 0, g2(t, y) = 0 and
f(t, x, y) that is flat on the plane t = 0. Then we consider the problem on the upper
half space t ≥ 0 and on the lower half space t ≤ 0 separately. Here we remark that
we may assume B(t, x, y) > 0 by putting x = −x if necessary. When we work on
the upper half space t ≥ 0, we extend f(t, x, y) to the lower half space by putting
f(t, x, y) = 0 for t < 0. First we solve the mixed problem on the space x ≥ 0 with
the zero initial data on the plane t + δx = 0 with some δ > 0 and zero Dirichlet
data on the boundary x = 0. Then the solution u given for x ≥ 0 is supported in
the first quadrant. Since the given operator is hyperbolic with respect to x-variable
in the second quadrant. We extend u as the solution of Cauchy problem with the
initial plane x = 0. Then we obatin a solution supported on the upper half space.
The detail is given in the section 4.

We use the following notation. The inner product in L2(Ry) denoted by

(f, g) =
∫ ∞
−∞

f(y)g(y) dy,

and the norm given by ‖ · ‖ =
√

(·, ·). For an open set Ω, H∞(Ω) is the space
consisting of all smooth functions which and their derivatives of any order belong
to L2(Ω). The space C∞0 (Ω) consists of compactly supported C∞ functions on
Ω. The space H∞loc(Ω) consists of functions f satisfying χf ∈ H∞(Ω) for any
χ ∈ C∞0 (Ω). For any closed set F ⊂ R3, we denote by C∞0 (F ) the space consisting
of all functions f on F such that f can be extended as a function in C∞0 (R3).
Furthermore in the following, we denote by C with or without a subscript an
arbitary constant which may be different line by line. And in the section 3 and 5,
constants C are independent of ε ∈ (0, 1) even if not mentioned explicitly.

2. Proof of Theorem 1.1

We denote by L1 the differential operator in (1.3):

L1 = ∂t∂x − t2k+1x2l+1A2(t, x, y)∂y2 + tkxlA1(t, x, y)∂y + a0(t, x, y). (2.1)

Suppose that u ∈ C∞(R3) satisfies (1.3). Let ul(x, y) denote ∂ltu(0, x, y). Then

u0(x, y) = g1(x, y).

Since u(t, 0, y) = g2(t, y), we obtain

ul(0, y) = ∂ltg2(0, y). (2.2)
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From the equation L1u(t, x, y) = f(t, x, y), we obtain that for l ≥ 1

∂xul(x, y) =
l∑

j=1

α
(i)
j (x, y, ∂y)ul−j + ∂l−1

t f(0, x, y) (2.3)

with some second order differential operators α(i)
j (x, y, ∂y). We can determine suc-

cessively ul(x, y) from (2.2) and (2.3).
We see that L1(

∑k
l=0

ul(x,y)tl

l! ) − f(t, x, y) = O(tk) and that
∑k
l=0

ul(0,y)tl

l! −
g2(t, y) = O(tk+1). Then by picking a C∞ function v(t, x, y) such that ∂ltv(0, x, y) =
ul(x, y) for any l ≥ 0, we see that f̃(t, x, y) = f(t, x, y)−L1v(t, x, y) and g̃2(t, y) =
g2(t, y)−v(t, 0, y) are flat on the plane given by t = 0. Hence w(t, x, y) = u(t, x, y)−
v(t, x, y) satisfies

L1w = f̃(t, x, y) (t, x, y) ∈ R3

w(0, x, y) = 0 (x, y) ∈ R2

w(t, 0, y) = g̃2(t, y) (t, y) ∈ R2

Similarly by putting wl(t, y) = ∂lxw(t, 0, y) (l ≥ 0), we see that

w0(t, y) = g̃2(t, y).

Since w(0, x, y) = 0, we obtain

wl(0, y) = 0. (2.4)

From the equation L1w = f̃(t, x, y), we obtain that for l ≥ 1

∂twl(t, y) =
l∑

j=1

β
(i)
j (t, y, ∂y)wl−j + ∂l−1

x f̃(t, 0, y) (2.5)

with some second order differential operators β
(i)
j (x, y, ∂y). Since w0(t, y) and

∂lxf̃(t, 0, y) (l ≥ 0) are flat on the plane t = 0, we obtain from (2.4) and (2.5) wl(t, y)
that is flat on the plane t = 0. Therefore by picking a C∞ function w(t, x, y) such
that ∂lxw(t, 0, y) = wl(t, y) for any l ≥ 0 and w(t, x, y) is flat on the plane t = 0, we
see that f̃(t, x, y)− L1w(t, x, y) is flat on the plane given by t = 0 and also on the
plane given by x = 0 and that 0 = g̃2(t, y)− w(t, 0, y).

Lemma 2.1. The problem to find a C∞ solution to (1.3) is reduced to the problem
to find a C∞ solution to the following

L1u = h(t, x, y) (t, x, y) ∈ R3

u(0, x, y) = 0 (x, y) ∈ R2

u(t, 0, y) = 0 (t, y) ∈ R2

(2.6)

where h(t, x, y) is flat on the plane given by t = 0 and on the plane given by x = 0.

We remark that a C∞ solution u(t, x, y) to (2.6) is flat on the plane given by
t = 0 and on the plane given by x = 0.
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Since h(t, x, y) is flat on the plane given by t = 0 and on the plane given by
x = 0, we can define smooth functions hp,q(t, x, y) (p, q = 1, 2) by

hp,q(t, x, y) =

{
h(t, x, y) (t, x, y) ∈ Πp,q

0 otherwise.
(2.7)

Now we consider the problem

L1u = hp,q(t, x, y) (t, x, y) ∈ R3

suppu ⊂ Πp,q

(2.8)

If up,q(t, x, y) is the solution to (2.8), then
∑
p=1,2,q=1,2 up,q(t, x, y) satisfies (2.6).

On the other hand for a solution u(t, x, y) to (2.6), then up,q(t, x, y) defined by

up,q(t, x, y) =

{
u(t, x, y) (t, x, y) ∈ Πp,q

0 otherwise.

is a solution to (2.8). Therefore the uniqueness for (2.8) implies that of (2.6).
We note that the problem (2.8) with (p, q) 6= (1, 1) is reduced to that of (1, 1)

by the change of coordinates t = (−1)p−1t, x = (−1)q−1x. Then we have only to
prove the following proposition in order to prove Theorem 1.1.

Proposition 2.2. For any h(t, x, y) ∈ C∞(R3) satisfying supph(t, x, y) ⊂ Π1,1,
there exists one and only one solution u(t, x, y) ∈ C∞(R3) to the equation

L1u = h(t, x, y) (t, x, y) ∈ R3

suppu ⊂ Π1,1

(2.10)

Proof. To show the proposition above, we define the operator L1,ε with 1 > ε > 0
by

L1,ε = ∂t∂x − t2k+1
ε x2l+1

ε A2(t, x, y)∂2
y + tkεx

l
εA1(t, x, y)∂y + a0(t, x, y).

where tε and xε are given by

tε = εχ(
t

ε
), xε = εχ(

x

ε
) (2.12)

by using a function χ(s) ∈ C∞(R) satisfying the following;

χ(s) ≥ max{1
2
, s+ 1} (s ∈ R)

χ(s) = s+ 1 (s ≥ 0), χ(s) =
1
2

(s ≤ −1)

We note that tε, xε ∈ C∞(R) and that

tε, xε ≥
ε

2
, tε = t+ ε (t ≥ 0), xε = x+ ε (x ≥ 0). (2.13)

Since t2k+1
ε x2l+1

ε A2(t, x, y) > 0 on R3, we see that the operator L1,ε is strictly
hyperbolic in the direction (δ, 1 − δ, 0) with 0 < δ < 1. For any T > 0, the
coefficients of L1,ε are bounded on a closed domain Dom T given by

Dom T =
{

(t, x, y) ∈ R3 | 2T ≥ x+ t ≥ 1
2

(
√

1 + (t− x)2 − 1)
}
.
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Since Π1,1 ⊂ {(t, x, y) ∈ R3 | x + t ≥ 1
2 (
√

1 + (t− x)2 − 1)}, for a h(t, x, y) ∈
C∞(R3) satisfying supph(t, x, y) ⊂ Π1,1, there exists one and only one solution
uε(t, x, y) ∈ C∞(R3) of the Cauchy problem

L1,εuε = h(t, x, y) (t, x, y) ∈ R3

suppuε ⊂
{

(t, x, y) ∈ R3 | x+ t ≥ 1
2

(
√

1 + (t− x)2 − 1)
}
.

(2.14)

Since the plane {(t, x, y) ∈ R3 | δt+ (1− δ)x = 0} with 0 < δ < 1 is space-like, we
see that

suppuε(t, x, y) ⊂ Π1,1.

Furthermore we have the finite propagation speed. That is to say, for any T > 0,
there exists a positive constant λ independent of ε such that, for any y0 ∈ R and
r > 0,

supph(t, x, y) ∩Dom T ⊂ {(t, x, y) ∈ R3 | |y − y0| ≤ r}
implies

suppuε(t, x, y) ∩Dom T ⊂ {(t, x, y) ∈ R3 | |y − y0| ≤ r + λ}.

If we can draw a sequence uεj (t, x, y) with εj → 0 such that uεj (t, x, y) converges
to a u(t, x, y) in C∞(R3), then we see that u(t, x, y) satisfies (2.10). We see the
existence of such a sequence from the following lemma whose proof is given in the
section 3.

Lemma 2.3. The family of solutions {uε(t, x, y)}0<ε<1 to (2.14) is bounded in the
space H∞loc(R3).

