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Nonlinear stability of centered rarefaction waves

of the Jin-Xin relaxation model for 2× 2

conservation laws ∗

Wei-Cheng Wang

Abstract

We study the asymptotic equivalence of the Jin-Xin relaxation model
and its formal limit for genuinely nonlinear 2× 2 conservation laws. The
initial data is allowed to have jump discontinuities corresponding to cen-
tered rarefaction waves, which includes Riemann data connected by rar-
efaction curves. We show that, as long as the initial data is a small
perturbation of a constant state, the solution for the relaxation system
exists globally in time and converges, in the zero relaxation limit, to the
solution of the corresponding conservation law uniformly except for an
initial layer.

1 Introduction

In this paper, we study the asymptotic behavior of the Jin-Xin model for a
semilinear hyperbolic system with relaxation:

ut + vx = 0

vt + α2ux =
1
ε

(f(u)− v)
(1.1)

where u,v, f ∈ R2, x ∈ R, t > 0. In the formal limit as ε → 0, we expect the
second equation of (1.1) to be well approximated by the local equilibrium

v = f(u) (1.2)

and the relaxation system reduces to

ut + f(u)x = 0. (1.3)

The relaxation limit for 2× 2 nonlinear hyperbolic systems was first studied by
Liu in [11], where the stability criterion and asymptotic limit were established
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for some basic wave patterns such as diffusion waves, expansion waves and
traveling waves. In Chen, Levermore and Liu [2], further mathematical theories
were developed including the entropic extension and asymptotic expansions.

Distinguished by the special structure of its nonlinear terms, (1.1) was pro-
posed by Jin and Xin in [7] with an interesting numerical origin. It is used
as an approximation for general conservation laws and the authors developed
a new class of numerical methods for (1.3) called relaxation schemes based on
discretizing (1.1). Due to the simplicity of the relaxation scheme and its out-
standing performance, the hyperbolic system (1.1) has stimulated much research
activities on rigorous justification of the asymptotic equivalence between (1.1)
and (1.3).

When u and f are scalars, (1.1) admits compact invariant regions. With this
a priori L∞ bound, Natalini [6], established the asymptotic equivalence between
the Cauchy problems of (1.1) and (1.3) within the class of BV data. Teng [18]
gave an optimal L1 error estimate between (1.1) and (1.3) using the matching
method introduced in [4]. An optimal pointwise estimate was derived in Tadmor
and Tang [17] based the optimal L1 error estimate and the Lip+ analysis. For
initial boundary value problems, the stiff well-posedness for (1.1), its asymptotic
equivalence to (1.3) and the boundary layer structure was obtained in Wang and
Xin [20].

For 2 × 2 conservation laws (1.3), a priori L∞ bound for (1.1) is not avail-
able in general. Tzavaras [21], Gosse and Tzavaras [3] established the strong
dissipation estimate for u with growth assumption on f . A typical example is
the elastodynamics equation

∂tu1 + ∂xu2 = 0, ∂tu2 + ∂xg(u1) = 0, (1.4)

with growth assumption on the stress-strain function g. The convergence result
then follows from the Lp theory of compensated compactness.

With a slightly different approach, Serre [15] showed that if (1.3) has a convex
characteristic set whose boundary is stable under f ′(u), and if the following sub-
characteristic condition

α > ρ(f ′(u)) (1.5)

holds, one can find an invariant region for (1.1) and hence establish convergence
results using compensated compactness. Examples of 2 × 2 conservation laws
satisfying the assumption above include the Temple system and the elastody-
namics equation (1.4) with g satisfying g′ > 0 and sg′′(s) > 0 for s 6= 0. It
should be noted that although the result in [21, 3, 15] cover quite a wide range
of equations, the isentropic Euler equation, for example, is not included.

In this paper, we take an alternative approach to establish the convergence
result for general 2× 2 conservation laws equipped with a convex entropy. We
consider the Cauchy problem with initial data allowed to have a jump discon-
tinuity corresponding to a centered rarefaction wave. We show that, as long
as the initial data is a small perturbation of a non-vacuum constant state, the
solution of (1.1) exists globally in time and converges, as ε→ 0, to the solution
of (1.3) uniformly except for an initial layer. This is done by approximating
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the solution of (1.3) with a smooth rarefaction wave followed by a nonlinear
stability analysis of the smooth rarefaction wave under discontinuous initial
perturbations for (1.1). The a priori sup norm control then follows from the
Sobolev embedding. The result here can be easily extended to the case of two
weak centered rarefaction waves of different families. The result in this paper
was announced in [19] for the special case of the isentropic p system.

Other related works include Luo [12], where the author studied the stability
of rarefaction wave in the scalar, multidimensional setting of the Jin-Xin model;
Luo and Xin [13] showed nonlinear stability of the traveling wave solution also
in the scalar, multidimensional case. Several discrete velocity kinetic models
have also been proposed as relaxation approximations for (1.3), see [1, 6, 10].
In the 1-D case, the 2 speed case of these models are equivalent to the Jin-Xin
model. However, they are genuinely different in the multidimensional case. The
relaxation approximation was later generalized to the Hamilton-Jacobi equation
[8] and to curvature dependent front propagation [9].

