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Regularity bounds on Zakharov system

evolutions ∗

James Colliander & Gigliola Staffilani

Abstract

Spatial regularity properties of certain global-in-time solutions of the
Zakharov system are established. In particular, the evolving solution u(t)
is shown to satisfy an estimate ‖u(t)‖Hs ≤ C|t|(s−1)+, where Hs is the
standard spatial Sobolev norm. The proof is an adaptation of earlier work
on the nonlinear Schrödinger equation which reduces matters to bilinear
estimates.

1 Introduction

We consider the initial value problem for the Zakharov system [15] on R2

iut + ∆u = nu, u : R2 × [−T∗, T ∗]→ C,

�n = ∆|u|2, n : R2 × [−T∗, T ∗]→ R,
(u, n, ṅ)(0) = (φ, a, b).

(1.1)

Suppose b is such that there exists V : R2 → R
2 with b = ∇ · V . Then the

Zakharov system may be rewritten in Hamiltonian form with Hamiltonian

H(u, ū, n, V ) =
∫
R2
|∇u|2 +

1
2

(n2 + |V |2) + n|u|2dx. (1.2)

For initial data φ small enough in L2 we can conclude from conservation of (1.2)
that

‖u(t), n(t), ṅ(t)‖H1 = ‖u(t), n(t), ṅ(t)‖H1×L2×Ĥ−1 ≤ C‖φ, a, b‖H1 (1.3)

where H1 := H1 × L2 × Ĥ−1 and Ĥ−1 is defined by ‖b‖Ĥ−1 = ‖V ‖L2 . Local
wellposedness of (1.1) for data (φ, a, b) ⊂ H1 was established in [6, 7], with the
lifetime of existence satisfying

T > ‖φ, a, b‖−αH1
for some α > 0. (1.4)
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The regularity requirements for the local results in [6, 7] have subsequently been
improved in [9]. Hence, for data implying a priori H1 control (1.3), the local
result may be iterated to prove the existence of global-in-time solutions of (1.1).
In fact, global solutions of the initial value problem (1.1) had been shown to
exist earlier [1] (d = 1) [14] (d = 2) using energy methods in spaces requiring
more regularity than H1.

Remark. The initial value problem (1.1) has solutions which blow up in finite
time [11, 10]. At the present time, there is no criteria known which identifies
those initial data leading to blow up and those leading to global-in-time solu-
tions. This paper provides regularity bounds on those global solutions obtained
by iterating the local wellposedness result using a priori H1 control.

Let �−1F denote the solution of the inhomogeneous wave equation with zero
data,

�n = F,

(n, ṅ)(0) = (0, 0).
(1.5)

Let W (a, b) denote the solution of

�n = 0
(n, ṅ)(0) = (a, b).

(1.6)

Note that �−1F and W (a, b) may be explicitly represented using the Fourier
transform. The (formal) solution of the second equation in (1.1) is

n = W (a, b) +�−1(∆|u|2). (1.7)

Substituting this expression for n into the first equation in (1.1) gives

ut = i∆u− iW (a, b)u− i�−1∆(|u|2)u,
u(0) = φ.

(1.8)

Note that the regularity properties of the data a, b and of u, inferred from solving
(1.8), determine the regularity properties of n through (1.7).

Let S denote the Schwarz class. Consider initial data φ, a ∈ S, b ∈ S
⋂
Ĥ−1

implying a priori H1 control (1.3). How do the regularity properties of the
global solution (u(t), n(t)) behave as t→∞? In particular, can we describe, or
at least bound from above and below, ‖u(t), n(t), ṅ(t)‖Hs for s� 1 as t→∞?
These estimates quantify the shift of the conserved L2 mass in frequency space.
In particular, the upper bounds we obtain in this paper limit the rate of transfer
from low frequencies to high frequencies. By the note following (1.8), it suffices
to understand ‖u(t)‖Hs .