Concerning the uniqueness of solutions of the problem (2.10), we consider the
adjoint problem; for any T > 0 and any g(t, x, y) ∈ C∞0 (R3) whose support is
contained in {(t, x, y) ∈ R3 | 0 ≤ t ≤ T and 0 ≤ x ≤ T}, find a solution wε(t, x, y)
to

tL1,εwε = g(t, x, y) (t, x, y) ∈ R3

suppwε ⊂ {(t, x, y) ∈ R3 | x+ t ≤ 2T}
(2.15)

where tL1,ε, the transpose of L1,ε, is given by

tL1,εw(t, x, y) = ∂t∂xw(t, x, y)− t2k+1
ε x2l+1

ε ∂y
2(A2(t, x, y)w(t, x, y))

− tkεxlε∂y(A1(t, x, y)w(t, x, y)) + a0(t, x, y)w(t, x, y). (2.16)

The coefficients of tL1,ε are also bounded in Dom T . Then solutions wε(t, x, y)
have a finite propagation speed independent of 0 < ε < 1 in DomT . Then there
exists a compact set F ∈ R3 such that

suppwε(t, x, y) ∩
{

(t, x, y) ∈ R3 | t ≥ 0 and x ≥ 0
}
⊂ F.

Since the plane given by (1− δ)t+ δx = C with 0 < δ < 1 is space like, we have

suppwε(t, x, y) ⊂ (−∞, T ]× (−∞, T ]× R.

Then we obtain the second assertion of the following lemma. The proof of the first
assertion is given in the section 3.
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Lemma 2.4. The family of solutions {wε(t, x, y)}0<ε<1 to (2.15) is bounded in the
space H∞({(t, x, y) ∈ R3 | 0 < x < T and 0 < x < T}). Furtheremore there exists
some constant r0 such that

suppwε(t, x, y) ∩ {(t, x, y) ∈ R3 | t ≥ 0 and x ≥ 0}
⊂ {(t, x, y) ∈ R3 | 0 ≤ t ≤ T, 0 ≤ x ≤ T and |y| ≤ r0}.

Therefore we have a sequence wεj (t, x, y) with εj → 0 such that wεj (t, x, y)
converges to a w(t, x, y) in C∞({(t, x, y) ∈ R3 | 0 ≤ t ≤ T and 0 ≤ x ≤ T}). Then
we see by the integration by parts that for a solution u(t, x, y) of the problem (2.10)
with h(t, x, y) = 0

0 =
∫
R3
L1u(t, x, y)w(t, x, y) dt dx dy

= lim
j→∞

∫
R3
L1,εju(t, x, y)wεj (t, x, y) dt dx dy

=
∫
R3
u(t, x, y)g(t, x, y) dt dx dy

from which we get u(t, x, y) = 0. Hence we obtain the uniqueness of solutions of
the problem (2.10). �

3. Proof of Lemmas 2.3 and 2.4

First we draw the estimates for u(t, x, y) ∈ C∞(R3) carried by Π1,1 and vanishing
for large |y| by using the method of Oleinik [5]. Since

2<(∂t∂xu− t2k+1
ε x2l+1

ε A2(t, x, ·)∂y2u, ∂xu)

= ∂t(∂xu, ∂xu) + t2k+1
ε x2l+1

ε ∂x(A2(t, x, ·)∂yu, ∂yu) +R1

(3.1)

where

|R1| ≤ Ct2k+1
ε x2l+1

ε (‖∂yu‖2 + ‖∂xu‖2) (3.2)

and
2<(∂t∂xu− t2k+1

ε x2l+1
ε A2(t, x, ·)∂y2u, ∂tu)

= ∂x(∂tu, ∂tu) + t2k+1
ε x2l+1

ε ∂t(A2(t, x, ·)∂yu, ∂yu) +R2

(3.3)

where

|R2| ≤ Ct2k+1
ε x2l+1

ε (‖∂yu‖2 + ‖∂tu‖2),

we have

∂t(e−γ(t+x)t−Mε x−Mε ‖∂xu‖2)

+ ∂x
(
e−γ(t+x)t−M+2k+1

ε x−M+2l+1
ε (A2(t, x, ·)∂yu, ∂yu)

)
+ e−γ(t+x)(γtε +Mt′ε)t

−M−1
ε x−Mε ‖∂xu‖2

+ e−γ(t+x)(γxε + (M − 2l − 1)x′ε)t
−M+2k+1
ε x−M+2l

ε (A2(t, x, ·)∂yu, ∂yu)

≤ 2e−γ(t+x)t−Mε x−Mε <(∂t∂xu(t, x, y)− t2k+1
ε x2l+1

ε A2(t, x, ·)∂y2u, ∂xu)

+ Ce−γ(t+x)t−M+2k+1
ε x−M+2l+1

ε (‖∂yu‖2 + ‖∂xu‖2)

(3.5)



8 SHIGEO TARAMA EJDE–2002/52

and

∂x(e−γ(t+x)t−Mε x−Mε ‖∂tu‖2)

+ ∂t
(
e−γ(t+x)t−M+2k+1

ε x−M+2l+1
ε (A2(t, x, ·)∂yu, ∂yu)

)
+ e−γ(t+x)(γxε +Mx′ε)t

−M
ε x−M−1

ε ‖∂tu‖2

+ e−γ(t+x)(γtε + (M − 2k − 1)t′ε)t
−M+2k
ε x−M+2l+1

ε (A2(t, x, ·)∂yu, ∂yu)

≤ 2e−γ(t+x)t−Mε x−Mε <(∂t∂xu− t2k+1
ε x2l+1

ε A2(t, x, ·)∂y2u, ∂tu)

+ Ce−γ(t+x)t−M+2k+1
ε x−M+2l+1

ε (‖∂yu‖2 + ‖∂tu‖2).

(3.6)

Since

∂t∂xu(t, x, y)− t2k+1
ε x2l+1

ε A2(t, x, y)∂y2u(t, x, y)

= L1,εu(t, x, y)− tkεxlεA1(t, x, y)∂yu(t, x, y)− a0(t, x, y)u(t, x, y),

we have

|(∂t∂xu− t2k+1
ε x2l+1

ε A2(t, x, ·)∂y2u, ∂xu)|

≤ (‖L1,εu‖+ C0t
k
εx

l
ε‖∂yu‖+ C‖u‖)‖∂xu‖ (3.7)

and

|(∂t∂xu− t2k+1
ε x2l+1

ε A2(t, x, ·)∂y2u, ∂tu)|

≤ (‖L1,εu‖+ C0t
k
εx

l
ε‖∂yu‖+ C‖u‖)‖∂tu‖ (3.8)

where C0 = sup
R3 |A1(t, x, y)|. Noting

C0t
k
εx

l
ε‖∂yu‖‖∂xu‖ ≤

C0

2
(t2k+1
ε x2l

ε ‖∂yu‖2 + t−1
ε ‖∂xu‖2),

C0t
k
εx

l
ε‖∂yu‖‖∂tu‖ ≤

C0

2
(t2kε x

2l+1
ε ‖∂yu‖2 + x−1

ε ‖∂tu‖2)

and
t′ε = 1 (t ≥ 0), x′ε = 1 (x ≥ 0)

which follows from (2.13), we see that (3.5), (3.6), (3.7) and (3.8) imply the follow-
ing; for t ≥ 0 and x ≥ 0

∂t
{
e−γ(t+x)t−Mε x−Mε

(
‖∂xu‖2 + t2k+1

ε x2l+1
ε (A2(t, x, ·)∂yu, ∂yu)

)}
+∂x

{
e−γ(t+x)t−Mε x−Mε

(
‖∂tu‖2 + t2k+1

ε x2l+1
ε (A2(t, x, ·)∂yu, ∂yu)

)}
+e−γ(t+x)t−Mε x−Mε

{
γ(‖∂tu‖2 + ‖∂xu‖2)

+ (M − C0)t−1
ε ‖∂xu‖2 + (M − C0)x−1

ε ‖∂tu‖2
}

+e−γ(t+x)t−M+2k+1
ε x−M+2l+1

ε

(
2γ + (M − 2k − 1)t−1

ε + (M − 2l − 1)x−1
ε

)
× (A2(t, x, ·)∂yu, ∂yu)

≤e−γ(t+x)t−Mε x−Mε
(
‖L1,εu‖2 + ‖∂xu‖2 + ‖∂tu‖2

+ C0t
2k+1
ε x2l+1

ε (t−1
ε + x−1

ε )‖∂yu‖2 + C‖u‖2
)
.

(3.9)

Since A2(t, x, y) ≥ δ0 > 0 and

∂t(e−γ(t+x)t−Mε x−Mε ‖u‖2) + e−γ(t+x)t−Mε x−Mε (γ +Mt′εt
−1
ε )‖u‖2
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≤ e−γ(t+x)t−Mε x−Mε (
γ

2
‖u‖2 +

2
γ
‖∂tu‖2) (3.10)

which follows from ∂t‖u‖2 = 2<(∂tu, u) and the Schwarz inequality, we obtain,
from (3.9), when

M ≥ 2 max{C0, 2k + 1 +
C0

δ0
, 2l + 1 +

C0

δ0
},

for t1 > 0, x1 > 0 and for γ ≥ γ0 with some constant γ0 > 0 independent of ε,

∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε
{γ

2
(‖∂tu‖2 + ‖∂xu‖2 + ‖u‖2)

+
M

2
t−1
ε (‖∂xu‖2 + ‖u‖2) +

M

2
x−1
ε ‖∂tu‖2

}
dt dx

+
∫ t1

0

∫ x1

0

e−γ(t+x)t−M+2k+1
ε x−M+2l+1

ε δ0
{
γ +

M

2
(t−1
ε + x−1

ε )‖∂yu‖2
}
dt dx

≤
∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε ‖L1,εu‖2 dt dx

from which we obtain

γ

2

∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε
(
‖∂tu‖2 + ‖∂xu‖2 + ‖u‖2

)
dt dx

+ δ0γ

∫ t1

0

∫ x1

0

e−γ(t+x)t−M+2k+1
ε x−M+2l+1

ε ‖∂yu‖2 dt dx

≤
∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε ‖L1,εu‖2 dt dx.

