Electron. J. Diff. Eqns., Vol. 2003(2003), No. 115, pp. 1-21.

Oscillation and nonoscillation of solutions to even order self-adjoint differential equations

Ondrej Dosly & Simona Fisnarova

Abstract:
We establish oscillation and nonoscilation criteria for the linear differential equation
$$
 (-1)^n\big(t^\alpha y^{(n)}\big)^{(n)}-
 \frac{\gamma_{n,\alpha}}{t^{2n-\alpha}}y=q(t)y,\quad
 \alpha \not\in \{1, 3, \dots , 2n-1\},
 $$
where
$$
 \gamma_{n,\alpha}=\frac{1}{4^n}\prod_{k=1}^n(2k-1-\alpha)^2
 $$
and $q$ is a real-valued continuous function. It is proved, using these criteria, that the equation
$$
 (-1)^n\big(t^\alpha y^{(n)}\big)^{(n)}
 -\big(\frac{\gamma_{n,\alpha}}{t^{2n-\alpha}}
 + \frac{\gamma}{t^{2n-\alpha}\lg^2 t}\big)y = 0
 $$
is nonoscillatory if and only if
$$
 \gamma \leq \tilde \gamma_{n,\alpha}:=
 \frac{1}{4^n}\prod_{k=1}^n(2k-1-\alpha)^2
 \sum_{k=1}^n\frac{1}{(2k-1-\alpha)^2}.
 $$

Submitted September 30, 2003. Published November 25, 2003.
Math Subject Classifications: 34C10
Key Words: Self-adjoint differential equation, variational method, oscillation and nonoscillation criteria, conditional oscillation.

Show me the PDF file (274K), TEX file for this article.

Ondrej Dosly
Masaryk University, Janackovo nam. 2a
CZ-662 95 Brno, Czech Republic
email: dosly@math.muni.cz
Simona Fisnarova
Masaryk University, Janackovo nam. 2a
CZ-662 95 Brno, Czech Republic
email: simona@math.muni.cz

Return to the EJDE web page