The rest of the paper is organized as follows: In section 2, we construct the
smooth approximate solution and list some preliminary estimates. We then state
the main theorem (Theorem 2.4). In sections 3, we review the entropic extension
property for the Jin-Xin system, which is the foundation for our energy estimate.
In sections 4, we proceed to prove the main theorem by treating the Riemann
initial data as a discontinuous perturbation of the smooth approximation. We
then proceed by a piecewise H1 estimate on the error. To this end, we first
study how the initial jump propagates and decays along the characteristics in
(1.1). We then finish the proof by piecewise energy estimate and the Sobolev
inequality.

2 Smooth approximations

We first rewrite (1.1) in a simpler form as

Uε
t + AUε

x =
1
ε
N(Uε) t ≥ 0, x ∈ R

Uε(x, 0) =

{
Ur if x > 0
Ul if x < 0

(2.1)

and consider also the scaled version of (2.1):

Ut + AUx = N(U) t ≥ 0, x ∈ R

U(x, 0) =

{
Ur if x > 0
Ul if x < 0,

(2.2)

where

U =
(

u
v

)
, N(U) =

(
0

f(u)− v

)
, A =

(
0 I2

α2I2 0

)
(2.3)
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It is clear that U(x, t) is a solution of (2.2) if and only if

Uε(x, t) def= U(
x

ε
,
t

ε
) (2.4)

is a solution of (2.1).
We further assume that the Riemann Cauchy data (Ul,Ur) for (2.2) are in

local equilibrium

Ul =
(

ul
f(ul)

)
, Ur =

(
ur

f(ur)

)
, (2.5)

and that ul and ur are connected by a rarefaction curve in the phase space.
Thus the solution of (1.3) is a self similar centered rarefaction wave:

u(x, t) = ǔ(
x

t
) (2.6)

(For an introduction on Cauchy problems with Riemann initial data and rar-
efaction curves, see [16].)

We want to study the time asymptotic/small mean free path limit of (2.2)/(2.1).
We will show that if |ul−ur| is small enough and α satisfies (1.5), then (2.2) has
a unique global in time solution and this solution is asymptotically equivalent
to a self similar function Ǔ:

lim
t→∞

sup
x∈R

|U(x, t)− Ǔ(
x

t
)| = 0, (2.7)

where Ǔ is obtained by imposing local equilibrium (1.2) together with (2.6):

Ǔ =
(

ǔ
f(ǔ)

)
(2.8)

In view of (2.4), we conclude that (2.1) has a unique solution satisfying

lim
ε→0

sup
x∈R, t≥εδ

|Uε(x, t)− Ǔ(
x

t
)| = 0 (2.9)

for any δ < 1 (one can replace εδ by any g(ε) such that ε = o(g(ε)) as ε→ 0).
To prove (2.7), we will construct Ũ(x, t), a smooth approximation of Ǔ and

show that both U and Ǔ are asymptotically equivalent to Ũ (Lemma 2.3 (b)
and (2.20) below).

We proceed by constructing Ũ as follows: Let w̃(x, t) be the solution of the
Cauchy problem

w̃t + w̃w̃x = 0

w̃(x, 0) =
1
2
{(wr + wl) + (wr − wl) tanhx}

(2.10)

Lemma 2.1 ([5]) Suppose wr > wl, then (2.10) has a unique global smooth
solution satisfying
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(a) wl < w̃(x, t) < wr, w̃x(x, t) > 0 for t ≥ 0, x ∈ R.

(b) For any p ∈ [1,∞], there is a positive constant C such that for t ≥ 0,

‖w̃x(t)‖Lp ≤ C min(|wr − wl|, |wr − wl|(1 + t)−1+ 1
p ),

‖w̃xx(t)‖Lp , ‖w̃xxx(t)‖Lp ≤ C min(|wr − wl|, (1 + t)−1).
(2.11)

(c) limt→∞ supx∈R |w̃(x, t)− w̌(xt )| = 0.

Since the rarefaction wave solution written in the Riemann invariant coor-
dinate reduces to a rarefaction wave for the Burgers’ equation up to a nonlinear
change of variables, we can thus construct the corresponding solutions of the
Euler equation by inverting this change of variables. The corresponding solution
of (1.3), ũ satisfies

Lemma 2.2 For each ul satisfying the sub-characteristic condition (1.5), there
exists a δ0 > 0 such that if ur can be connected to ul by a centered rarefaction
wave ǔ and |ul − ur| < δ0, then the corresponding smooth approximation ũ
satisfies the following:

(a) ũ is a smooth global solution of

ũt − f(ũ)x = 0. (2.12)

(b) For any p ∈ [1,∞], there is a positive constant C such that for t ≥ 0,

‖ũx(t), ũt(t)‖Lp ≤ C min(|ur − ul|, |ur − ul|1/p(1 + t)−1+ 1
p ),

‖ũxx(t), ũtx(t), ũxxx(t), ũtxx(t)‖Lp ≤ C min(|ur − ul|, (1 + t)−1).
(2.13)

(c) limt→∞ supx∈R |ũ(x, t)− ǔ(xt )| = 0.