(3.12)

Since

∂yL1,εu = L̃1,ε∂yu+ a0y(t, x, y)u

where

L̃1,ε = L1,ε + t2k+1
ε x2l+1

ε A2y(t, x, y)∂y + tkεx
l
εA1y(t, x, y)

with A2y(t, x, y) = ∂yA2(t, x, y), A1y(t, x, y) = ∂yA1(t, x, y) and a0y(t, x, y) =
∂ya0(t, x, y). Noting that

‖t2k+1
ε x2l+1

ε A2y(t, x, ·)∂yu‖2 ≤ Ct4k+2
ε x4l+2

ε ‖∂yu‖2,

we have the estimate similar to (3.12); with the same M as that of (3.12)

γ

2

∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε
(
‖∂tu‖2 + ‖∂xu‖2 + ‖u‖2

)
dt dx

+
δ0γ

2

∫ t1

0

∫ x1

0

e−γ(t+x)t−M+2k+1
ε x−M+2l+1

ε ‖∂yu‖2 dt dx

≤
∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε ‖L̃1,εu‖2 dt dx

(3.15)
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for γ ≥ γ1 with some constant γ1 > 0 which is independent of ε but may depend
on x1 and t1. Repeating the same argument, we have for any integer l ≥ 0

l∑
j=0

γ

∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε
(
‖∂t∂jyu‖2

+ ‖∂x∂jyu‖2 + ‖∂jyu‖2
)
dt dx

+
l∑

j=0

γ

∫ t1

0

∫ x1

0

e−γ(t+x)t−M+2k+1
ε x−M+2l+1

ε ‖∂j+1
y u‖2 dt dx

≤
l∑

j=0

C

∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε ‖∂jyL1,εu‖2 dt dx

(3.16)

for γ ≥ γl with some constant γl > 0 independent of ε and some constant C > 0
independent of ε and γ. Since

[∂t, L1,ε] = Rt(t, x, y, ∂y), [∂x, L1,ε] = Rx(t, x, y, ∂y)

where Rt(t, x, y, ∂y) and Rx(t, x, y, ∂y) are second order differential operators, we
obtain from (3.16)∑

α1+α2≤2

l∑
j=0

γ

∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε ‖∂α1
t ∂α2

x ∂jyu‖2 dt dx

≤C
∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε

( ∑
α1+α2≤1

α1+α2+j≤l+1

‖∂α1
t ∂α2

x ∂jyL1,εu‖2

+ ‖∂l+2
y L1,εu‖2

)
dt dx

for γ ≥ γl,1 with some constant γ3 > 0 independent of ε and some constant C > 0
independent of ε and γ. Repeating this argument we have the following lemma.
Lemma 3.1. Let u(t, x, y) ∈ C∞(R3) satisfy suppu(t, x, y) ⊂ Π1,1 and vanish for
large |y|. For any integer k ≥ 1 and any integer l ≥ 0∑
α1+α2≤2k−1

l∑
j=0

γ

∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε ‖∂α1
t ∂α2

x ∂jyu‖2 dt dx

≤ C
∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε
( ∑

α1+α2≤2k−2
α1+α2+j≤2k−2+l

‖∂α1
t ∂α2

x ∂jyL1,εu‖2
)
dt dx

(3.17)

∑
α1+α2≤2k

l∑
j=0

γ

∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε ‖∂α1
t ∂α2

x ∂jyu‖2 dt dx

≤ C
∫ t1

0

∫ x1

0

e−γ(t+x)t−Mε x−Mε
( ∑

α1+α2≤2k−1
α1+α2+j≤2k+l−1

‖∂α1
t ∂α2

x ∂jyL1,εu‖2

+ ‖∂2k+l
y L1,εu‖2

)
dt dx

. (3.18)

for γ ≥ γl,k with some constant γl,k > 0 independent of ε and some constant C > 0
independent of ε and γ.
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For the estimate of the right hand side of (3.17) or (3.18), we need the following
lemma.
Lemma 3.2. When a v(t, x, y) ∈ C∞(R3) satisfies supp v(t, x, y) ⊂ Π1,1 and van-
ishes for large |y|, we have, for t1, x1 ≥ 0 and any integer K ≥ 1∫ t1

0

∫ x1

0

t−2K+1
ε x−2K+1

ε ‖v‖2 dt dx ≤ C
∫ t1

0

∫ x1

0

‖∂Kt ∂Kx v‖2 dt dx

with some constant C > 0 independent of ε.

Proof. Since v(t, x, y) is flat on the plane t = 0 and on the plane x = 0, we have
for t, x ≥ 0

v(t, x, y) =
1

(K − 1)!

∫ t

0

(t− s)K−1∂Kt v(s, x, y)ds

=
1

(K − 1)!2

∫ t

0

∫ x

0

(t− s)K−1(x− y)K−1∂Kt ∂
K
x v(s, w, y)dsdw

Then

|v(t, x, y)|2 ≤ Ct2K−1x2K−1

∫ t

0

∫ x

0

|∂Kt ∂Kx v(s, w, y)|2dsdw,

which implies

t−2K+1
ε x−2K+1

ε |v(t, x, y)|2 ≤ C
∫ t

0

∫ x

0

|∂Kt ∂Kx v(s, w, y)|2dsdw.

For t/tε ≤ 1 (t ≥ 0) and x/xε ≤ 1 (x ≥ 0). By integrating both sides of the
inequality above, we obtain the desired estimate. �

Therefore, from Lemma 3.1 and Lemma 3.2 we see that any u(t, x, y) that enjoys
the assumption of Lemma 3.1 satisfies the following; for any integer M1 ≥ 0 there
exists an integer M2 ≥ 0 such that for t1, x1 ≥ 0∑

α1+α2+j≤M1

∫ t1

0

∫ x1

0

‖∂α1
t ∂α2

x ∂jyu‖2 dt dx

≤ C
∫ t1

0

∫ x1

0

( ∑
α1+α2+j≤M2

‖∂α1
t ∂α2

x ∂jyL1,εu‖2
)
dt dx

(3.20)

Proof of Lemma 2.3. As we remarked in the previous section, solutions uε(t, x, y) en-
joy the finite speed of propagation. Hence for any compact set K in R3, there exists
a compact setK1 such that for any h1(t, x, y) ∈ C∞0 (R3) satisfying supph1(t, x, y) ⊂
Π1,1 and h1(t, x, y) = h(t, x, y) on K1 where h(t, x, y) is the right hand side of (2.14),
the solution of the problem (2.14) with h1(t, x, y) in the place of h(t, x, y) coincides
with uε(t, x, y) on K. By using χ1(t, x, y) ∈ C∞0 (R3) satisfying χ1(t, x, y) = 1 on
K1, we obtain from (3.20) that∑

α1+α2+j≤M1

∫∫∫
K

|∂α1
t ∂α2

x ∂jyuε(t, x, y)|2 dt dx dy

≤ C
∫∫∫

R3

( ∑
α1+α2+j≤M2

|∂α1
t ∂α2

x ∂jyχ1h(t, x, y)|2
)
dt dx dy

which implies the assertion of Lemma 2.3. �
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Next we prove Lemma 2.4. From (3.1), (3.2) and (3.3) we have

− ∂t(eγ(t+x)tMε x
M
ε ‖∂xu‖2)

− ∂x
(
eγ(t+x)tM+2k+1

ε xM+2l+1
ε (A2(t, x, ·)∂yu, ∂yu)

)
+ eγ(t+x)(γtε +Mt′ε)t

M−1
ε xMε ‖∂xu‖2

+ eγ(t+x)(γxε + (M + 2l + 1)x′ε)t
M+2k+1
ε xM+2l

ε (A2(t, x, ·)∂yu, ∂yu)

≤ −2eγ(t+x)tMε x
M
ε <(∂t∂xu− t2k+1

ε x2l+1
ε A2(t, x, ·)∂y2u, ∂xu)

+ Ceγ(t+x)tM+2k+1
ε xM+2l+1

ε (‖∂yu‖2 + ‖∂xu‖2)

and

− ∂x(eγ(t+x)tMε x
M
ε ‖∂tu‖2)

− ∂t
(
eγ(t+x)tM+2k+1

ε xM+2l+1
ε (A2(t, x, ·)∂yu, ∂yu)

)
+ eγ(t+x)(γxε +Mx′ε)t

M
ε x

M−1
ε ‖∂tu‖2

+ eγ(t+x)(γtε + (M + 2k + 1)t′ε)t
M+2k
ε xM+2l+1

ε (A2(t, x, ·)∂yu, ∂yu)

≤ −2eγ(t+x)tMε x
M
ε <(∂t∂xu− t2k+1

ε x2l+1
ε A2(t, x, ·)∂y2u, ∂tu)

+ Ceγ(t+x)tM+2k+1
ε xM+2l+1

ε (‖∂yu‖2 + ‖∂tu‖2).

The definition of tL1,ε (2.16) and the argument used for estimates (3.12) and (3.15)
imply that for any w(t, x, y) ∈ C∞(R3) satisfying suppw(t, x, y) ⊂ {(t, x, y) ∈ R3 |
t ≤ t1 and x ≤ x1} with some t1, x1 > 0 and vanishing for large |y|, we have

γ

2

∫ t1

0

∫ x1

0

eγ(t+x)tMε x
M
ε

(
‖∂tw‖2 + ‖∂xw‖2 + ‖w‖2

)
dt dx

+
γδ0
2

∫ t1

0

∫ x1

0

eγ(t+x)tM+2k+1
ε xM+2l+1

ε ‖∂yw‖2 dt dx

≤
∫ t1

0

∫ x1

0

eγ(t+x)tMε x
M
ε ‖tL1,εw‖2 dt dx

(3.21)

for γ ≥ γ0 and M ≥ M0 with some positive constants γ0 and M0 which are
independent of ε. Similarly we obtain the estimates for the derivatives of w(t, x, y).
Hence
Lemma 3.3. Let w(t, x, y) ∈ C∞(R3) satisfy suppu(t, x, y) ⊂ {(t, x, y) ∈ R3 | t ≤
t1 and x ≤ x1} with some t1, x1 > 0 and vanish for large |y|.