The local result for (1.8) implies

sup
t∈[0,T ]

‖u(t)‖Hs ≤ ‖φ‖Hs + C‖φ‖Hs (1.9)
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which iterates to give an exponential bound ‖u(t)‖Hs ≤ C |t|. Bourgain observed
that a slight improvement of (1.9)

sup
t∈[0,T ]

‖u(t)‖Hs ≤ ‖φ‖Hs + C‖φ‖1−δHs , 0 < δ < 1, (1.10)

implies the polynomial bound ‖u(t)‖Hs ≤ C|t|1/δ. This observation was ex-
ploited in [3] to prove polynomial bounds on high Sobolev norms for solutions
of the nonlinear Schrödinger equation and certain nonlinear wave equations.

Staffilani [12, 13] improved the degree of the polynomial upper bound using
a different approach to prove (1.10) in the case of the nonlinear Schrödinger
equation. The crucial bilinear estimate used in this approach has recently been
improved [8] giving a slightly better polynomial estimate. This paper adapts
the arguments from [13] for the nonlinear Schrödinger equation to prove simi-
lar polynomial bounds on high Sobolev norms for the global solutions of (1.1)
constructed in [6, 7].

Theorem 1.1 Assume (φ, a, b) ∈ S ×S × (S ∩ Ĥ−1). Global solutions of (1.1)
satisfying (1.3) also satisfy

‖u(t)‖Hs ≤ C|t|(s−1)+
. (1.11)

The question of lower bounds showing growth of high Sobolev norms remains
a fascinating open question. For a more thorough discussion, including model
equations other than the Zakharov system, see the book of Bourgain [5].

2 Reduction to bilinear estimate

Our goal is to bound ‖u(t)‖Hs for u, the solution of (1.8), with t ∈ [0, T ] and
T as in (1.4). Since ‖u(t)‖L2 = ‖φ‖L2 for all t, it suffices to bound ‖Bsu(t)‖L2

where B =
√
−∆. Let’s assume s = 2m for 1� m ∈ N to avoid certain technical

issues involving fractional derivatives below. Let 〈·, ·〉 denote the standard L2
x

inner product, 〈f, g〉 =
∫
R2 fḡdx. By the fundamental theorem of calculus,

‖Bsu(t)‖2L2 = ‖Bsu(0)‖2L2 +
∫ t

0

d

dσ
〈Bsu(σ), Bsu(σ)〉dσ. (2.1)

We calculate

I = 2<
∫ t

0

〈Bsu̇(σ), Bsu(σ)〉dσ. (2.2)

Now, using the equation (1.8), we find

I =− 2=
∫ t

0

〈Bs∆u(σ), Bsu(σ)〉dσ

+ 2=
∫ t

0

〈Bs[W (a, b)(σ)u(σ)], Bsu(σ)〉dσ

+ 2=
∫ t

0

〈Bs[�−1∆(|u|2)u(σ)], Bsu(σ)〉dσ.

(2.3)
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Denote the three terms on the right-side of (2.3) by I1 + I2 + I3. Upon writing
−∆ = B2 and integrating by parts, the first term I1 is seen to have a real
integrand so this term is zero. The term I2 involves Bs(W (a, b)u). Various terms
arise from the Leibniz rule for differentiating a product. The most dangerous of
these is W (a, b)Bsu but, since W (a, b) is a real-valued function, this term leads
to a purely real integrand in (2.3) and so disappears. Hence, the term I2 leads
to a sum of terms of the form

C=
∫ t

0

〈[Bs1W (a, b)(σ)][Bs2u(σ)], Bsu(σ)〉dσ, (2.4)

where s = s1 + s2, 1 ≤ s1 ≤ s, 0 ≤ s2 ≤ s− 1, s1, s2 ∈ N,
We can multiply by a smooth cutoff function in time ψT ∼ χ[0,T ] and esti-

mate these terms via the Hölder inequality by

‖Bs1W (a, b)‖L2
x,t∈[0,T ]

‖Bs2u‖L4
xt
‖Bsu‖L4

xt
. (2.5)

The Strichartz estimate for the paraboloid and properties of Xs,b spaces [2]
imply for b = 1

2+,
‖Bs̃u‖L4

xt
≤ CT ‖u‖Xs̃,b . (2.6)

Here the space Xs,b is defined using the norm

‖u‖Xs,b =
(∫

(1 + |k|)2s(1 + |λ+ |k|2|)2b|û(k, λ)|2dkdλ
)1/2

.