Let us denote the zeroth order approximation by

U(0) =
(

u(0)

v(0)

)
, u(0) = ũ, v(0) = f(u(0)) (2.14)

and following the Chapman-Enskog expansion, we get the first order correction

U(1) =
(

0
v(1)

)
,v(1) = −(α2 − f ′(u(0))2)u(0)

x . (2.15)

We then construct Ũ, the smooth approximation of Ũ, by

Ũ = U(0) + U(1) =
(

ũ
ṽ

)
=
(

u(0)

v(0) + v(1)

)
(2.16)

Thus Ũ satisfies the following equation

Ũt + AŨx −N(Ũ) = U(1)
t + AU(1)

x , N(Ũ) =
(

0
−v(1)

)
(2.17)

and we have the corresponding estimates for Ũ.
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Lemma 2.3 Under the assumptions in Lemma 2.2, the smooth approximation
Ũ satisfies (2.17) and

lim
t→∞

sup
x∈R
|Ũ(x, t)− Ǔ(

x

t
)| = 0.

To show the asymptotic equivalence of U and Ũ, we let f = U − Ũ. The
equation satisfied by f reads

ft + Afx = N(U)−N(Ũ)− (U(1)
t + AU(1)

x )

f(x, 0) = U(x, 0)− Ũ(x, 0)
(2.18)

where

N(U)−N(Ũ)

=
(

0
f(u)− v + v(1)

)
=
(

0
f(u)− f(ũ)− ν

)
= −

(
0

ν − āµ+O(|µ|3)

)
(2.19)

and ā = f ′(ū) = f ′(ũ + µ
2 ).

At this point, we briefly summarize the notations for readers’ convenience:
Lowercase bold letters denote 2-vectors or 2 by 2 matrices, like u, f , a, etc.
Uppercase letters are 4-vectors or 4 by 4 matrices, like U and A. Tilded quan-
tities are smooth approximations such as w̃ and ũ. Greek letters µ = u − ũ,
ν = v − ṽ will denote perturbations. The barred quantities like ū = (u + ũ)/2
denote the average of the smooth approximation and the true solution.

(2.18), like (1.1), is a semilinear hyperbolic system. The discontinuities
propagate along x = αt and x = −αt. Thus we adopt the piecewise energy
estimate. We introduce the following notations: Denote by Ωk, k = 1, 2, 3
the regions separated by x = αt and x = −αt in the upper half plane t > 0,
Ωsk = Ωk ∩ {t = s} and for any interval I ⊂ R, H1(I) the usual Sobolev space
with norm ‖ · ‖1 = (‖ · ‖L2(I) + ‖ ∂∂x · ‖L2(I))1/2.

Now we define the appropriate function space on which we will be working:

X(0, T ) =
{
W : R× [0, T ] 7→ R4 :

W ∈ C0([0, T ),H1(Ωsk)) ∩ C1([0, T ), L2(Ωsk)) ∩ C2(Ωk), k = 1, 2, 3
}

For W ∈ X(0, T ), we define

‖W(·, t)−‖2 =−
∫
|W(x, t)|2dx

def=
∫ −αt
−∞
|W(x, t)|2dx+

∫ αt

−αt
|W(x, t)|2dx+

∫ ∞
αt

|W(x, t)|2dx
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‖W(·, t)−‖21 = ‖W(·, t)−‖2 + ‖Wx(·, t)−‖2

[W]+(t) = W(αt+ 0, t)−W(αt− 0, t)

[W]−(t) = W(−αt+ 0, t)−W(−αt− 0, t)

〈W〉+(t) =
1
2

(W(αt+ 0, t) + W(αt− 0, t))

〈W〉−(t) =
1
2

(W(−αt+ 0, t) + W(−αt− 0, t)).

We want to show that

lim
t→∞

sup
x∈R

|U(x, t)− Ũ(x, t)| = 0. (2.20)

A key observation is the following: The a priori bound on supt>0‖f‖L∞(t) im-
plies exponential decay in time of the jumps (see Lemma 4.1 below). Thus in
view of the Sobolev inequality

‖f‖2L∞(t) ≤ C
(
‖f‖‖fx−‖(t) + [f]2+(t) + [f]2−(t)

)
, (2.21)

our task remains to estimate ‖f−‖1 (Theorem 2.4 below). During this process,
terms involving line integrals of jumps across the discontinuities appear natu-
rally. Therefor the exponential decay in time of the jumps implies the a priori
bound on supt≥0‖f−‖

2
1(t) (Lemma 4.4 and on). We close this bootstrapping

argument by the local existence theorem (Theorem 2.5 below) to extend f in
X(0, T + ∆t) and conclude that T =∞ (global in time existence).