For any integer k ≥ 1 and any integer l ≥ 0∑
α1+α2≤2k−1

l∑
j=0

γ

∫ t1

0

∫ x1

0

eγ(t+x)tMε x
M
ε ‖∂

α1
t ∂α2

x ∂jyw‖2 dt dx

≤ C
∫ t1

0

∫ x1

0

( ∑
α1+α2≤2k−2

α1+α2+j≤2k−2+l

eγ(t+x)tMε x
M
ε ‖∂

α1
t ∂α2

x ∂jy
tL1,εw‖2

)
dt dx

(3.22)

∑
α1+α2≤2k

l∑
j=0

γ

∫ t1

0

∫ x1

0

eγ(t+x)tMε x
M
ε ‖∂

α1
t ∂α2

x ∂jyw‖2 dt dx



EJDE–2002/52 ON THE GOURSAT PROBLEM FOR A SECOND ORDER EQUATION 13

≤ C
∫ t1

0

∫ x1

0

e−γ(t+x)tMε x
M
ε

( ∑
α1+α2≤2k−1

α1+α2+j≤2k+l−1

‖∂α1
t ∂α2

x ∂jy
tL1,εw‖2

+ ‖∂2k+l
y

tL1,εw‖2
)
dt dx (3.23)

for γ ≥ γl,k and M ≥ M0 with some constant γl,k > 0 independent of ε and some
constant C > 0 independent of ε and γ where M0 is the constant appearing in
(3.21).

In order to estimate L2-norm of w(t, x, y) and its derivatives by the left hand
side of (3.22) or (3.23), we use the following lemma.

Lemma 3.4. When a v(t, x, y) ∈ C∞(R3) satisfies supp v(t, x, y) ⊂ {(t, x, y) ∈
R

3 | t ≤ t1 and x ≤ x1} with some t1, x1 > 0 and vanishes for large |y|, we have
for any integer K ≥ 0,∫ t1

0

∫ x1

0

‖v‖2 dt dx ≤ C
∫ t1

0

∫ x1

0

t2Kε x2K
ε ‖∂Kt ∂Kx v‖2 dt dx

with some constant C > 0 independent of ε.

Proof. When f(s) ∈ C∞(R) vanishes for s ≥ s0 > 0, we have for any integer k ≥ 0,

(2k + 1)
∫ s0

0

s2k|f (k)(s)|2d s+ 2<
∫ s0

0

s2k+1f (k)(s)f (k+1)(s)d s = 0

from which we obtain∫ s0

0

s2k|f (k)(s)|2d s ≤ 4
(2k + 1)2

∫ s0

0

s2k+2|f (k+1)(s)|2d s.

Hence, by the induction, for any positive integer K∫ s0

0

|f(s)|2d s ≤ 4K
∫ s0

0

s2K |f (K)(s)|2d s.

The estimate above implies the desired assertion of Lemma 3.3. �

Therefore, from Lemma 3.3 and Lemma 3.4 we see that for any w(t, x, y) that
satisfies the assumption of Lemma 3.3 we have the following; for any integer M1 ≥ 0
there exists an integer M2 ≥ 0 such that for t1, x1 ≥ 0∑

α1+α2+j≤M1

∫ t1

0

∫ x1

0

‖∂α1
t ∂α2

x ∂jyw‖2 dt dx

≤C
∫ t1

0

∫ x1

0

( ∑
α1+α2+j≤M2

‖∂α1
t ∂α2

x ∂jy
tL1,εw‖2

)
dt dx

(3.25)

Then the estimate (3.25) shows that a solution of the problem (2.15) wε(t, x, y)
(0 < ε < 1) is bounded in H∞({(t, x, y) ∈ R3 | 0 < t < T and 0 < x < T}).
Hence we see that the first assertion of Lemma 2.4 is also valid. Then the proof of
Theorem 1.1 is completed.
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4. Proof of Theorem 1.2

We denote by L2 the differential operator in (1.6);

L2 = ∂x∂t −B(t, x, y)∂2
x − t2k+1x2l+1A2(t, x, y)∂2

y

+ tkxl+1A1∂y(t, x, y) + a0(t, x, y)

where, by the assumption, |B(t, x, y)| ≥ σ0 and A2(t, x, y) ≥ δ0 with some positive
constants σ0 and δ0.

As the proof of Lemma 2.1, we can construct a function v(t, x, y) ∈ C∞(R3) such
that

v(0, x, y) = g1(x, y), v(t, 0, y) = g2(t, y)

L2v(t, x, y)− f(t, x, y) is flat on the plane t = 0.

Then the problem (1.6) can be reduced to the problem

L2u = h(t, x, y) (t, x, y) ∈ R3

u(0, x, y) = 0 (x, y) ∈ R2

u(t, 0, y) = 0 (t, y) ∈ R2

(4.1)

where h(t, x, y) is flat on the plane t = 0.
We remark that a C∞− solution u(t, x, y) to (4.1) is flat on t = 0.
By putting

u+(t, x, y) =

{
u(t, x, y) (t ≥ 0)
0 (t < 0)

u−(t, x, y) = u(t, x, y)− u+(t, x, y),

we see that u+(t, x, y) [resp. u−(t, x, y)] satisfies

L2u+ = h+(t, x, y) (t, x, y) ∈ R3

u+(0, x, y) = 0 (x, y) ∈ R2

suppu+(t, x, y) ⊂ {(t, x, y) ∈ R3 | t ≥ 0}
(4.2)

[resp.
L2u− = h−(t, x, y) (t, x, y) ∈ R3

u−(0, x, y) = 0 (x, y) ∈ R2

suppu−(t, x, y) ⊂ {(t, x, y) ∈ R3 | t ≤ 0}.
(4.3)

] where

h+(t, x, y) =

{
h(t, x, y) (t ≥ 0)
0 (t < 0)

h−(t, x, y) = h(t, x, y)− h+(t, x, y).

On the other hand the sum of solutions u+(t, x, y) to (4.2) and u−(t, x, y) to (4.3)
satisfies (4.1). While by the change of coordinate t = −t, the problem (4.3) is
reduced to that of (4.2), hence for the proof of Theorem 2 it suffices to prove the
following proposition.
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Proposition 4.1. For any h(t, x, y) ∈ C∞(R3) whose support is contained in
{(t, x, y) ∈ R3 | t ≥ 0}, there exists one and only one solution u(t, x, y) ∈ C∞(R3)
of the problem

L2u = h(t, x, y) in R3

u(0, x, y) = 0 on R2

suppu(t, x, y) ⊂ {(t, x, y) ∈ R3 | t ≥ 0}.
(4.4)

Proposition 4.1 follows from the following two propositions where tL2 is the
transpose of L2, that is to say,

tL2 = ∂t∂x −B(t, x, y)∂2
x − 2Bx(t, x, y)∂x −Bxx(t, x, y)

− t2k+1x2l+1
(
A2(t, x, y)∂2

y + 2A2y(t, x, y)∂y +A2yy(t, x, y)
)

− tkxl+1(A1(t, x, y)∂y +A1y(t, x, y)) + a0(t, x, y)

where Bx(t, x, y) = ∂xB(t, x, y), Bxx(t, x, y) = ∂2
xB(t, x, y) and the similar nota-

tions are used for Aj(t, x, y) (j = 1, 2).
As remarked in the section 1, we may assume B(t, x, y) ≥ σ0. Then in the

following we assume
1
σ00
≥ B(t, x, y) ≥ σ0. (4.5)

Proposition 4.2. a) For any h(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≥ 0}) satisfying
h(t, x, y) = 0 for t ≤ 0, there exists a solution u(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≥
0}) of the mixed problem

L2u = h(t, x, y) in {(t, x, y) ∈ R3 | x ≥ 0}
u(t, 0, y) = 0 on R2

u(t, x, y) = 0 (t ≤ 0).

(4.6)

b) For any h̃(t, x, y) ∈ C∞0 ({(t, x, y) ∈ R3 | x ≥ 0}) and g(t, y) ∈ C∞0 (R2), there
exists a solution w(t, x, y) ∈ C∞0 ({(t, x, y) ∈ R3 | x ≥ 0 and t ≥ 0}) of the mixed
problem

tL2w = h̃(t, x, y) in {(t, x, y) ∈ R3 | x ≥ 0 and t ≥ 0}
w(t, 0, y) = g(t, y) on {(t, y) ∈ R2 | t ≥ 0}

(4.7)

Proposition 4.3. a) For any h(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≤ 0}) satisfying
h(t, x, y) = 0 for t ≤ 0 and any g1(t, y), g2(t, y) ∈ C∞(R2) carried on {(t, y) ∈ R2 |
t ≥ 0}, there exists a solution u(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≤ 0}) satisfying
u(t, x, y) = 0 for t ≤ 0 of the Cauchy problem

L2u = h(t, x, y) in {(t, x, y) ∈ R3 | x ≤ 0}
u(t, 0, y) = g1(t, y) on R2

∂xu(t, 0, y) = g2(t, y) on R2

(4.8)

b) For any h̃(t, x, y) ∈ C∞0 ({(t, x, y) ∈ R3 | x ≤ 0}) , there exists a solution
w(t, x, y) ∈ C∞0 ({(t, x, y) ∈ R3 | x ≤ 0 and t ≥ 0}) to

tL2w = h̃(t, x, y) in {(t, x, y) ∈ R3 | x ≤ 0 and t ≥ 0} (4.9)
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We see that Proposition 4.2 and Proposition 4.3 imply Proposition 4.1. Indeed,
for any h(t, x, y) ∈ C∞(R3) whose support contained in {(t, x, y) ∈ R3 | t ≥ 0}, we
solve (4.6). Let u+(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≥ 0}) be its solution. Then
by putting g1(t, y) = u+(t, 0, y) and g2(t, y) = ∂xu+(t, 0, y), we solve the Cauchy
problem (4.8) whose solution we denote by u−(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≤
0}). Then u(t, x, y) ∈ C∞(R3) defined by

u(t, x, y) =

{
u+(t, x, y) (x ≥ 0)
u−(t, x, y) (x < 0)

satisfies (4.4).
On the other hand, for any h̃(t, x, y) ∈ C∞0 (R3), we solve (4.9). Let w−(t, x, y) ∈

C∞0 ({(t, x, y) ∈ R3 | x ≤ 0 and t ≥ 0}) be its solution. Then by putting g(t, y) =
w−(t, 0, y), we solve (4.7), whose solution is denoted by w+(t, x, y). Now we define
w(t, x, y) by

w(t, x, y) =

{
w+(t, x, y) (x ≥ 0)
w−(t, x, y) (x < 0).