The local wellposedness result [6, 9] gives

‖u‖Xs̃,b ≤ C‖u(0)‖H s̃ . (2.7)

Therefore, the second term I2 in (2.3) is estimated by a sum of terms of the
form

‖a, b‖Hs1×Hs1−1‖u(0)‖Hs2‖u(0)‖Hs . (2.8)

The first factor is bounded by a constant which depends upon the initial data
a, b. The second factor may be interpolated between ‖φ‖H1 and ‖φ‖Hs which
leads to the bound

|I2| ≤ C
∑

0≤s2≤s−1

‖u(0)‖1+
s2−1
s−1

Hs ≤ C‖u(0)‖2−
1
s−1

Hs . (2.9)

It remains to bound I3. Since differentiation in x commutes with �−1∆, the
Leibniz rule shows

I3 = 2=
∑

0≤σ1,σ2,σ3≤s
σ1+σ2+σ3=s

cσ1,σ2,σ3

∫ t

0

〈�−1∆(Bσ1uBσ2 ū)Bσ3u,Bsu〉dτ. (2.10)

In the case σ3 = s, the resulting integrand is purely real so this term disappears.
Consider first those terms with σ3 ≤ s − 2 and after treating these we will
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consider the terms with σ3 = s− 1. Since we are interested in proving a local-
in-time estimate, we can insert a smooth cutoff ψT ∼ χ[0,T ] and wish to bound

|ψT (t)
∫ t

0

�−1∆(Bσ1uBσ2 ū)Bσ3uBsūdτ |. (2.11)

A formal “integration by parts” (which is justified rigorously in the next section
when we define (�−1∆)1/2) allows us to bound by

|ψT (t)
∫ t

0

(�−1∆)1/2(Bσ1uBσ2 ū)(�−1∆)1/2(Bσ3uBsū)dτ | (2.12)

and Cauchy-Schwarz reduces matters to controlling

‖(�−1∆)1/2(Bσ1uBσ2 ū)‖L2
xT
‖(�−1∆)1/2(Bσ3uBsū)‖L2

xT
. (2.13)

Proposition 2.1 Let 0 ≤ s1 ∈ N and 1 ≤ s2 ∈ N, s1 ≤ s2. For b > 1/2,

‖(�−1∆)1/2([Bs1u1][Bs2u2])‖L2
xT
≤ C‖u1‖Xs1+1,b‖u2‖X

s2−
1
2 ,b
. (2.14)

The estimate is also valid if the complex conjugation is moved from u2 to u1 on
the left-side of (2.14).

Suppose the proposition is true. The bilinear expressions in (2.13) are esti-
mated by

‖u‖Xσ1+1,b‖u‖Xσ2−
1
2 ,b
‖u‖Xσ3+1,b‖u‖Xs− 1

2 ,b
. (2.15)

Using the local result we know ‖u‖Xs̃,b ≤ C‖u(0)‖H s̃ and upon interpolating
the various H s̃ norms between H1 and Hs (using (1.3)) bounds (2.15) by

C‖u(0)‖
σ1+σ2−

1
2−1+σ3+s− 1

2−1
s−1

Hs . (2.16)

Recalling that σ1 + σ2 + σ3 = s, the exponent simplifies to 2 − 1
s−1 , just as in

(2.9).
Now, consider a term in (2.10) with σ3 = s − 1. Evidently, σ1 = 1, σ2 = 0

or σ1 = 0, σ2 = 1. In this case, we apply Cauchy-Schwarz directly to the term
as it appears in (2.10) to bound by

‖�−1∆(Bσ1uBσ2 ū)‖L2
xT
‖Bσ3uBsū‖L2

xT
. (2.17)

The second factor is readily estimated using the Bourgain’s refinement of the
Strichartz inequality [4] to give