Theorem 2.4 (A priori estimate) There exists positive constants ε1 and C1

such that if f ∈ X(0, T ) is the solution of (2.18) in 0 ≤ t ≤ T for some T > 0
and

sup
0≤t≤T

‖f(t)−‖1 + |ur − ul| < ε1,

then

sup0≤t≤T ‖f(t)−‖21 +
∫ T

0
‖fx(τ)−‖2 ≤ C1(‖f(0)−‖21 + |ur − ul|1/6). (2.22)

The proof of Theorem 2.4 will be given in section 4.

Theorem 2.5 (Local existence) Let T ≥ 0 and g ∈ X(0, T ) be a solution
to (2.18) for 0 ≤ t ≤ T . Consider the initial value problem to (2.18) with the
initial data

f(T, x) = WT (x) def= W(T, x). (2.23)

Then for any M > 0, there exists a positive constant ∆t depending only on M
and supx,t |Ũ(x, t)| such that if

‖WT ‖C0(−∞,−αT ) + ‖WT ‖C0(−αT,αT ) + ‖WT ‖C0(αT,∞) < M
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Then (2.18) together with (2.23) has a unique solution f ∈ X(T, T + ∆t) sat-
isfying

sup
T≤t≤T+∆t

(
‖f(t)‖C0(−∞,−αt) + ‖f(t)‖C0(−αt,αt) + ‖f(t)‖C0(αt,∞)

)
< 2M.

As a consequence, W can be extended to X(0, T + ∆t).

The proof of Theorem 2.5 is standard, see [14] for the existence and uniqueness
in the piecewise C0 function class. The piecewise C2 regularity is a direct
consequence of the special structure of the nonlinearity (being the lower order
term in (2.18)) and the C2 regularity of the nonlinear functional N(·).

From Theorem 2.4 and Theorem 2.5, we have the following.

Corollary 2.6 For each ul satisfying the sub-characteristic condition (1.5),
there exists ε0 and C0 such that if ur can be connected to ul by a centered
rarefaction wave and ‖f(0)−‖1 + |ur − ul| < ε0, then (2.18) has a unique solu-
tion f ∈ X(0,∞) satisfying

sup
t≥0
‖f(t)−‖21 +

∫ ∞
0

‖fx(τ)−‖2dτ ≤ C0(‖f(0)−‖21 + |ur − ul|1/6). (2.24)

With Corollary 2.6, Lemma 4.1 below and the Sobolev inequality (2.21), it is
easy to see that ∫ ∞

0

‖fx−‖2(τ) +
∣∣ d
dτ
‖fx−‖2

∣∣(τ) <∞ (2.25)

and consequently (2.20) holds.

3 Entropic Extension

The Jin-Xin model has some nice mathematical properties. The entropic exten-
sion below follows from the idea outlined in [2]. The proof can also be found in
[15]. The derived entropy Φ(u,v) and the functions u± will be used in our main
energy estimate so we briefly summarize the proof here for readers’ convenience.

Proposition 3.1 Let (φ(u), ψ(u)) be a pair of entropy-flux functions of (1.3)
with φ convex, then we can derive the corresponding entropy-flux pair (Φ,Ψ) for
the system (1.1) from the following wave equation with Cauchy data

Φu = Ψv

Ψu = α2Φv

Φ(u, f(u)) = φ(u)
Φv(u, f(u)) = 0.

(3.1)

The solution (Φ,Ψ) exists in a neighborhood of the equilibrium v = f(u) and
there it satisfies
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(a) Φ is convex if α is sufficiently large.

(b) Ψ(u, f(u)) = ψ(u).

(c) Φt(u,v)+Ψx(u,v) = − 1
εΦv(u,v) · (v− f(u)) ≤ 0 for any smooth solution

of (1.1).

Proof. From first two equation of (3.1), Φ satisfies the wave equation

Φuu = α2Φvv

Therefore the general solution is given by

Φ(u,v) = h+(v + αu) + h−(v − αu), (3.2)

The last two equation in (3.1) gives:

h′+(f(u) + αu)− h′−(f(u)− αu) =
φ′(u)
α

h′+(f(u) + αu) + h′−(f(u)− αu) = 0,
(3.3)

Thus

h′±(f(u)± αu) = ±φ
′(u)
2α

(3.4)

and

d

du
h±(f(u)± αu) = ±φ

′(u)
2α

(f ′(u)± αI) =
1
2
(
φ′(u)± ψ′(u)

α

)
(3.5)

Thus

h±(f(u)± αu) =
1
2
(
φ(u)± ψ(u)

α

)
(3.6)

and the solution to (3.1) is given by

Φ(u,v) = h+(v + αu) + h−(v − αu)
Ψ(u,v) = α (h+(v + αu)− h−(v − αu))

(3.7)

and part (b) of the assertion follows.
From the Inverse Function Theorem, we can define two functions

u+ = u+(v + αu), u− = u−(v − αu)

in a neighborhood of (u0, f(u0)) implicitly by

f(u±)± αu± = v ± αu (3.8)

with u±(f(u0)± αu±) = u0 since

d

du±
(f(u±)± αu±) |u0 = f ′(u0)± α
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is nonsingular. In view of (3.6-3.7) and (3.8), we can write