Since we have, if u(t, 0, y) = 0,∫ ∞
−∞

∂2
xu(t, x, y)w(t, x, y)d x =

∫ ∞
−∞

u(t, x, y)∂2
xw(t, x, y)d x,

which implies for a solution u(t, x, y) of (4.4)∫∫∫
R3
L2u(t, x, y)w(t, x.y) dt dx dy =

∫∫∫
R3
u(t, x, y) tL2w(t, x.y) dt dx dy,

then for any solution u(t, x, y) of (4.4) with h(t, x, y) = 0, we obtain∫∫∫
R3
u(t, x, y)h̃(t, x.y) dt dx dy = 0.

Then we see u(t, x, y) = 0, which implies the uniqueness of solution of (4.4).
For the proof of Proposition 4.2, using the functions tε and xε defined by (2.12),

we introduce the opertors L2,ε and tL2,ε by

L2,ε = ∂t∂x −B(t, x, y)∂2
x

− t2k+1
ε x2l+1

ε A2(t, x, y)∂2
y + tk+1

ε xl+1
ε A1(t, x, y)∂y + a0(t, x, y)

and

tL2,ε = ∂t∂x −B(t, x, y)∂2
x − 2Bx(t, x, y)∂x −Bxx(t, x, y)

− t2k+1
ε x2l+1

ε

(
A2(t, x, y)∂2

y + 2A2y(t, x, y)∂y +A2yy(t, x, y)
)

− tk+1
ε xl+1

ε (A1(t, x, y)∂y +A1y(t, x, y)) + a0(t, x, y).

We see from the assumption (4.5) that both operators L2,ε and tL2,ε are strictly
hyperbolic in the direction (1, σ, 0) with 0 < σ < σ00 and the plane x = 0 is time
like. Then both of the following two mixed problems are C∞-wellposed (see for
example [2] or [6]).
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Find a solution uε(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≥ 0}) satisfying

L2,εuε = h(t, x, y) in {(t, x, y) ∈ R3 | x ≥ 0}
uε(t, 0, y) = 0 on R2

uε(t, x, y) = 0 (t+
σ00

2
x ≤ 0).

(4.12)

where h(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≥ 0}) satisfies h(t, x, y) = 0 for t ≤ 0.
Find a solution wε(t, x, y) ∈ C∞0 ({(t, x, y) ∈ R3 | x ≥ 0 and t + σ00

2 x ≥ 0})
satisfying

tL2,εwε = h̃(t, x, y) in {(t, x, y) ∈ R3 | x ≥ 0 and t+
σ00

2
x ≥ 0}

wε(t, 0, y) = g(t, y) on {(t, y) ∈ R2 | t ≥ 0}
(4.13)

where h̃(t, x, y) ∈ C∞0 ({(t, x, y) ∈ R3 | x ≥ 0}) and g(t, y) ∈ C∞0 (R2).
First we remark that the surface given by

t+
σ00

2
x+

1
4

(
√

1 + (t− σ00

2
x)2 − 1) = C

is space like for L2,ε and that on the closed domain VT given by

VT =
{

(t, x, y) ∈ R3 | x ≥ 0, t+
σ00

2
x ≥ 0 and

t+
σ00

2
x+

1
4

(
√

1 + (t− σ00

2
x)2 − 1) ≤ T

}
the coefficients of L2,ε are bounded.

Concerning solutions uε(t, x, y) to (4.12), since the plane t + σx = C with 0 <
σ < σ00 is space like, we see that uε(t, x, y) = 0 for t ≤ 0. Then the following
lemma implies the part a) of Proposition 4.2.

Lemma 4.4. The family of solutions {uε(t, x, y)}0<ε<1 to (4.12) is bounded in
H∞loc({(t, x, y) ∈ R3 | x > 0}).

Indeed, thanks to the lemma above we can find a subsequence {uεj (t, x, y)}
(j = 1, 2, · · ·) which converges to a C∞-function u(t, x, y) that satisfies (4.6).

On the other hand, we note that the surface given by

t+
σ00

2
x− 1

4
(
√

1 + (t− σ00

2
x)2 − 1) = 0

is space like for tL2,ε. Since on the closed domain WT given by

WT = {(t, x, y) ∈ R3 | x ≥ 0, t+
σ00

2
x ≤ T and

t+
σ00

2
x− 1

4
(
√

1 + (t− σ00

2
x)2 − 1) ≥ 0}

the coefficients of tL2,ε are bounded, tL2,ε has the finite propagation speed inde-
pendent of 0 < ε < 1 on WT . Furthermore we see that

t+
σ00

2
x− 1

4
(
√

1 + (t− σ00

2
x)2 − 1) ≥ 0
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for t ≥ 0 and x ≥ 0. Let T0 ≥ 0 satisfy

T0 ≥ sup
(t,x,y)∈supp h̃(t,x,y)

t+
σ00

2
x

and
T0 ≥ sup

(t,y)∈supp g(t,y)

t.

Then we see that wε(t, x, y) = 0 if t + σ00
2 x ≥ T0. Since tL2,ε has the finite

propagation speed independent of 0 < ε < 1 on WT0 , we see that there exists a
compact set F such that

suppwε(t, x, y) ∩ {(t, x, y) ∈ R3 | x ≥ 0 and t ≥ 0} ⊂ F.
Hence, similarly to the case of the part a) of Proposition 4.2, the following lemma
implies the part b) of Proposition 4.2.
Lemma 4.5. The family of solutions {wε(t, x, y)}0<ε<1 to (4.13) is bounded in
H∞({(t, x, y) ∈ R3 | x > 0 and t > 0}).

The proof of Lemma 4.4 and Lemma 4.5 is given in the next section.
For the proof of Proposition 4.3, we first change the problem in the half space

{(t, x, y) ∈ R3 | x ≤ 0} to that in {(t, x, y) ∈ R3 | x ≥ 0} by the change of
coordinate x = −x. Let L̃2 be

L̃2 = ∂x∂t +B(t, x, y)∂2
x − t2k+1x2l+1A2(t, x, y)∂2

y + tkxl+1A1∂y + a0(t, x, y)

where B(t, x, y) ≥ σ0 and A2(t, x, y) ≥ δ0 with some positive constants σ0 and δ0.
Then Proposition 4.3 is equivalent to the following proposition.
Proposition 4.6. a) For any h(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≥ 0}) satisfying
h(t, x, y) = 0 for t ≤ 0 and any g1(t, y), g2(t, y) ∈ C∞(R2) whose support contained
in {(t, y) ∈ R2 | t ≥ 0}, there exists a solution u(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≥
0}) satisfying u(t, x, y) = 0 for t ≤ 0 of the Cauchy problem

L̃2u = h(t, x, y) in {(t, x, y) ∈ R3 | x ≥ 0}
u(t, 0, y) = g1(t, y) on R2

∂xu(t, 0, y) = g2(t, y) on R2

(4.15)

b) For any h̃(t, x, y) ∈ C∞0 ({(t, x, y) ∈ R
3 | x ≥ 0}), there exists a solution

w(t, x, y) ∈ C∞0 ({(t, x, y) ∈ R3 | x ≥ 0 and t ≥ 0}) to the equation
tL̃2w = h̃(t, x, y) in {(t, x, y) ∈ R3 | x ≥ 0 and t ≥ 0}

where tL̃2 is the transpose of L̃2.
First of all, we remark that the argument similar to Lemma 2.1 implies that

there exists a function v(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≥ 0}) supported in
{(t, x, y) ∈ R3 | x ≥ 0 and t ≥ 0} and satisfying the followings; v(t, 0, y) = g1(t, y),
∂xv(t, 0, y) = g2(t, y) and L̃2v(t, x, y) − h(t, x, y) is flat on x = 0. Then by taking
u(t, x, y) − v(t, x, y), the problem (4.15) is reduced the case where g1(t, y) = 0,
g2(t, y) = 0 and h(t, x, y) is flat on x = 0.

For the proof of Proposition 4.6, using the functions tε and xε defined by (2.12),
we introduce the operators L̃2,ε by

L̃2,ε = ∂t∂x +B(t, x, y)∂2
x

− t2k+1
ε x2l+1

ε A2(t, x, y)∂2
y + tkεx

l+1
ε A1(t, x, y)∂y + a0(t, x, y).
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Let tL̃2,ε be the transpose of L̃2,ε. Since L̃2,ε and tL̃2,ε are strictly hyperbolic in
the direction (µ, 1, 0) with µ > −σ0, both of the following Cauchy problems are
C∞-wellposed (see for example [3]).

Find a solution uε(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≥ 0}) that satisfies

L̃2,εuε = h(t, x, y) in {(t, x, y) ∈ R3 | x ≥ 0}
uε(t, 0, y) = 0 on R2

∂xuε(t, 0, y) = 0 on R2

(4.17)

where h(t, x, y) ∈ C∞({(t, x, y) ∈ R3 | x ≥ 0}) which is supported in {(t, x, y) ∈
R

3 | x ≥ 0 and t ≥ 0} and flat on x = 0.
Find a solution wε(t, x, y) ∈ C∞0 ({(t, x, y) ∈ R3 | x ≥ 0}) satisfying

tL̃2,εwε = h̃(t, x, y) in {(t, x, y) ∈ R3 | x ≥ 0} (4.18)

where h̃(t, x, y) ∈ C∞0 ({(t, x, y) ∈ R3 | x ≥ 0}).
Since the plane µt+x = 0 (µ > −σ0) is space like for L̃2,ε, we see that a solution

of (4.17) uε(t, x, y) vanishes for t ≤ 0. Hence, similarly to the case of the part a)
of Proposition 4.2, the following lemma implies the part a) of Proposition 4.6.
Lemma 4.7. The family of solutions {uε(t, x, y)}0<ε<1 to (4.17) is bounded in
H∞loc({(t, x, y) ∈ R3 | x > 0}).

Similarly to the case (4.13), let X ≥ 0 satisfy

X ≥ sup
(t,x,y)∈supp h̃(t,x,y)

x.