‖u‖X
σ3+ 1

2 +,b
‖u‖X

s− 1
2 ,b
≤ C‖u‖2X

s− 1
2 +,b

. (2.18)

The first factor in (2.17) is bounded using a variant of Proposition 2.1.
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Proposition 2.2 Let 0 ≤ s1 ∈ N, 1 ≤ s2 ∈ N, s1 ≤ s2. For b > 1/2,

‖�−1∆([Bs1u1][Bs2u2])‖L2
xT
≤ C‖u1‖Xs1+1,b‖u‖Xs2,b . (2.19)

The estimate is also valid if the complex conjugation is moved from u2 to u1 on
the left-side of (2.19).

Combining (2.18), (2.19) shows (2.17) may be bounded using σ1 = 1, σ2 = 0
or σ1 = 0, σ2 = 1 and σ3 = s− 1,

‖u‖X1,b‖u‖X1,b‖u‖
2
X
s− 1

2 +,b
≤ C‖u‖2X

s− 1
2 +,b

.

The local result and interpolation bounds this by

C‖u(0)‖2(
s− 1

2−1
s−1 )+

Hs = C‖u(0)‖2−
1
s−1 +

Hs

which (up to the +) is the same as in (2.9), (2.16).
Summarizing, the two Propositions above show that the integral term in

(2.1) is bounded by

C‖u(0)‖2−
1
s−1 +

Hs .

We may assume that ‖Bsu(t)‖L2 ≥ ‖Bsu(0)‖L2 for otherwise (1.10) is auto-
matic. Therefore, we can divide (2.1) through by ‖Bsu(t)‖L2 and with L2

conservation observe (1.10) holds with δ = 1
s−1− proving Theorem 1.1.

The next section establishes the Propositions and defines (�−1∆)1/2 used in
the treatment of σ3 ≤ s− 2 terms above.

3 Bilinear Estimates

In this section, we present a proof of Proposition 2.1. Along the way we will
observe explicit properties of the operator �−1∆ which allow us to justify step
(2.12) in the previous section. Proposition 2.2 will follow from modifications of
the proof of Proposition 2.1.

The operator �−1 was defined as the mapping taking the inhomogeneity F
to the solution of the linear initial value problem (1.5). It can be explicitly
represented using the Fourier transform as

�−1F (x, t)

= −
∫∫

eik·x
[
eiλt− 1

2
(1+

λ

|k|
)ei|k|t− 1

2
(1− λ

|k|
)e−i|k|t

] F̂ (k, λ)
(λ− |k|)(λ+ |k|)

dk dλ

(3.1)

where F̂ denotes the space-time Fourier transform of F . A Taylor series argu-
ment show that the apparent singularities along λ ± |k| = 0 do not occur and
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that

| ̂�−1∆F (k, λ)| ≤ C|F̂ (k, λ)| |k|
(1 + |λ± |k||)

+ |F̂ (k, λ)|{λ=∓|k|}|
|k|

(1 + |λ± |k||)
.

(3.2)
From an L2 point-of-view, it is therefore natural to define for real numbers α,

̂(�−1∆)α(k, λ)

= |F̂ (k, λ)|
( |k|

(1 + |λ± |k||)
)α +

∣∣F̂ (k, λ)|{λ=∓|k|}
∣∣( |k|

(1 + |λ± |k||)
)α
. (3.3)

In particular, we have defined the operator
(
�−1∆

)1/2 which appears in the
statement of Proposition 2.1. For two functions of space-time, F,G, which are
cutoff to t ∈ [0, T ], consider the expression (analagous to (2.11))∫∫

(�−1∆)(F )Gdxdt =
∫∫

̂(�−1∆)(F )Ĝ dk dλ. (3.4)

We insert (3.2) and take the absolute value under the integral sign. Then, upon
writing

|k|
(1 + |λ± |k| |)

=
|k|1/2

(1 + |λ± |k| |)1/2

|k|1/2

(1 + |λ± |k| |)1/2

we observe that∣∣∣ ∫∫ (�−1∆)(F )Gdxdt
∣∣∣ ≤ ∣∣∣ ∫∫ (�−1∆)1/2F̃ · (�−1∆)1/2G̃ dx dt

∣∣∣. (3.5)

where F̃ (x, t) =
∫
ei(kx+λt)|F̂ (k, λ)|dkdλ and G̃ is similarly defined. For prov-

ing L2-type estimates, the distinction between F and F̃ is unimportant. In
particular, the “integration by parts” step (2.12) is validated.