Φ(u,v) =
1
2

(
(φ(u+) +

ψ(u+)
α

) + (φ(u−)− ψ(u−)
α

)
)

(3.9)

and

∂

∂u
u± = ±α

(
f ′(u±)± α

)−1 (3.10)

∂

∂v
u± =

(
f ′(u±)± α

)−1
. (3.11)

Therefore

Φu(u,v) =
1
2

(
(φ′(u+) +

ψ′(u+)
α

)
∂

∂u
u+ + (φ′(u−)− ψ′(u−)

α
)
∂

∂u
u−
)

=
1
2
(
φ′(u+) + φ′(u−)

)
,

where we have used ψ′ = φ′f ′. Similarly

Φv(u,v) =
1

2α
(
φ′(u+)− φ′(u−)

)
Φuu(u,v) = α2(h′′+(v + αu) + h′′−(v − αu))
Φuv(u,v) = α(h′′+(v + αu)− h′′−(v − αu))

Φvv(u,v) = h′′+(v + αu) + h′′−(v − αu)

h′′+(v + αu) = φ′′(u+)(α+ f ′(u+))−1

h′′−(v − αu) = φ′′(u−)(α− f ′(u−))−1

To show the convexity of Φ, we compute

(xT ,yT )
(

Φuu Φuv

Φuv Φvv

)(
x
y

)
= (αx + y)Tφ′′(u+)(α+ f ′(u+))−1(αx + y)

+ (αx− y)Tφ′′(u−)(α− f ′(u−))−1(αx− y) (3.12)

Since φ′′f ′ is symmetric, so are φ′′(α± f ′)−1. This makes (α± f ′)−1 self adjoint
operators on R2 with respect to the inner product induced by φ′′:

〈y, (α± f ′)−1x〉 = 〈(α± f ′)−1y,x〉, 〈y,x〉 = yTφ′′x

Therefore φ′′(α ± f ′)−1 are positive definite under the sub-characteristic con-
dition (1.5). We conclude that Φ is convex in a neighborhood of (u0, f(u0))
provided u0 satisfies (1.5). This proves (a).

Part (c) is a direct consequence of (a) since

Φv(u,v) = Φv(u,v)−Φv(u, f(u)) = (v−f(u))T
∫ 1

0

Φvv(u, f(u)+θ(v−f(u)))dθ
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4 A priori Estimates

To proceed with the energy estimate, we first study how the singularity prop-
agates. (1.1) is a semilinear hyperbolic system, the jump discontinuity in the
initial data propagate along the characteristic curves and, due to the relaxation
effect, decays exponentially in time. To show this, we write (1.1) in diagonal
form in the characteristic variables w± = v ± αu,

w+
t + αw+

x = f(u)− v

w−t − αw−x = f(u)− v
(4.1)

We denote by [·]± the jumps along the characteristic line dx/dt = ±α. Taking
the jump in the ‘+’ family on both sides of the first equation in (4.1), we have

[w+
t + αw+

x ]+ = [f(
w+ −w−r

2α
)]+ − [

w+

2
]+ (4.2)

where w−r = vr − αur is the corresponding Riemann data on x > 0. Since U
has continuous first derivatives up to the boundary on either side of the jumps,
we can interchange the tangential derivative with the jump to get an ODE along
the characteristics

d

dt
[w+]+ =[f(

w+ −w−r
2α

)]+ − [
w+

2
]+

=f(
w+
r −w−r

2α
)− f(

−[w+]+ + w+
r −w−r

2α
)− [w+]+

2
.

(4.3)

The equilibrium for (4.3) is given by [w+]+ = 0 with (u,v) = (ur,vr) on either
side of the characteristic. The linearization of the right hand side around this
equilibrium state is thus

1
2
( f ′(ur)

α
− I
)
[w+]+.

From (1.5), we conclude that the local equilibrium (ur,vr) is a sink and [w+]+(t)
decays exponentially in t. The same applies to [w±x ]+(t), [w−]−(t) and [w±x ]−(t).
We therefore have the following

Lemma 4.1 Let β = |ur − ul| and

E = sup
0≤t≤T

(
‖f−‖1(t) + |[f]+(t)|+ |[f]−(t)|

)
,

then there exist positive constants ε1, C, C1 such that if 0 ≤ t ≤ T , E ≤ ε1 and
α sufficiently large, we have

|[f]±(t)|+ |[fx]±(t)| ≤ Cβe−C1t (4.4)
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To proceed, we define

E = Φ(Ũ + f)− Φ(Ũ)− Φ′(Ũ)f

Ef = Φ′(Ũ + f)− Φ′(Ũ)

EŨ = Φ′(Ũ + f)− Φ′(Ũ)− fTΦ′′(Ũ)

J = Ψ(Ũ + f)−Ψ(Ũ)−Ψ′(Ũ)f

Jf = Ψ′(Ũ + f)−Ψ′(Ũ)

JŨ = Ψ′(Ũ + f)−Ψ′(Ũ)− fTΨ′′(Ũ)

It is easy to see that, for E < ε2, we have

c|f|2 ≤ E ≤ C|f|2

Ef ≤ C|f|
EŨ ≤ C|f|

2

(4.5)

In addition to (4.5), a more refined estimate for Ef is needed due to the structure
of the nonlinear term. Denote by

Ef = (Eµ, Eν)

In the following Lemma, we expand Eν in terms of the perturbation and identify
the quadratic term, which will be of use in our energy estimate.