For any X1 and X2 satisfying X1 < X2 and any t0, if 0 < ν <
σ2

0
4(X2−X1) , the surface

x − ν(t − t0)2 = X1 in {(t, x, y) ∈ R3 | x ≤ X2} is space like and on the closed
domain

{(t, x, y) ∈ R3 | x ≤ X2, x− ν(t− t0)2 ≥ X1}
the coefficients of tL2,ε are bounded. Then tL2,ε has the finite propagation speed
independent of 0 < ε < 1 there. Hence we see that a solution of (4.18) wε(t, x, y)
vanishes if x ≥ X and that there exists a compact set F such that the solution
wε(t, x, y) of (4.18) satisfies

suppwε(t, x, y) ∩ {(t, x, y) ∈ R3 | x ≥ 0 and t ≥ 0} ⊂ F.
Hence, similarly to the case of the part b) of Proposition 4.2, the following lemma
implies the part b) of Proposition 4.6.
Lemma 4.8. The family of solutions {wε(t, x, y)}0<ε<1 to (4.18) is bounded in
H∞({(t, x, y) ∈ R3 | x > 0 and t > 0}).

5. Proof of Lemmas 4.4, 4.5, 4.7, and 4.8

In this section also, we use the method of Oleinik [5] in order to draw the a priori
estimates for L1,ε, tL1,ε, L̃2,ε and tL̃2,ε that are uniformly valid for 0 < ε < 1. Let

L0
1,ε = ∂t∂x −B(t, x, y)∂2

x − t2k+1
ε x2l+1

ε A2(t, x, y)∂2
y .

Since
2<(L0

1,εu, ∂tu) =∂x(∂tu, ∂tu)− 2∂x<(B(t, x, ·)∂xu, ∂tu)

+ ∂t(B(t, x, ·)∂xu, ∂xu) + t2k+1
ε x2l+1

ε ∂t(A2(t, x, ·)∂yu, ∂yu) +R

(5.2)
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where

|R| ≤ C
(
t2k+1
ε x2l+1

ε (‖∂yu‖2 + ‖∂tu‖2) + ‖∂xu‖‖∂tu‖+ ‖∂xu‖2
)
, (5.3)

we have

∂x
(
e−γ(t+σx)t−Mε (‖∂tu‖2 − 2<(B(t, x, ·)∂xu, ∂tu))

)
+ ∂t

(
e−γ(t+σx)t−Mε ((B(t, x, ·)∂xu, ∂xu) + t2k+1

ε x2l+1
ε (A2(t, x, ·)∂yu, ∂yu))

)
+ e−γ(t+σx)γσt−Mε ‖∂tu‖2 − 2e−γ(t+σx)γσt−Mε <(B(t, x, ·)∂xu, ∂tu)

+ e−γ(t+σx)(γtε +Mt′ε)t
−M−1
ε (B(t, x, ·)∂xu, ∂xu)

+ e−γ(t+σx)(γtε + (M − 2k − 1)t′ε)t
−M+2k
ε x2l+1

ε (A2(t, x, ·)∂yu, ∂yu)

≤ 2e−γ(t+σx)t−Mε <(L0
1,εu, ∂tu) + C

(
e−γ(t+σx)t−M+2k+1

ε x2l+1
ε (‖∂yu‖2 + ‖∂tu‖2)

+ e−γ(t+σx)t−Mε (‖∂xu‖‖∂tu‖+ ‖∂xu‖2)
)
.

(5.4)

Since 1/σ00 ≥ B(t, x, y) ≥ σ0, we see that the plane t+σ1x = T where σ1 = σ00/2,
is space like. Then by integrating (5.4) on ∆T = {(t, x) ∈ R2 | t ≥ 0, x ≥
0 and t + σ1x ≤ T} with T > 0, we obtain the following (see for example §24.1 of
[2]). When γ > γ0 with some γ0 > 0 and M > 2k + 1, for any smooth u(t, x, y)
satisfying u(t, 0, y) = 0 and vanishing if t ≤ 0 or |y| is large, we have∫

∆T

e−γ(t+σ1x)γt−Mε
(
‖∂tu‖2 + ‖∂xu‖2

)
dt dx

+
∫

∆T

e−γ(t+σ1x)Mt−M−1
ε ‖∂xu‖2 dt dx

+
∫

∆T

e−γ(t+σ1x)(γtε + (M − 2k − 1))t−M+2k
ε x2l+1

ε ‖∂yu‖2 dt dx

≤ C
∫

∆T

e−γ(t+σ1x)t−Mε ‖L0
1,εu‖‖∂tu‖ dt dx.

Similarly to (3.10), we have

∂t(e−γ(t+σ1x)t−Mε ‖u‖2) + e−γ(t+σ1x)t−Mε (γ +Mt′εt
−1
ε )‖u‖2

≤ e−γ(t+σ1x)t−Mε (
γ

2
‖u‖2 +

2
γ
‖∂tu‖2).

Hence, we obtain for γ ≥ max{γ0, 1} and M ≥ 2k + 2∫
∆T

e−γ(t+σ1x)t−Mε
(
γ(‖∂tu‖2 + ‖∂xu‖2 + ‖u‖2) + t−1

ε (‖∂xu‖2 + ‖u‖2)
)
dt dx

+
∫

∆T

e−γ(t+σ1x)t−M+2k+1
ε x2l+1

ε (γ + t−1
ε )‖∂yu‖2 dt dx

≤ C
∫

∆T

e−γ(t+σ1x)t−Mε
(
‖L0

1,εu‖‖∂tu‖+ ‖∂tu‖2
)
dt dx.

Since ‖L0
1,εu− L1,εu‖ ≤ C

(
tkεx

l+1
ε ‖∂yu‖+ ‖u‖

)
and

tkεx
l+1
ε ‖∂yu‖‖∂tu‖ ≤ (

1
2
√
γ
t2kε x

2l+2
ε ‖∂yu‖2 +

√
γ

2
‖∂tu‖2), (5.5)
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there exists a γ1 > 0 such that if γ ≥ γ1 and M ≥ 2k + 2∫
∆T

e−γ(t+σ1x)t−Mε
(
γ(‖∂tu‖2 + ‖∂xu‖2 + ‖u‖2) + t−1

ε (‖∂xu‖2 + ‖u‖2)
)
dt dx

+
∫

∆T

e−γ(t+σ1x)t−M+2k+1
ε x2l+1

ε (γ + t−1
ε )‖∂yu‖2 dt dx

≤ C
∫

∆T

e−γ(t+σ1x)t−Mε ‖L1,εu‖‖∂tu‖ dt dx

(5.6)

which implies∫
∆T

t−Mε (‖∂tu‖2 + ‖∂xu‖2 + ‖u‖2) dt dx ≤ C

∫
∆T

t−Mε ‖L1,εu‖2 dt dx.

Since [∂t, B(t, x, y)−1L1,ε] is equal to

b(t, x, y)∂x∂t − (2k + 1)t′εt
2k
ε x

2l+1
ε a2(t, x, y)∂2

y

− t2k+1
ε x2l+1

ε a2t(t, x, y)∂2
y + c1(t, x, y)∂y + c0(t, x, y)

and [∂y, B(t, x, y)−1L1,ε] is equal to

b̃(t, x, y)∂x∂t − t2k+1
ε x2l+1

ε a2y(t, x, y)∂2
y + c̃1(t, x, y)∂y + c̃0(t, x, y)

where a2(t, x, y) = B(t, x, y)−1A2(t, x, y) and b(t, x, y), b̃(t, x, y), cj(t, x, y) and
c̃j(t, x, y) (j = 1, 2) are bounded smooth function on ∆T × R, then it follows from
(5.6) where u(t, x, y) is replaced by ∂tu(t, x, y) or ∂yu(t, x, y) that there exists a
γ2 > 0 such that for γ ≥ γ2 and M ≥ 2k + 2,∫

∆T

e−γ(t+σ1x)t−Mε

(
γ
(
‖∂2
t u‖2 + ‖∂x∂tu‖2 + ‖∂tu‖2 + ‖∂y∂tu‖2 + ‖∂y∂xu‖2

+ ‖∂yu‖2 + ‖u‖2
)

+ t2k+1
ε x2l+1

ε γ‖∂2
yu‖2

)
dt dx

≤ C
∫

∆T

e−γ(t+σ1x)t−Mε
(
‖∂tL1,εu‖2 + ‖∂yL1,εu‖2 + ‖L1,εu‖2

)
dt dx,

where we used

‖∂2
yu‖‖∂2

t u‖ ≤
1

2
√
γ
‖∂2
yu‖2 +

√
γ

2
‖∂2
t u‖2.

Similarly for any positive integer N , there exists a γN > 0 such that if γ ≥ γN and
M ≥ 2k + 2∫

∆T

e−γ(t+σ1x)t−Mε γ
( ∑
α1+j≤N and j≤N−1

‖∂α1
t ∂jyu‖2 +

∑
α1+j≤N−1

‖∂α1
t ∂jy∂xu‖2

)
dt dx

+
∫

∆T

e−γ(t+σ1x)t−M+2k+1
ε x2l+1

ε γ‖∂Ny u‖2 dt dx

≤ C
∫

∆T

e−γ(t+σ1x)t−Mε
( ∑
α1+j≤N−1

‖∂α1
t ∂jy(L1,εu)‖2

)
dt dx.

(5.7)

Since

∂2
x = B(t, x, y)−1(L1,ε − ∂x∂t
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+ t2k+1
ε x2l+1

ε A2(t, x, y)∂2
y − tkεxl+1

ε A1(t, x, y)∂y − a0(t, x, y)),

we obtain from (5.7)∫
∆T

t−Mε
( ∑
α1+α2+j≤N
j≤N−1

‖∂α1
t ∂α2

x ∂jyu‖2
)
dt dx

≤ C
∫

∆T

t−Mε
( ∑
α1+α2+j≤N−1
α2≤max{N−2,0}

‖∂α1
t ∂α2

x ∂jyL1,εu‖2
)
dt dx. (5.8)

Hence, taking into account the proof of Lemma 3.2, we see from (5.8) that for
any integer M1 ≥ 0 there exists an integer M2 ≥ 0 such that for any u(t, x, y) ∈
C∞{(t, x, y) ∈ R3 | x ≥ 0} satisfying u(t, 0, y) = 0 and that u(t, x, y) = 0 if |y| is
large or t ≤ 0,∫

∆T

( ∑
α1+α2+j≤M1

‖∂α1
t ∂α2

x ∂jyu‖2
)
dt dx

≤ C
∫

∆T

∑
α1+α2+j≤M2

‖∂α1
t ∂α2

x ∂jyL1,εu‖2 dt dx. (5.9)

Since solutions {uε(t, x, y)} of (4.12) have a finite propagation speed that is in-
dependent of ε, as the proof of Lemma 2.3 we see from (5.9) that Lemma 4.4 is
valid.