Now that (�−1∆)1/2 has been given a precise meaning, we turn our attention
to proving the inequality (2.14)

Proof of Proposition 2.1 Since ̂�−1∆(k, λ) ∼ |k|
λ±|k| , we see that �−1∆ can

be as bad as one derivative in x. Therefore, the number of derivatives on both
the left-side and right-side of (2.14) is s1 + s2 + 1

2 . The desired estimate (2.14)
may be reexpressed using duality and certain renormalizations as∫

∗
d(k, λ)

( |k|
(1 + |λ± |k||)

)1/2 (1 + |k1|)−1c(k1, λ1)
(1 + |λ1 ± |k1|2|)b

(1 + |k2|)
1
2 c(k2, λ2)

(1 + |λ2 ± |k2|2|)b

≤ ‖d‖L2‖c1‖L2‖c2‖L2 (3.6)

where
∫
∗ is shorthand for

∫
k=k1+k2
λ=λ1+λ2

and without loss of generality we assume

d, c1, c2 ≥ 0. The choices of ± in (3.6) are assumed to be independent in the
following analysis. In fact, this is only the first contribution arising from the
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right-side of (3.3). The other “on-light-cone” piece may be similarly estimated.
We analyze (3.6) in cases depending upon the size of |k1|, |k2|.
Case 1. |k1|, |k2| ≤ 10. We may ignore |k| 12 (1+ |k1|)−1(1+ |k2|)

1
2 and then drop

the (potentially helpful) wave remnant (1 + |λ± |k||) 1
2 to bound the left-side of

(3.6) by ∫
∗
d(k, λ)

c1(k1, λ1)

(1 + |λ1 ± |k1|2|)b
c2(k2, λ2)

(1 + |λ2 ± |k2|2|)b
. (3.7)

Fourier transform properties show this equals 〈D̂, Ĉ1 ∗ Ĉ2〉 = 〈D, C1C2〉 where
D, C1, C2 are functions of space and time whose Fourier transforms are d,

c1(k1,λ1)

(1+|λ1±|k1|2|)b
, c2(k2,λ2)

(1+|λ2±|k2|2|)b
, respectively. By Hölder’s inequality, we can esti-

mate by ‖D‖L2
xT
‖C1‖L4

xT
‖C2‖L4

xT
and obtain (3.6) in this case using Plancherel

and the Strichartz inequality for the paraboloid as written in [2],∥∥∥∫ a(k, λ)

(1 + |λ+ |k|2|)b
dkdλ

∥∥∥
L4(R2

x×Rt)
≤ ‖a‖L2

kλ
, b >

1
2
. (3.8)

The standard steps going from(3.7) through L2L4L4 to (3.6) will be omitted
from the discussion below.
Case 2. |k1| & |k2|, |k1| & 10. The case defining conditions imply |k| . |k1|.
We again ignore the wave remnant and use (1 + |k1|)−1 to cancel away |k| 12 and
(1 + |k2|)

1
2 . We again encounter (3.7) and complete this case with the L2L4L4

Hölder argument using (3.8).
Case 3. |k1| � |k2|, |k2| & 10 =⇒ |k2| ∼ |k|. The numerator (1 + |k1|)−1 is
not helpful in this case so we exploit the denominators in (3.6) to cancel |k| 12
and (1 + |k2|)

1
2 . Since k = k1 + k2, λ = λ1 + λ2, the triangle inequality implies

max(|λ±|k| |, |λ2±|k2|2|, |λ1±|k1|2|) ≥ |±|k|+|k2|2−|k1|2| ∼ |k2|2 ∼ |k|2. (3.9)

Case 3.A. |λ±|k| | is the max in (3.9). We use the large denominator to cancel
|k| 12 and (1 + |k2|)

1
2 and proceed as with (3.7).