Lemma 4.2 For ū = ũ + µ/2 and ā = f ′(ū),

Eν =
(
(α2 − ā2)−1(ν − āµ)

)T
φ′′(ū)+O(|v(1)||f|+|f||ν−āµ|)+O(|v(1)|3+|f|3).

(4.6)

Proof. Since Ef = Φ′(U) − Φ′(Ũ) involves the difference of functions evalu-
ated at U and Ũ respectively, we will, in the remainder of the proof, consider
(ū, v̄) =

(
ũ+u

2 , f( ũ+u
2 )
)

fixed as the base point for Taylor expansion. We take
(u0, f(u0)) = (ū, v̄) and recall the two functions

u+ = u+(v + αu), u− = u−(v − αu)

defined in (3.8) in a neighborhood of (ū, v̄). To estimate Φv, we let

η± = v − v̄ ± α(u− ū) (4.7)

and expand u± in Taylor series of η±

u± = ū + u±1 + u±2 +O(|η±|3) (4.8)
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with u±1 = Du±(ū)η± and u±2 = 1
2D

2u±(ū)(η±,η±). Substitute (4.8) back to
(3.8), expand in power series of η± and equate the powers of |η±|, we get

u±1 = (f ′(ū)± α)−1η± = (ā± α)−1η± (4.9)

u±2 = −(ā± α)−1 f ′′(ū)
2

(u±1 ,u
±
1 ) (4.10)

Introduce the notation

〈·〉U
Ũ

= ·|U + ·|Ũ , [·]U
Ũ

= ·|U − ·|Ũ

we have

[η±]U
Ũ

= [v − v̄]U
Ũ
± α[u− ū]U

Ũ
= [v]U

Ũ
± α[u]U

Ũ
= ν ± αµ

and
〈η±〉U

Ũ
= 〈v − v̄〉U

Ũ
± α〈u− ū〉U

Ũ
= 〈v − v̄〉U

Ũ

Since

v − v̄|U = f(ũ) + v(1) + ν − f(ū) = f(ū− µ
2

) + v(1) + ν − f(ū)

= −ā
µ

2
+O(|µ|2) + v(1) + ν (4.11)

and similarly

v − v̄
∣∣
Ũ = f(ũ)− f(ū) = −ā

µ

2
+O(|µ|2) + v(1) (4.12)

we have

〈v − v̄〉U
Ũ

= ν − āµ+ 2v(1) +O(|µ|2)

Φv =
1

2α
(
φ′(u+)− φ′(u−)

)
=

1
2α
(
φ′(ū + u+

1 + u+
2 +O(|η+|3))− φ′(ū + u−1 + u−2 +O(|η−|3))

)
Since

φ′(u±) = φ′(ū) + (u±1 )Tφ′′(ū) +
(

(u±2 )Tφ′′(ū) +
φ′′′(ū)

2
(u±1 ,u

±
1 )
)

+O(|η±|3)

we have the linear term for Eν :[
1

2α
(u+

1 − u−1 )Tφ′′(ū)
]U
Ũ

=
(
(α2 − ā2)−1(ν − āµ)

)T
φ′′(ū) (4.13)

To estimate the quadratic term in Eν , observe that from (4.9) and (4.10),
both

(u±2 )Tφ′′(ū) = −
(

(ā± α)−1 f ′′(ū)
2
(
(ā± α)−1•, (ā± α)−1 •

))T
|(η±,η±)φ

′′(ū)
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and
φ′′′(ū)

2
(u±1 ,u

±
1 ) =

φ′′′(ū)
2

(
(ā± α)−1•, (ā± α)−1•

)
|(η±,η±)

are (vector valued) symmetric bilinear forms evaluated at (η+,η+) and (η−,η−)
respectively. In addition, both are symmetric in their arguments. For any
symmetric bilinear form Q(·, ·), we have

Q(p,p)−Q(q,q) = Q(p + q,p− q),

Thus [
(u±2 )Tφ′′(ū) +

φ′′′(ū)
2

(u±1 ,u
±
1 )
]U
Ũ

= O(1)
(∣∣∣〈η±〉U

Ũ

∣∣∣ · ∣∣∣[η±]U
Ũ

∣∣∣)
and (4.6) follows. �

We now proceed with the main energy estimate. Let β and E be defined as
in Lemma 4.1.