For the proof of Lemma 4.5, we first remark that by substracting some com-
pactly supported function in C∞{(t, x, y) ∈ R3 | x ≥ 0} that is independent of ε,
the problem (4.13) is reduced to that with g(t, y) = 0. In the following we assume
it. Similarly to (5.4) it follows from (5.2) that, with σ1 = σ00/2,

− ∂x
(
eγ(t+σ1x)tε(‖∂tu‖2 − 2<(B(t, x, ·)∂xu, ∂tu))

)
− ∂t

(
eγ(t+σ1x)tε(B(t, x, ·)∂xu, ∂xu)

)
− ∂t

(
eγ(t+σ1x)t2k+2

ε x2l+1
ε (A2(t, x, ·)∂yu, ∂yu)

)
+ eγ(t+σ1x)γσ1tε

(
‖∂tu‖2 − 2<(B(t, x, ·)∂xu, ∂tu)

)
+ eγ(t+σ1x)(γtε + t′ε)(B(t, x, ·)∂xu, ∂xu)

+ eγ(t+σ1x)(γtε + (2k + 2)t′ε)t
2k+1
ε x2l+1

ε (A2(t, x, ·)∂yu, ∂yu)

≤ −2e−γ(t+σ1x)tε<(L0
1,εu, ∂tu)

+ C
(
eγ(t+σ1x)t2k+2

ε x2l+1
ε (‖∂yu‖2 + ‖∂tu‖2) + eγ(t+σ1x)tε(‖∂xu‖‖∂tu‖+ ‖∂xu‖2)

)
,

from which and from

−∂t(eγ(t+σ1x)tε‖u‖2) + eγ(t+σ1x)tε(γ + t′εt
−1
ε )‖u‖2 ≤ eγ(t+σ1x)tε(

γ

2
‖u‖2 +

2
γ
‖∂tu‖2)

we obtain the following estimate valid for any u(t, x, y) in C∞0 ({(t, x, y) ∈ R3 | x ≥
0 and t ≥ 0}), vanishing when t ≥ T or x ≥ T with some T > 0 and satisfying
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u(t, 0, y) = 0; there exists a γ0 > 0 such that for γ ≥ γ0∫
DT

eγ(t+σ1x)tε

(
γ
(
‖∂tu‖2 + ‖∂xu‖2 + ‖u‖2

)
+ t−1

ε (‖∂xu‖2 + ‖u‖2)
)
dt dx

+
∫
DT

eγ(t+σ1x)(γtε + (2k + 2))t2k+1
ε x2l+1

ε ‖∂yu‖2 dt dx

≤ C
∫
DT

eγ(t+σ1x)tε‖L0
1,εu‖‖∂tu‖ dt dx

where DT = [0, T ]× [0, T ]. Hence we see from the estimate on DT

‖tL1,εu− L0
1,εu‖ ≤ C0t

k
εx

l+1
ε ‖∂yu‖+ C1(‖∂xu‖+ ‖u‖)

and (5.5) that there exists γ1 > 0 such that for γ ≥ γ1∫
DT

eγ(t+σ1x)tε

(
γ
(
‖∂tu‖2 + ‖∂xu‖2 + ‖u‖2

)
+ t−1

ε (‖∂xu‖2 + ‖u‖2)
)
dt dx

+
∫
DT

eγ(t+σ1x)(γtε + 1)t2k+1
ε x2l+1

ε ‖∂yu‖2 dt dx

≤ C
∫
DT

eγ(t+σ1x)tε‖tL1,εu‖‖∂tu‖ dt dx,

(5.10)

which implies∫
DT

tε
(
‖∂tu‖2 + ‖∂xu‖2 + ‖u‖2

)
dt dx+

∫
DT

t2k+2
ε x2l+1

ε ‖∂yu‖2 dt dx

≤ C
∫
DT

tε‖tL1,εu‖2 dt dx.

From the expression of [∂t, B(t, x, y)−1 tL1,ε] and [∂y, B(t, x, y)−1 tL1,ε] and (5.10),
we get∫

DT

eγ(t+σ1x)tε
∑

α1+j≤1

(
‖∂α1+1
t ∂jyu‖2 + ‖∂α1

t ∂jy∂xu‖2 + ‖∂α1
t ∂jyu‖2

)
dt dx

+
∫
DT

eγ(t+σ1x)t2k+2
ε x2l+1

ε ‖∂2
yu‖2 dt dx

≤ C

γ

∫
DT

eγ(t+σ1x)tε
∑

α1+j≤1

‖∂α1
t ∂jy

tL1,εu‖2 dt dx

Here γ is large. In general for any integer N ≥ 0 we obtain∫
DT

eγ(t+σ1x)tε
∑

α1+j≤N

(
‖∂α1+1
t ∂jyu‖2 + ‖∂α1

t ∂jy∂xu‖2 + ‖∂α1
t ∂jyu‖2

)
dt dx

+
∫
DT

eγ(t+σ1x)t2k+2
ε x2l+1

ε ‖∂N+1
y u‖2 dt dx

≤ C

γ

∫
DT

eγ(t+σ1x)tε
∑

α1+j≤N

‖∂α1
t ∂jy

tL1,εu‖2 dt dx (5.11)

Here also γ is large. Since

∂2
x =−B(t, x, y)−1( tL1,ε + t2k+1

ε x2l+1
ε A2(t, x, y)∂2

y

+ l1(t, x, y, ∂t, ∂y)∂x + l2(t, x, y, ∂t, ∂y)∂t + l3(t, x, y, ∂t, ∂y))
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where lj(t, x, y, ∂t, ∂y) (j = 1, 2, 3) is a first order differential operator, then from
(5.11) follows the estimate∫

DT

tε
∑

α1+α2+j≤N

(
‖∂α1+1
t ∂α2

x ∂jyu‖2 + ‖∂α1
t ∂α2+1

x ∂jyu‖2 + ‖∂α1
t ∂jyu‖2

)
dt dx

+
∫
DT

t2k+2
ε x2l+1

ε ‖∂N+1
y u‖2 dt dx

≤ C
∫
DT

tε
∑

α1+α2+j≤N
α2≤max{N−1,0}

‖∂α1
t ∂α2

x ∂jy
tL1,εu‖2 dt dx.

(5.12)

From Lemma 3.4 and (5.12) we see that for any integer M1 ≥ 0 there exists an
integer M2 ≥ 0 such that∫

DT

∑
α1+α2+j≤M1

‖∂α1
t ∂α2

x ∂jyu‖2 dt dx

≤ C
∫
DT

∑
α1+α2+j≤M2

‖∂α1
t ∂α2

x ∂jy
tL1,εu‖2 dt dx. (5.13)

Since the constant C of the estimate above (5.13) is independent of 0 < ε < 1,
(5.13) implies that Lemma 4.5 is valid.

Now we prove Lemmas 4.7 and 4.8. Let

L̃0
2,ε = ∂t∂x +B(t, x, y)∂2

x − t2k+1
ε x2l+1

ε A2(t, x, y)∂y2.

Since
2<(L̃0

2,εu, ∂xu) =∂t(∂xu, ∂xu) + ∂x(B(t, x, ·)∂xu, ∂xu)

+ t2k+1
ε x2l+1

ε ∂x(A2(t, x, ·)∂yu, ∂yu) +R
(5.15)

where
|R| ≤ C

(
t2k+1
ε x2l+1

ε (‖∂yu‖2 + ‖∂xu‖2) + ‖∂xu‖2
)
, (5.16)

we have for any u(t, x, y) vanishing for large |y|,

∂t(e−γ(t+x)t−Mε x−Mε ‖∂xu‖2) + ∂x
(
e−γ(t+x)t−Mε x−Mε (B(t, x, ·)∂xu, ∂xu)

)
+ ∂x

(
e−γ(t+x)t−M+2k+1

ε x−M+2l+1
ε (A2(t, x, ·)∂yu, ∂yu)

)
+ e−γ(t+x)(γtε +Mt′ε)t

−M−1
ε x−Mε ‖∂xu‖2

+ e−γ(t+x)(γxε +Mx′ε)t
−M
ε x−M−1

ε (B(t, x, ·)∂xu, ∂xu)

+ e−γ(t+x)(γxε + (M − 2l − 1)x′ε)t
−M+2k+1
ε x−M+2l

ε (A2(t, x, ·)∂yu, ∂yu)

≤ 2e−γ(t+x)t−Mε x−Mε <(L̃0
2,εu, ∂xu)

+ Ce−γ(t+x)
(
t−M+2k+1
ε x−M+2l+1

ε (‖∂yu‖2 + ‖∂xu‖2) + t−Mε x−Mε ‖∂xu‖2
)
.