Case 3.B. |λ2 ± |k2|2| is the max in (3.9). Most of the large denominator is
used to cancel away |k| 12 and (1 + |k2|)

1
2 and we need to control∫

∗

d(k, λ)
(1 + |λ± |k| |) 1

2

c1(k1, λ1)
(1 + |λ1 ± |k1|2|)b

c2(k2, λ2)
(1 + |λ2 ± |k2|2|)b−

1
2
.

Since b > 1
2 , so that b− 1

2 > 2δ > 0, and |λ2 ± |k2|2| & |λ± |k| |, we can write∫
∗

(1 + |k|)−δd(k, λ)
(1 + |λ± |k||) 1

2 +

(1 + |k1|)−δc(k1, λ1)
(1 + |λ1 ± |k1|2|)b

c2(k2, λ2). (3.10)

Let D(k, λ) = (1+|k|)−δd(k,λ)

(1+|λ±|k||)
1
2 +

and C = (1+|k1|)−δc(k1,λ1)
(1+|λ1±|k1|2|)b . Then (3.10) may be

expressed as 〈D ∗ C, c2〉 and Cauchy-Schwarz reduces matters to controlling
‖D ∗ C‖L2

xT
. This is accomplished in the following lemma.
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Lemma 3.1 For b = 1
2+ and a fixed small δ > 0

∫
∗,|k2|,|k1|≥10

f(k, λ)
(1 + |k2|)−δd(k2, λ2)
(1 + |λ2 ± |k2||)

1
2 +

(1 + |k1|)−δc(k1, λ1)
(1 + |λ1 ± |k1|2|)b

≤ ‖f‖L2‖d‖L2‖c1‖L2 . (3.11)

Proof. Since 1
2+ and b exceed 1

2 , the estimate (3.11) may be reduced to the
“on-curve” setting using parabolic (for c1) and light-cone (for d) level set de-
compositions (see, for example, [8]). This reduces considerations to showing
that∫

|k2|≥|k1|≥1

f(x1 + k2,±|k1|2 ± |k2|)|k2|−δψ(k2)|k1|−δφ(k1)dk1dk2

≤ ‖f‖L2
kλ
‖ψ‖L2

k
‖φ‖L2

k
. (3.12)

Consider the piece of the integration on the left-side of (3.12) arising from
{k2 : |k2| ∼ K2(dyadic)} × {k1 : |k1| ∼ K1(dyadic)}. We make a change of
variables, where superscripts refer to vector components, u1 = k1

1 + k1
2, u

2 =
k2

1 + k2
2, v = ±|k1|2 ± |k2| and we assume that the component k2

1 of k1 satisfies
k2

1 ∼ |k1| ∼ K1. (This may be accomplished by cutting in pie slices and making
a rotation of coordinates if necessary.) This change of variables followed by
Cauchy-Schwarz shows (3.12) is bounded by

‖f‖L2
kλ
K−δ1 K−δ2

∫
|k1

1|≤K1

(∫
|ki|∼Ki

|ψ(k2)|2|φ(k1)|2 1
|J |

dk2
1dk

1
2dk

2
2

)1/2

dk1
1

(3.13)
where the Jacobian is

|J | = |2k2
1 ± 1| ∼ K1. (3.14)

We apply Cauchy-Schwarz in k1
1 and pick up an extra factor of K

1
2
1 which is

cancelled away by the Jacobian factor. The small prefactors K−δi allow us to
sum over large dyadic scales thereby proving (3.12) and the lemma.

The lemma shows that (3.10) is bounded as claimed in (3.6).
Case 3.C. |λ1±|k1|2| is the max in (3.9). This case follows with a modification
of the argument for Case 3.B.

The proof of Proposition 2.2 follows the same case structure as the proof of
Proposition 2.1. The only difference is in the accounting of the extra 1

2 derivative
in both sides of (2.19) in comparison with (2.14).
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