Lemma 4.3 There exist positive constants ε2 and C such that for 0 ≤ t ≤ T
and E ≤ ε2,

‖f(t)‖2 +
∫ t

0

‖ν − āµ‖2dτ

≤ ‖f(0)‖2 +C

∫ t

0

−
∫ (
|v(1)|4 + |v(1)

x |2 + |f|2|v(1)|+ |f||v(1)
x |+ |f|6

)
dxdτ +Cβ

(4.14)

Proof. We multiply both sides of (2.18) by Ef from the left to get

Et + Jx = EŨ (Ũt + AŨx) + Ef(N(U)−N(Ũ))− Ef(U(1)
t + AU(1)

x ) (4.15)

where we have used Φ′A = Ψ′. Next we calculate each term on the right hand
side of (4.15):

Ũt + AŨx = N(Ũ) + U(1)
t + AU(1)

x = O(v(1),v(1)
t ,v(1)

x ), (4.16)

N(U)−N(Ǔ) = −
(

0
ν − āµ+O(|µ|3)

)
(4.17)

Thus (4.14) follows after integrating (4.15) over R × (0, T ) and applying the
Cauchy-Schwartz inequality and (4.4). �

Lemma 4.4 There exist positive constants ε2 and C such that if E ≤ ε2 and
0 ≤ t ≤ T , then

‖fx(t)−‖2 +
∫ t

0

‖fx(τ)−‖2dτ ≤‖fx(0)−‖2 + C

∫ t

0

‖ν − āµ‖2

+ C

∫ t

0

−
∫ (
|v(1)|2|f|2 + |f|6 + |v(1)

x |2

+ |v(1)
xx |2 + |fx|2|v(1)|

)
dxdτ + Cβ

(4.18)
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Proof. We first derive the equation for fx by differentiating (2.18) with re-
spect to x,

fxt + Afxx =−

(
O(v(1)

xx )
νx − a(u(0)

x + µx) + ãu(0)
x +O(v(1)

xx )

)

=−

(
O(v(1)

xx )
νx − ãµx +O(|v(1)||f|+ |f||fx|+ |v(1)

xx |)

)
,

(4.19)

where ã = f ′(ũ) and a = f ′(u). Observe that(
α2φ̃′′ −φ̃′′ã
−φ̃′′ã φ̃′′

)
is a symmetrizer for A, we therefore multiply (4.19) from the left by

f
T
x

(
α2φ̃′′ −φ̃′′ã
−φ̃′′ã φ̃′′

)
, φ̃′′ = φ′′(ũ), (4.20)

to get

Ẽ(fx,fx)t + J̃ (fx,fx)x

=−O(1)|νx − ãµx|2 +O(1)
(
|α2µx − ãνx||v(1)

xx |

+ |νx − ãµx|
(
|v(1)||f|+ |f||fx|+ |v(1)

xx |
)

+ |fx|2|v(1)|
) (4.21)

where

Ẽ(fx,fx) = f
T
x

(
α2φ̃′′ −φ̃′′ã
−φ̃′′ã φ̃′′

)
fx,

J̃ (fx,fx) = f
T
x

(
−α2φ̃′′ã α2φ̃′′

α2φ̃′′ −φ̃′′ã

)
fx.

Here we have used the fact that φ̃′′ã is a symmetric matrix and

∂

∂x

(
α2φ̃′′ −φ̃′′ã
−φ̃′′ã φ̃′′

)
= O(v(1)).

The symmetrizer (
α2φ̃′′ −φ̃′′ã
−φ̃′′ã φ̃′′

)
is positive definite, since

(xT ,yT )

(
α2φ̃′′ −φ̃′′ã
−φ̃′′ã φ̃′′

)(
x
y

)
=(αx− y)T φ̃′′(αx− y) + xT (α2φ̃− ãT φ̃′′ã)x.
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We can similarly show that α2φ̃′′ − ãT φ̃′′ã = φ̃′′(α2 − ã2) is positive definite
under the sub-characteristic condition (1.5) using the same argument following
(3.12). Thus

c|fx|2 ≤ Ẽ(fx,fx) ≤ C|fx|2

We then integrate (4.21) over R× [0, t] to get, for E sufficiently small and any
m > 0, there exists a C > 0 such that

‖fx(t)−‖2 +
∫ t

0

‖νx − ãµx−‖
2
dτ

≤‖fx(0)−‖2 +
∫ t

0

−
∫
m|α2µx − ãνx|2

+ C
(
|v(1)|2|f|2 + |v(1)

xx |2 + |fx|2|v(1)|
)
dxdτ + Cβ

(4.22)

where we have used (4.4).
We now proceed to estimate α2µx − ãνx. First, let us rewrite (2.18) as

µt + νx = −v(1)
x

νt + α2µx = −(ν − āµ) +O(|µ|3) +O(|v(1)
x |).

(4.23)

We now multiply the first equation of (4.23) by (−ã) from the left and add it
to the second:

(νt − ãµt) + (α2µx − ãνx) = −(ν − āµ) +O(|µ|3) +O(|v(1)
x |), (4.24)

so

|α2µx − ãνx|2 =− (νt − ãµt)
T (α2µx − ãνx)

−
(
ν − āµ+O(|µ|3) +O(v(1)

x )
)T (α2µx − ãνx).