Noting

∂x(e−γ(t+x)t−Mε x−Mε ‖u‖2) + e−γ(t+x)t−Mε x−Mε (γ +Mx′εx
−1
ε )‖u‖2

≤ e−γ(t+x)t−Mε x−Mε (
γ

2
‖u‖2 +

2
γ
‖∂xu‖2), (5.17)
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we see that, if γ ≥ γ0 with some γ0 and M ≥ 2l+2, we have for any u(t, x, y) which
is flat on the plane t = 0 and on the plane x = 0 and vanishes for large |y|,∫

DT

e−γ(t+x)t−Mε x−Mε
(
(γ + t−1

ε )‖∂xu‖2 + (γ + x−1
ε )(‖∂xu‖2 + ‖u‖2)

)
dt dx

+
∫
DT

e−γ(t+x)(γxε + 1)t−M+2k+1
ε x−M+2l

ε ‖∂yu‖2 dt dx

≤ C
∫
DT

e−γ(t+x)t−Mε x−Mε ‖L̃0
2,εu‖‖∂xu‖ dt dx

(5.18)

where DT = [0, T ]× [0, T ]. Since ‖L̃0
2,εu− L̃2,εu‖ ≤ C

(
tkεx

l+1
ε ‖∂yu‖+ ‖u‖

)
and

tkεx
l+1
ε ‖∂yu‖‖∂xu‖ ≤ (

√
γ

2
t2k+1
ε x2l+2

ε ‖∂yu‖2 +
1

2
√
γ
t−1
ε ‖∂xu‖2),

then from (5.18) there exists a γ1 > 0 such that if γ ≥ γ1 and M ≥ 2l+ 2, we have∫
DT

e−γ(t+x)t−Mε x−Mε
(
γ(‖∂xu‖2 + ‖u‖2) + t−1

ε ‖∂xu‖2 + x−1
ε (‖∂xu‖2 + ‖u‖2)

)
dt dx

+
∫
DT

e−γ(t+x)(γxε + 1)t−M+2k+1
ε x−M+2l

ε ‖∂yu‖2 dt dx

≤ C
∫
DT

e−γ(t+x)t−Mε x−Mε ‖L̃2,εu‖‖∂xu‖dt dx (5.19)

which implies∫
DT

t−Mε x−Mε (‖∂xu‖2 + ‖u‖2) dt dx ≤ C
∫
DT

t−Mε x−Mε ‖L̃2,εu‖2 dt dx.

Since [∂x, L̃2,ε] is equal to

b1(t, x, y)∂2
x − (2l + 1)x′εt

2k+1
ε x2l

ε A2(t, x, y)∂2
y

− t2k+1
ε x2l+1

ε A2x(t, x, y)∂2
y + c1,1(t, x, y)∂y + c1,0(t, x, y),

[∂t, L̃2,ε] =b2(t, x, y)∂2
x − (2k + 1)t′εt

2k
ε x

2l+1
ε A2(t, x, y)∂2

y

− t2k+1
ε x2l+1

ε A2t(t, x, y)∂2
y + c2,1(t, x, y)∂y + c2,0(t, x, y),

and [∂y, L̃2,ε] is equal to

b3(t, x, y)∂2
x − t2k+1

ε x2l+1
ε A2y(t, x, y)∂2

y + c3,1(t, x, y)∂y + c3,0(t, x, y)

where bj(t, x, y), cj,k(t, x, y) (j = 1, 2, 3, k = 1, 2) are bounded smooth function on
DT × R, then it follows from (5.19) with ∂xu(t, x, y), ∂tu(t, x, y) or ∂yu(t, x, y) in
the place of u(t, x, y) that there exists a γ2 > 0 such that if γ ≥ γ2 and M ≥ 2l+ 2∫

DT

e−γ(t+x)t−Mε x−Mε γ
(
‖∂2
xu‖2 + ‖∂x∂tu‖2 + ‖∂x∂yu‖2

+ ‖∂xu‖2 + ‖∂tu‖2 + ‖∂yu‖2 + ‖u‖2
)
dt dx

+
∫
DT

e−γ(t+x)t−M+2k+1
ε x−M+2l+1

ε γ‖∂2
yu‖2 dt dx

≤ C
∫
DT

e−γ(t+x)t−Mε
(
‖∂xL̃2,εu‖2 + ‖∂tL̃2,εu‖2 + ‖∂yL̃2,εu‖2 + ‖L̃2,εu‖2

)
dt dx,
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where we used

t2k+1
ε x2l

ε ‖∂2
yu‖‖∂2

xu‖ ≤ t2k+1
ε x2l

ε (
√
γ

2
xε‖∂2

yu‖2 +
1

2
√
γ
x−1
ε ‖∂2

xu‖2)

and

t2kε x
2l+1
ε ‖∂2

yu‖‖∂x∂tu‖ ≤ t2kε x2l+1
ε (

√
γ

2
tε‖∂2

yu‖2 +
1

2
√
γ
t−1
ε ‖∂x∂tu‖2).

In general for any positive integer N , there exists a γN > 0 such that if γ ≥ γN
and M ≥ 2l + 2, we have∫

DT

e−γ(t+x)t−Mε x−Mε
( ∑
α1+α2+j=N−1

‖∂α1
t ∂α2+1

x ∂jyu(t, x, y)‖2

+
∑

α1+α2+j≤N−1

‖∂α1
t ∂α2

x ∂jyu‖2
)
dt dx

+
∫
DT

e−γ(t+x)t−M+2k+1
ε x−M+2l+1

ε ‖∂Ny u(t, x, y)‖2 dt dx

≤ C

γ

∫
DT

e−γ(t+x)t−Mε x−Mε
( ∑
α1+α2+j≤N−1

‖∂α1
t ∂α2

x ∂jyL̃2,εu‖2
)
dt dx.

(5.20)

When u(t, x, y) is flat on x = 0 and on t = 0, Lemma 3.2 and (5.20) imply that
for any integer M1 ≥ 0 there exists an integer M2 ≥ 0 such that∑
α1+α2+j≤M1

∫
DT

‖∂α1
t ∂α2

x ∂jyu‖2 dt dx ≤ C
∑

α1+α2+j≤M2

∫
DT

‖∂α1
t ∂α2

x ∂jyL̃2,εu‖2 dt dx.

(5.21)
Since the right hand side h(t, x, y) of (4.17) is flat on x = 0, we remark that the
solution uε(t, x, y) to (4.17) is also flat on x = 0. Therefore we see through the
similar argument of the proof of Lemma 2.3 that the estimate (5.21) and the finite
propagation speed that is independent of 0 < ε < 1 show that Lemma 4.7 is valid.

Finally we prove Lemma 4.8. We can draw from (5.15) and (5.16) the following
estimate for any u(t, x, y) vanishing for large |y|;

− ∂t(eγ(t+x)tεxε‖∂xu‖2)− ∂x
(
eγ(t+x)tεxε(B(t, x, ·)∂xu, ∂xu)

)
− ∂x

(
eγ(t+x)t2k+2

ε x2l+2
ε (A2(t, x, ·)∂yu, ∂yu

)
+ eγ(t+x)tεxε(γ + t′εt

−1
ε )‖∂xu‖2

+ eγ(t+x)tεxε(γ + x′εx
−1
ε )(B(t, x, ·)∂xu, ∂xu)

+ eγ(t+x)(γxε + (2l + 2)x′ε)t
2k+2
ε x2l+1

ε (A2(t, x, ·)∂yu, ∂yu)

≤ −2eγ(t+x)tεxε<(L̃0
2,εu, ∂xu)

+ Ceγ(t+x)
(
t2k+2
ε x2l+2

ε (‖∂yu‖2 + ‖∂xu‖2) + tεxε‖∂xu‖2
)
,

from which and from

− ∂x(eγ(t+x)tεxε‖u‖2) + eγ(t+x)tεxε(γ + x′εx
−1
ε )‖u‖2

≤ eγ(t+x)tεxε(
γ

2
‖u‖2 +

2
γ
‖∂xu‖2),

we obtain the following estimate for any u(t, x, y) in C∞0 ({(t, x, y) ∈ R3 | x ≥
0 and t ≥ 0}) vanishing when t ≥ T or x ≥ T with some T > 0 with some T > 0;
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there exists a γ0 > 0 such that for γ ≥ γ0∫
DT

eγ(t+x)tεxε

(
γ
(
‖∂xu‖2 + ‖u‖2

)
+ x−1

ε (‖∂xu‖2 + ‖u‖2) + t−1
ε ‖∂xu‖2

)
dt dx

+
∫
DT

eγ(t+x)(γxε + (2l + 2))t2k+2
ε x2l+1

ε ‖∂yu‖2 dt dx

≤ C
∫
DT

eγ(t+x)tεxε‖L̃0
2,εu‖‖∂xu‖ dt dx.

Hence, we see from the estimate on DT

‖tL̃2,εu− L̃0
2,εu‖ ≤ C0t

k
εx

l+1
ε ‖∂yu‖+ C1(‖∂xu‖+ ‖u‖)

and (5.17) that there exists γ1 > 0 such that for γ ≥ γ1,∫
DT

eγ(t+x)tεxε

(
γ
(
‖∂xu‖2 + ‖u‖2

)
+ x−1

ε (‖∂xu‖2 + ‖u‖2) + t−1
ε ‖∂xu‖2

)
dt dx

+
∫
DT

eγ(t+x)(γxε + 1)t2k+2
ε x2l+1

ε ‖∂yu‖2 dt dx

≤C
∫
DT

eγ(t+x)tεxε‖tL̃2,εu‖‖∂xu‖ dt dx,

(5.22)

which implies∫
DT

tεxε
(
‖∂xu‖2 + ‖u‖2

)
dt dx+

∫
DT

t2k+2
ε x2l+2

ε ‖∂yu‖2 dt dx

≤ C
∫
DT

tεxε‖tL1,εu‖2 dt dx.

Similarly to the estimates for L̃2,ε, we obtain from (5.22) the following; for any
integer N ≥ 0 we have∫

DT

tεxε
∑

α1+α2+j≤N

(
‖∂α1
t ∂α2+1

x ∂jyu‖2 + ‖∂α1
t ∂α2

x ∂jyu‖2
)
dt dx

+
∫
DT

t2k+2
ε x2l+2

ε ‖∂N+1
y u‖2 dt dx

≤ C
∫
DT

tεxε
∑

α1+α2+j≤N

‖∂α1
t ∂α2

x ∂jy
tL̃2,εu‖2 dt dx.

(5.23)

From Lemma 3.4 and (5.23) we see that for any integer M1 ≥ 0 there exists an
integer M2 ≥ 0 such that∫

DT

∑
α1+α2+j≤M1

‖∂α1
t ∂α2

x ∂jyu‖2 dt dx

≤ C
∫
DT

∑
α1+α2+j≤M2

‖∂α1
t ∂α2

x ∂jy
tL̃2,εu‖2 dt dx. (5.24)

Since the constant C of the estimate above (5.24) is independent of 0 < ε < 1,
(5.24) implies that Lemma 4.8 is valid. Then the proof of Theorem 1.2 is complete.
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