(4.25)

The second term on the right hand side of (4.25) is bounded by

−
(
ν − āµ+O(|µ|3) +O(|v(1)

x |)
)T

(α2µx − ãνx)

≤ 1
4
|α2µx − ãνx|2 + C

(
|ν − āµ|2 + |µ|6 + |v(1)

x |2
)

(4.26)

while the first term is bounded by(
(ν − ãµ)t +O(|v(1)||f|)

)T ((α2µ− ãν)x +O(|v(1)||f|)
)

≤(ν − ãµ)Tt (α2µ− ãν)x

+ C|v(1)| |f|
(
|νt − ãµt|+ |α2µx − ãνx|+O(|v(1)||f|)

) (4.27)
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Substituting (4.24) into the second term on the right hand side of (4.27), we
can estimate it by

C|v(1)| |f|
(
|νt − ãµt|+ |α2µx − ãνx|+ |v(1)||f|

)
≤C|v(1)| |f|

(
2|α2µx − ãνx|+ |ν − āµ|+ |µ|3 + |v(1)

x |+ |v(1)||f|
)

≤1
4
|α2µx − ãνx|2 + C

(
|v(1)|2|f|2 + |ν − āµ|2 + |µ|6 + |v(1)

x |2
) (4.28)

while

(ν − ãµ)Tt (α2µ− ãν)x ={(ν − ãµ)T (α2µ− ãν)x}t − {(ν − ãµ)T (α2µ− ãν)t}x
+ (ν − ãµ)Tx (α2µ− ãν)t.

The last term on the right hand side of the above equation can be treated
similarly as (4.28):

(ν − ãµ)Tx (α2µ− ãν)t ≤ C(|νx − ãµx|2 + |v(1)|2|f|2). (4.29)

After integrating (4.25) over R × (0, t) and applying (4.25-4.29) and (4.4), we
have∫ t

0

‖α2µx − ãνx−‖2dτ ≤C
{∫ t

0

‖ν − āµ‖2dτ +
∫ t

0

‖νx − ãµx−‖
2
dτ

+
∫ t

0

−
∫ (
|v(1)|2|f|2 + |f|6 + |v(1)

x |2
)
dxdτ

}
+ Cβ

(4.30)
Since

c1(|νx|2 + |µx|2) ≤ |α2µx − ãνx|2 + |νx − ãµx|2 ≤ c2(|νx|2 + |µx|2), (4.31)

we conclude with (4.18) from (4.22) and (4.29). �
Combining Lemma 4.3 and Lemma 4.4 with suitably chosen m, β and E,

for 0 ≤ t ≤ T , we have

‖f(t)−‖21 +
∫ t

0

‖fx−‖2dτ ≤‖f(0)−‖21 + C1

∫ t

0

−
∫ (
|v(1)|4 + |v(1)

x |2 + |f||v(1)
x |

+ |f|6 + |v(1)
xx |2 + |fx|2|v(1)|+ |f|2|v(1)|

)
dxdτ + Cβ

(4.32)
Finally, we can estimate the right hand side of (4.32).

Lemma 4.5 There exist a positive constant C such that for E < ε2 and 0 ≤
t ≤ T , the right hand side of (4.32)is bounded by

C
(
‖f(0)−‖21 + β1/6 + (E + β)

∫ t

0

‖fx−‖2dτ
)
.
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Proof. We estimate each term by virtue of Lemma 2.2 and the Sobolev in-
equality (2.21) as follows:∫ t

0

−
∫
|v(1)|4dxdτ ≤ C

∫ t

0

‖v(1)‖2L∞‖v(1)‖2dτ ≤ Cβ

∫ t

0

−
∫
|v(1)
x |2 + |v(1)

xx |2dxdτ ≤ Cβ1/4.

∫ t

0

−
∫
|f| |v(1)

x |dxdτ ≤C
∫ t

0

(‖f‖1/2‖fx−‖1/2 + βe−Cτ )‖v(1)
x ‖L1dτ

≤C
∫ t

0

(E2‖fx−‖2 + ‖v(1)
x ‖

4/3
L1 )dτ + Cβ

≤C
∫ t

0

(E2‖fx−‖2 + β1/6(1 + τ)
−7
6 )dτ + Cβ

≤CE
∫ t

0

‖fx−‖2dτ + Cβ1/6

∫ t

0

−
∫
|f|6dxdτ ≤

∫ t

0

‖f‖4‖fx−‖2dτ + Cβ ≤ E
∫ t

0

‖fx−‖2dτ + Cβ∫ t

0

−
∫
|fx|2|v(1)|dxdτ ≤ β

∫ t

0

‖fx−‖2dτ

∫ t

0

−
∫
|f|2|v(1)|dxdτ ≤C

∫ t

0

‖f‖3/2‖fx−‖1/2‖v(1)‖L∞dτ + Cβ

≤C
∫ t

0

(E‖fx−‖2 + ‖v(1)‖4/3L∞)dτ + Cβ

≤CE
∫ t

0

‖fx−‖2dτ + Cβ1/6

Which completes the proof.
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